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The “equations of motion™ of a linear electroacoustic transducer are written in the alternative
forms L'X=0, L. X=0, where the matrices L* are linear differential expressions, X = (E, H, i) rep-
resents electroacoustic fields, and the superscripts distinguish selected normalizations of the equa-
tions of motion. To each operator L* corresponds a mathematically defined adjoint operator (L)
and an associated adjoint transducer, whose material tensor parameters are given by certain trans-
positions and interchanges of the parameters of the given transducer. Dissipative characteristics
(lossiness. losslessness, or “gaininess™) of the material of the given transducer are preserved point-
wise in the adjoint transducers. A generalized reciprocity lemma leads to relations of reciprocal type
between external properties of the given and the adjoint transducers. In the self-adjoint cases, the
conventional electroacoustic reciprocity and antireciprocity relations are obtained and the derivation
of those relations is critically confirmed. The generalized or adjoint reciprocity relations have been
applied in the plane-wave scattering-matrix formalism developed for electroacoustic transducers by
D. M. Kerns.

Corollaries of the adjoint reciprocity relations, analogous to conventional reciprocity theorems,
but involving properties of adjoint pairs of transducers, are derived. Examples are discussed of trans-
ducers for which it is feasible to form the adjoint transducers.
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Glossary of Symbols

a-superscript: Denotes the adjoint.

t-subscript: Denotes the transpose.

Ao, Ap, A: Surface of transducer; surface of power supply or detector; and surface of trans-
ducer-plus-(power supply or detector).

ay, bo: Amplitude of incident and emergent em mode which feeds the transducer.

a(K), b(K): Incoming and outgoing plane-wave amplitudes in ambient fluid.

@ &l Direct and converse piezoelectric stress tensor (triadic).

Vol Amplitude of spherical wave in ambient fluid.

B, Bo: Harmonic and static magnetic induction.

E’ E': Direct and converse piezomagnetic stress tensor (triadic).

Zo Hooke’s tensor (tetradic).

D-: Electric displacement.

E. E,- Harmonic and static electric field.

éo. ho: Electric and magnetic field components of em mode which feeds the transducer.

AMS Subject Classification: 7000, 7800. i L o 8
*This work was done while the author was a National Research Council Postdoctoral Associate in the Electromagnetics Division of the National Bureau of Stand-
ards, Boulder. Colorado.
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Analytical techniques developed by Kerns [1, 2, 3] for the measurement of microwave antennas
have been ‘“‘translated” recently by that author into corresponding techniques for :he measure-
ment of electroacoustic transducers in fluids. The basic theory is formulated with a scattering-
matrix description and emphasizes the use of plane-wave spectra for the representation of
acoustic fields. For a summary and for details of the theory and its variety of applications, reference

Permittivity dyadic.

Plane-wave admittance.

Admittance of em mode feeding transducer.
Bilinear concomitant associated with the operator L.
Induced and applied volume forces.

z-component of the plane-wave propagation vector.
Magnetic field.

Spacial impedances describing transducer.

Identity dyadic.

Induced and applied current densities.

Transverse part of kand L

Plane-wave propagation vectors in ambient fluid.
Transducer operator matrices.

Applied magnetization.

Microphone response.

Permeability dyadic.

Free-space permeability.

Harmonic and static pressure.

Applied polarization.

Static mass density of the ambient fluid.

Harmonic, static, and total mass density of transducer material.
Harmonic and static charge density.

Transducer feed surface.

Reference xy plane in ambient fluid.

Plane-wave scattering matrices describing transducer.
Speaker response.

Strain dyadic.

Conductivity dyadic.

Harmonic, static, and total stress dyadic.
Magneto-electric dyadics.

Fluid or material velocity.

Input voltage and current to transducer.

Voltage and current spectral densities.

Spacial impedances (along with A, A") describing transducer.

1. Introduction

should be made to Kerns [4].

Although the electromagnetic (em) theory is quite comprehensive, the acoustics applications
are strengthened by generalized or adjoint reciprocity relations [5], the derivation of which forms
the principal subject of the present paper. The generalized reciprocity relations are expressed in
the notation of the Kerns plane-wave scattering-matrix (PWSM) description, and also in the
notation of the spacial impedance-matrix (SIM) description introduced by Foldy and Primakoff
[6, 7] in their classic papers on electroacoustic transducers and reciprocity. The PWSM expres-

'Figures in brackets indicate the literature references at the end of this paper.
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sions of adjoint reciprocity have become especially important because of their use in the theo-
retical foundation of extrapolation techniques which predict gain on an arbitrary axis from measure-
ments at reduced distances along that axis [4]. (Extrapolation techniques were introduced for
antennas by Wacker and Bowman [8].)

The following approach is taken to establish the adjoint reciprocity relationships. The equa-
tions of motion and constitutive relations describing a large class of linear electroacoustic trans-
ducers are reduced to the form of a linear operator matrix. The operator is “transposed’ to form a
unique adjoint operator, which is compared and combined with the original operator to derive a
generalized electroacoustic reciprocity lemma relating the fields of the given transducer to those of
an adjoint transducer. The material parameters of the adjoint transducer are determined by certain
transpositions and interchanges of the material parameters of the given transducer. The reciprocity
lemma leads to the generalized reciprocal relations between the characteristic (PWSM and SIM)
matrices of the given and adjoint transducers. In addition, corollaries of the adjoint reciprocity
relations analogous to conventional reciprocity theorems are derived for adjoint pairs of transducers.

Power relations and the associated “value classes’™ are investigated also for electroacoustic’
transducers and their adjoints. In particular, it is shown that the dissipative characteristics (lossi-
ness., losslessness. or “gaininess™) of the given transducer are preserved pointwise in the adjoint
transducers.

Although a unique adjoint corresponds to a given operator, many different operators can rep-
resent the equations of the same transducer. For example, multiplication of one of the equations
of motion by a constant will change the operator matrix without changing the content of the equa-
tion of motion. Analysis shows, however, that for a given transducer only two operators, L+ and
L~ (from here on the “4+" will be omitted from .* ), have an associated adjoint operator, L* and L.,
which represents the equations of another transducer (the adjoint transducer). A transducer self-
adjoint (L“=L or L-“= L ) with respect to L or L= corresponds to the conventional reciprocal or
antireciprocal transducer respectively. One of the advantages of the linear operator approach is
that it facilitates the identification of self-adjoint transducers.

A number of experimental measurement techniques applicable to reciprocal (or antirecipro-
cal) transducers only, could be extended to nonreciprocal transducers if the adjoint transducers
were producible in the laboratory. In general, the difficulties in synthesizing the necessary electro-
acoustic material parameters may discourage or prevent the creation of the adjoint transducers.
However. two groups of transducers are discussed for which the creation of an adjoint transducer
involves, in principle, a simple modification of the given transducer.

2. The Transducer System

The electroacoustic transducer system under consideration is pictured in figure 1. The trans-
ducer is bounded by the closed, finite surface 4,. The em power supply or detector, which is
bounded by the closed, finite surface 4, , feeds the transducer through the area S, common to both
Ay and A4,. The transducers. which may contain static bias fields and their sources, are termed
“passive’ if they cannot radiate more power than they absorb. The present analysis. however, is
not limited to passive transducers, but may include transducers which are active because they con-
‘gainy’’ material, or radiating sources, or both. (A transducer will be called source-free if its
internal equations of motion are homogeneous, i.e., if they are satisfied by all fields equal to zero.)

tain *
The transducer-plus-(power supply or detector) is immersed in a homogeneous., isotropic, sta-
tionary fluid which extends to infinity and supports the time harmonic (e @, @ > 0) acoustic
pressure-velocity field of small (first order differential) amplitude. The static pressure, static den-
sity, and propagation constant (the latter two of which may be complex function of real frequency w
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to account for viscous and ‘“‘expansive friction™ losses) are constants in space and time denoted by
Py, po and k respectively. The fluid between the infinite xy plane S, (z=0) and the external surface

A

Py Py K
iZ
® =
<«—1+— a(K)
—— b (K)
FIGURE 1. Schematic of the transducer system. Sl
A=A, + A4, denotes the external surface of the electroacoustic transducer-plus-(power supply or detector).

A of the transducer-plus-(power supply or detector) contains no acoustic sources.” although arbi-
trary sources (at frequency w) may exist to the right of S;.

The normal velocity on the surface 4, of the power supply-detector, including the feed area
So. is assumed negligible. Electromagnetic shielding necessary for deriving the adjoint reciprocity
relations is discussed in section 5.

The area Sy may designate the perpendicular cross section of an open or closed em waveguide
(uniform and isotropic) in which a single em mode is propagating with incident amplitude a,
and emergent amplitude by. or simply the cross section of two wire leads when the frequency w
is low enough to allow analysis by quasistatic voltages and currents. The cross-sectional area S,
for a mode on an open waveguide (such as a lLecher line or microstrip) must extend sufficiently
far from the guide to insure that the fields in the mode outside S, contribute negligibly to the
normalization integral ((7) below). The surfaces 4,., S,. and 4, represent imaginary boundaries
in that they are chosen to facilitate the theoretical analysis and need not coincide with the
physical boundaries of the system. Of course, the surface 4 =A4,+ 4, must be chosen within
(or on the interior boundary of) the ambient fluid.

The continuity and momentum equations. which govern the harmonic acoustic fields in
the source-free fluid between the surface 4 and the infinite plane S;. may be expressed as

k*p=—iwpoV i (1a)

Vp:iwpuﬁ. (lb)

2 Between 4 and S, there can be finite regions of either acoustically rigid material or material in which volume forces are zero and stress is linearly related to
strain by a symmetric Hooke's tensor. However. the reference plane S; must remain entirely in the homogeneous ambient fluid.

20



where the complex amplitudes, p and @, denote the position-dependent excess pressure and
fluid velocity. The effect of gravity on harmonic variation in mass density is neglected.

The excess pressure and normal velocity on the surface S; may be expanded in a double
Fourier integral (transform) over plane wave voltage and current spectral densities [4]:

=1 _  iK-R _
PR =5 [ VR aR -
K
uz(R)z—ifl(K)e"k"" dR. 2b)
27
K

Conversely, the plane-wave voltage and current densities, which are defined in terms of the
incoming a(K) and outgoing b(K) acoustic plane-wave amplitudes,

V(K) =a(K)+b(K) (3a)

I(K)=[a(K)—b(K)n(K). (3b)

may be expanded in a double Fourier integral (inverse transform) over the excess pressure and
normal velocity:

V(K)=71;fqp(1?)e " 4R (4a)

1K) =55 [ us(R)e ™" aR. (4b)
St

The vector K =K.,i+ K, can be interpreted as the transverse part of the plane-wave propagation
vector k. The vector R is confined to the xy plane Sy, and n(K) equals y/wp,. where y is defined as
(k*— K2?) % with the sign of the radical chosen to keep the real and imaginary parts of 7y positive.

The transverse em fields (E,, H,) on the cross section Sy of a waveguide may be written as
the sum of the transverse electric &, and magnetic hy components of the mode traveling to the
right with incident amplitude ay and to the left with emergent amplitude b,:

Er:Vnau thlnilm (5)

where
Vo=ao+ by (6a)
[(IZ ((ln_ bn)’f]u- (()b)

If the dimensions of & and Ay are chosen as (meter)™! and (&, nJm) are consistent with
Maxwell’s equations, ¥y behaves dimensionally as volts, I, as amperes, and 1y as an admittance
(ohm=') normally chosen as a positive real number. Moreover, normalization may be expressed
as a nondimensional number equal to unity, i.e.,

J’ (énxil()) i ﬁda=l, (7)
S0

where n is the inward normal to the transducer. (The rationalized MKS system of units is used
throughout.) If the area Sy simply cuts two wire leads at quasi-static frequencies, ¥y and I, refer

21



to conventional circuit voltages and currents which do not necessarily serve as genuine modal
coefficients. In that case, (6) become a definition of ay and by.

The PWSM description relates the outgoing amplitudes. by and b (K) . to the incoming am-
plitudes, @ and a (K) . by the scattering equations (see ref. [4]).,

[)n:Sun(lu-Ff Sm(Z)(l (L) (1Z, (8'(1)

It

b(K) =S (K)m,+f S (K.Lya(L) dL (8b)
I

The scattering matrix is resolved into the four submatrices So;, S0, Si1 and Sy which represent
the receiving, radiating, acoustic scattering, and em reflection properties respectively for the
electroacoustic transducer. Like K. the vector L can be interpreted as the transverse part of the
propagation vector L.

Alternatively, the SIM relations3 characterize the external behavior of the transducer by
relating the “voltage” V, and excess pressure p on the surface of the transducer 4, (except possibly
on the feed area Sy) to the “current” I, and the inward (to transducer) normal velocity u, on the
surface 4 :

VIDZZIJ(l+f h' (Fo)un(Fo) day (9a)

Ay

p(F)=h(r)I, +f Zo(F,Fo)un(Fo) day. (9b)
1,

Although three of the four spatial impedances (Z,, h', h, Zy) depend upon the position vectors
(7,Fy) to the surface 4, and all four depend upon the harmonic time frequency. they are assumed
independent of the medium or sources surrounding the transducer and, as linearity implies,
independent of Vo, Iy, p and u,.

It can be shown [9], without reference to the internal behavior of the transducers, that the
PWSM equations (8) imply the SIM relations (9) but not vice versa. That is, the PWSM description
applies to a larger class of transducers than do the SIM relations. However, the alternate ex-
pressions of reciprocity (and antireciprocity),

0S01(K)= = nK)S o(— K) (10a)
n(K)S\ (K, L)=n(L)Si(—L, K), (10b)
and
h'(F)= = h(F) (11a)
Zo(r, 7o) =Zo(Fo, 7) [6, 7], (11b)

which are derived in section 5, can be proven [9] equivalent for transducers which obey both
descriptions.

In analogy to the 2-port cases discussed by McMillan [10]. Kerns [4] defines reciprocity, anti-
reciprocity, and nonreciprocity for electroacoustic transducers in terms of whether (10a) holds
with the plus sign, the minus sign, or not at all. Foldy and Primakoff [6.7] do not use the term
“antireciprocity’” explicitly, but distinguish between the plus and minus sign in (11a) by con-

3Foldy and Primakoff refer to equations (9) as the “linearity relations.”” Here they are referred to as the “spacial impedance-matrix relations™ to avoid confusion
with the spectral scattering-matrix equations (8), which are also linear.
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sidering reciprocity through electric-type coupling and magnetic-type coupling.
Equations which characterize the internal behavior of the electroacoustic transducers under

consideration are introduced in the following section.

3. The Operator Matrix Description

Primakoff and Foldy [7], in their original work on electroacoustic reciprocity, examined the
equations which model the internal operation of a large class of linear transducers. They found
that if certain “symmetry conditions’ were satisfied by its material parameters and static fields,
the transducers obeyed the SIM reciprocity relations (11). The present derivation begins in a
similar way by writing the linear, harmonic (e~ i®’) equations that govern the “physics’ of the mate-
rial within the transducer A4,:

Vo T+ iwpS,a+f=0 (12)
VXE—ioB=0 (13a)
V X H+ ioD—J=0. (13b)

The momentum equation (12) expresses Newton’s second law for stationary (i,=0) media, and
(13) express Maxwell’s equations in differential form for stationary media in which regions of
electric and magnetic polarization may exist.

The static quantities, which will be distinguished by the superscript or subscript “0,” are
real functions of the space coordinates. All other quantities, except the real frequency w. represent
complex, space-dependent. harmonic amplitudes, which superimpose upon the static variables as
products with e . For example. if the total stress dyadic at a point in space and time is denoted by

T (7, t) then T’ can be divided into a real static part T”(‘r‘) and a complex harmonic part T( )e it

l.t‘,..
T (7. t) = To(F) + T(F)e i,

Of course, it is the real part of T' that corresponds to a measurable quantity. Only the complex
harmonic amplitude T (7) shows in (12). Similarly the total mass density p}, (7, t) may be divided as

pn(Ft)= PY(F) + pum(Fle o

but only the real static part occurs in (12). In fact, the mass continuity equation is not included
in addition to the momentum equation (12) because it merely introduces the extra variable p ().

The other variables in (12) are i, the harmonic velocity of the material, andﬁ the total har-
monic volume force. The usual harmonic em field vectors are denoted by E. H, B. D. and J. All
variables refer to macroscopic quantities which are evaluated, at least in concept., by averaging
microscopic variables over small but finite volumes and time intervals.

The number of unknowns in (12) and (13) reduces to the number of equations if the following
linear constitutive relations characterize the transducer material:

D=¢E+7H+as5+P, (14)
B=7E+ i-H+ B:5+ o, (15)
J=a-E+axB)+pla+J, (16)
T=%5-&E-B'H (17)
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f=pE+J X Bo+ fs. (18)
where the strain dyadic 5 is related to the velocity by

- 1 1
§=—£<V&—§(VX12)XI) (19)

(I is the identity dyadic).

The various “dot products™ involved in the vector and dyadic transformations of (14-19) can
be understood in terms of Cartesian tensor notation, in which -E, @' - E, @:5 and ¢: 5 become
€k, a&ijE). aijrsjr. and cijisie respectively (summation over repeated dummy indices is im-
plied). The “n-adic™ notation [11] is used wherever convenient because it preserves the familiar
vector-dyadic notation for the electroacoustic fields [7, 12].

The dyadics &, €, m. and (7, 7) stand for the conductivity, permittivity, permeability, and
magneto-electric properties [13] of the transducer material.

The direct piezoelectric and piezomagnetic stress triadics [14], @ and E may be chosen
symmetric:

Qijh = Qikj (20a)
Bijk = Bikjs (20b)
since the strain dyadic is symmetric,
= |l al_lj au,,» }
p=— —L == l=y, .
Sk 2w { ax,  0x; L (9

Similarly, because the stress is a symmetric dyadic (T;;=T;;) (provided there are no distribu-
tions of body torque, stress couples, or angular momentum density [15]), the converse piezoelectric
and piezomagnetic stress triadics [14], @’ and B’, must possess the symmetry,

’

Qi (22a)

{
A

B;_,‘I; = B;:A (22b)

The symmetry of the stress dyadic also requires the Hooke’s tetradic ¢ to obey the symmetry

Cijkt = Cjikts (23a)
and the symmetry of the strain dyadic allows the defined symmetry

Cijkt = Cijlk- (23b)
The static charge distribution p¢, the static magnetic induction By, all other static quantities, and
material parameters which may depend upon frequency w, remain independent of the values of
the harmonic variables.

Although only transducers which obey the homogeneous equations are considered finally
(source-free transducers), the harmonic sources of polarization P, magnetization M (o is the
permeability of free-space), current Js. and volume force ﬂ have been included in (14), (15), (16),
and (18) to allow insight into applications involving these sources.

A number of other assumptions underlie the development of (14-19). In the current equatiort
(16) the “Hall effect’” of the magnetic induction on drift velocity is ignored, as well as harmonic
variations in conductivity which might be found, for example, in a biased carbon microphone.
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The volume forces on electric and magnetic dipoles, static currents, and harmonic variations
in mass density (acted upon by gravity) have been omitted in the force equation (18). The effects
of gravity are usually minute, and if the material that contains the dipoles or static currents is rigid
or has insignificant effect on the essential behavior of the transducer, the volume forces on the di-
poles and static currents are justifiably neglected also. The magnet in a dynamic speaker may
experience appreciable volume forces, but because the magnet is relatively rigid, (12—19) describe
such speakers. However, the operation of a hypothetical transducer containing dipole or static
current elements which move through strongly inhomogeneous em fields would not, in general,
be described by (18).

Application of Maxwell’s stress tensor reveals that forces on surface charges and currents can
be evaluated by substituting the appropriate surface delta functions into (18) if nonconductors
contain no static surface charge, and if the electric field just outside the surface of conductors, on
which static surface charge exists, is used in the evaluation of p%E. The force term p.E, is not
needed in (18) because it vanishes in nonconductors where the harmonic charge distribution p,
must be zero. and in conductors where the static electric field £, must be zero. The standard con-
denser microphone is well described by (12-19).

The constitutive equations (14-19) may be used to reduce the three physical laws (12), (13a),
and (13b) to functions of three vectors, the electric field E, the magnetic field H, and the velocity
field @. The final three equations are conveniently displayed in operator matrix form as

p— f— ———

(lwe*—a7 *) (VX+iwT) (—a:V+(FXBy) - —p?)
(V- X —iF ) (—iwgE*) (B:V) =
= = — = V év = = = =
(V& +Box5-—p) (V-8 (4(_—(B'>><6-><Bn)-+p"Bu><—iwp‘,‘,,> -
Lw .
L - = _J

j.\' - I-CL)I;.\'
iw,u.wﬁ.\-
ji - I}li X jx

(24)

Since (VX @) X[ is antisymmetric, its dot products with the symmetric a, E and ¢ vanish. All
operator symbols of the 3 X 3 matrix containing three vectors are evaluated in succession from right
to left. In full scalar matrix notation, the left side of (24) becomes a 9 X 9 matrix operating on a 9-
element column matrix, and the right side another 9-element column matrix.

The particular arrangement of elements in the matrix of (24) was chosen because it exhibits
Maxwell’s equations as a 2X 2 submatrix (the upper left corner), and because the associated
adjoint operator matrix also represents the equations of an electroacoustic transducer (the ad-
joint transducer).

4. The Adjoint Operator Matrix and an Electroacoustic Reciprocity Lemma

The development of the desired generalized reciprocity relations requires the intermediate
derivation of a bilinear divergence expression which combines, essentially, the Lorentz lemma [16]
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of electromagnetic theory with the acoustical reciprocity theorem ((45) below). The theory of
adjoint operators assures the existence of such a bilinear expression (called the “bilinear iden-
tity”), and provides a straightforward method for obtaining the identity from the operator matrix
of (24) [17]. Specifically, if L. denotes the linear operator matrix of (24), the bilinear identity may
be written in differential form as

d)],[,(b-_r — d)g][,”d)l = V N F. (25)

where L denotes the adjoint operator associated with .; ¢, and ¢» are any two continuously
differentiable column matrices containing three vectors (the subscript ¢ transposes the column
matrix to the corresponding row matrix); and V - F is the required divergence expression. The
explicit evaluation of the bilinear concomitant F requires the determination of the adjoint op-
erator L, which is actually defined by (25)[17].

For a given linear operator L., the adjoint operator L“ exists uniquely [9], and may be found by
transposing the matrix elements of L, and replacing the differential operators by their adjoints. *
Fortunately, the adjoints of the four different linear differential operators of .,

VX, &:V,V-& -,andV -¢:V, (26a.b. c. d)
are readily determined as
VX,—V-& ,—& :V.,andV -&:V. (27a,b, c.d)

respectively, with the help of the associated identities,

A (VX Az) —Ar - (VXA)=V - (42X A1) (28a)
A, - (V- (C')IA_.’)) +4,- (&, ZVA—I)ZV : (/il E/‘i_’) (28b)
/4_1 (V (? V/I__z))_/tg (V(%{iV/{|)):v (A_I%VA__)—A__)%,VA_I) (28(‘)

The subscript t denotes the transposed matrix, and 4,, A, afe arbitrary. continuously differentiable
vectors. In tensor notation the transpose of a;x and c;jri, for example, used in (27), (28) and below
is ajri and cg;. Note that the curl operator is self-adjoint, that the direct and converse piezo-
electric and piezomagnetic operators are adjoints of each other if &=—&'. [?:—E;. and that
the purely acoustic operator is self-adjoint if = ¢. These self-adjoint properties are understandable
from Lanczos’ theory of adjoint operators where he shows that the curl operator is self-adjoint
and that the gradient and divergence operators are negative adjoints of each other[17].

The straightforward transposition of the nondifferential elements of I. completes the con-
struction of the adjoint operator L:

(Iw‘e_‘,—(?) (VX—iwf,') —3/:V— g'yxéo)—p::

~<

La=[ (58 ) =me (—B:V) .

(v'ﬁr'_élbx(—;—l'—pu) (—VE)] [—v—z_v— (BoxE(XE(»)'_p“B()X_l’wp?u]

(40

Comparison of the adjoint operator L with L reveals that, at a given frequency w, the adjoint

* Determination of adjoint differential operators as implied by the bilinear identity (25) is not synonymous with the interchanging of rows and columns of the
Cartesian matrix form of the operator. Contrast, for example, Lanczos, ref. [17] with Auld, ref. [12].
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operator describes the equations of a second transducer (the adjoint transducer) in which the
transposed parameters

= = = = = = = =, = D .
Trs €. Lea—Try, — Via . — Bioy,— B¢, Co.— Bo. pl. and p), (30a)
replace the original parameters
og.€&.p,v.7.a . B .a. B.¢ Bo, p! and pY) . (30b)

respectively. The adjoint transducer refers to a mathematically conceived transducer with hy-
pothetical material parameters which may or may not be physically realizable (see sec. 7). When
the transposed parameters (30a) equal the original parameters (30b). the operators L. and L“ be-
come identical to form a self-adjoint operator for which the adjoint transducer and original trans-
ducer are one and the same. In that case By is zero (Bo=—B,). which corresponds to the electric-
type coupling of Primakoff and Foldy [7].

The expression (29) for the adjoint operator allows the explicit evaluation of V - F. If ¢,
is restricted to solutions of (24), and ¢, to solutions of the adjoint equations corresponding to
(24) with L replacing . . i.e..

Lé.=0Q,L$,=Q"

(3la.b)
where = ~
Ii E:u
b= | H|. 1= | H" (32a,b)
Hd "
and ) . 3 -
Js = vt J{— il
(33a.b) 0= | iopoM, , Q= iw,u.u/Vl’j. (33a, b)
fo—Box ], fi+Box Jt
then ¥V - F becomes. after rearrangement and use of (17) and (19),
V-F=V - (ExH' —E*xH) -V -(a"-T—a-T"
=E" (Jy—iwP,) + iomwH" - My+ @ - (fy— Bo X J) (34)

—E - (J —iowP!) —iopeH - M* —a - (f*+ Byx]J").

When the harmonic sources are set equal to zero (in the transducer not the power supply). applica-
tion of the divergence theorem to (34) in the volume bounded by the surface 4, of the transducer
vields a generalized reciprocity “lemma’™ between the independent electroacoustic fields of a
given transducer and those of its mathematical adjoint:
f (ExH'—E*x<H) - dea-f-f (T*-a—T-a") - ada= 0. (35)
ll) Al()

The name “generalized electroacoustic reciprocity lemma’™ seems appropriate for (35) since
it represents a merger of the Lorentz lemma [16] of em theory and the acoustical reciprocity
theorem ((45) below) as applied to adjoint systems. For self-adjoint transducers, i.e , transducers
for which the transposed material parameters of (30a) equal those of (30b). (35) reduces to the
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corresponding Primakoff-Foldy expression [7] in which a second set of fields on the same transducer
replace the adjoint fields. Auld [12] uses this latter expression with the complex conjugate fields to
derive the orthogonality relation [18] between different modes of piezoelectric waveguides and
resonators. Equation (35) demonstrates that the waveguides and resonators need not be restricted
to piezoelectric material in order for the modes to satisfy orthogonality.

A more general expression similar to (35) may be derived from the equations represented
by the operator L. Each row of the operator L in (24) could be multiplied by an arbitrary constant
without affecting the essential content of the equations. Specifically, if the first, second, and third
row of L are multiplied by arbitrary complex constants, ¢, ¢z, and c; respectively, (35) is replaced
by

f [cl(EXH“)—CZ(E“XH)]-dea+63f (T“-Q—Tz'-ﬁ“)‘ﬁdazo.
A9 Ay (36)

Although (36) has mathematical validity and interest, the constants ¢y, cs, and cs must be
restricted if (36) is to be used in the derivation of the generalized reciprocity relations between a
transducer and its adjoint transducer. (The adjoint fields will depend upon c;, c2, c3.) First, be-
cause the right side of (36) is zero, the constant ¢;, can be set equal to unity without loss of gener-
ality. Second, ¢; must equal ¢; =1 to accomplish the derivation of the scattering-matrix reciprocity
relations ((53) below). And third, if the adjoint operator underlying (36) is required to describe
the fields of a second transducer (the adjoint transducer), comparison of (29) with (24) (when the
constants c¢;, ¢z, and c3 are included) shows that for ¢; = ¢, = 1, the only allowable values of c3
are =1 unless both By and p® are zero. If both By and p® vanish throughout the transducers, the
adjoint operator represents an adjoint transducer for all values of c;.

Equation (35) already represents the case of ¢; =+ 1. where the relationship between the
adjoint transducer parameters and those of the original transducer is given by (30).

For ¢; = — 1, the operator L in (24) changes to L, the superscript (—) indicating that the third
row of L has been multiplied by a minus sign. The operator adjoint to L~ describes an adjoint
transducer in which the transposed parameters

ts _Fx, _ﬁr» -
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respectively. replace the original parameters listed in (30b). The transducer of (30a) (c; = 1) converts
to the transducer of (37) (c3=—1), and vice versa, by reversing the signs of the off-diagonal
elements in the third row and column of L.

When the transposed parameters (37) assume the values of the original parameters (30b),
the operator L~ and its adjoint L “ become identical to form a self-adjoint operator for which
the adjoint and original transducer are one and the same. In that case.p! must be zero (p'=—p"),
which corresponds to the magnetic-type coupling of Primakoff and Foldy [7].

The equations represented by the operators L ana L~ describe the samne transducer. How-
ever. the equations represented by the adjoints L and L~ refer. in general. to different adjoint
transducers. Section 5 shows that a transducer self-adjoint with respect to L satisfies reciprocity,
while a transducer self-adjoint with respect to L~ satisfies antireciprocity.

5. Generalized Reciprocity Relations

The derivation of the desired reciprocity relations can now be accomplished with the help
of the reciprocity lemma (36). It will also be demonstrated that the SIM relations (9) and PWSM
eqgs (8) result as a by-product of the reciprocity derivation. Such a demonstration is included
simply to prove that the two matrix descriptions of a transducer, which satisfies eqs (12-19), need
not be postulated as a definition of linearity, but follow from the linearity of (12—19).
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The reciprocity lemma (36) for adjoint transducers may be written as

f [(E“x H)—(Ex H")|-ada if P uy—pu') da=0, (38)
4 Ao

where the plus sign refers to the operator L. and the minus sign to L . The surface A, of the trans-
ducer has been taken in the surrounding fluid. so that the stress tensor relates to pressure like

—n-T-n=p

_,“l 'T”'ﬁ:[)”,

except on the feed area S, where the contribution to the integral is assumed negligible.
The integral over A, of the em fields expands to

Vely— VoIt + f [(E“x H) — (Ex H")] - hada (39)

Ap—So

(n points into the transducer). after substitutions of the modal fields normalized to unity by (7).
The contribution from the integral over 4, —S,. the area of the transducer excluding the area
So. vanishes if either of the following conditions is satisfied:

(1) The surface Ay, — S, of the transducer (but not necessarily the surface 4, — S, of the power
supply) is electromagnetically shielded so that E. E* or H, H" are zero on Ay — Sy. (Prescribed
boundary conditions on the adjoint transducer are chosen to follow those of the original transducer.)

(2) The surface 4, — Sy of the power supply (but not necessarily the surface 4, — S, of the
transducer) is electromagnetically shielded and no em sources exist external to the transducer-
plus-(power supply or detector) A. (Regions of linear em material are permitted outside 4.) Under
these conditions. the surface 4, — S, may be enlarged to a surface of infinite radius where the
Sommerfeld radiation condition or the exponential decay in electromagnetically lossy media de-
mands that the integral be zero.

If the transducer operates at quasi-static frequencies so that the em fields outside the trans-
ducer obey

EZ—\/l}l.E”Z—VlII” (40a)

VxH=],VxH=ju, (40b)
modal theory may not apply. but substitution of (40) into the em integral of (38) shows that the
contribution over 4,=S still vanishes. That is. no shielding is required at quasi-static frequencies
of operation for the expression

Vialo—Vol¢
to represent the em term of (38).
With the em integral over 4,—S zero, (38) becomes

V{,’Iu—VuI{{if (p%uy—pu?) da=0. (41)
A9

Because the fields of the transducer and its adjoint exist ii lependently and the velocity-current
variables of each transducer may assume arbitrary values. (41) transforms into the SIM relations
by first choosing

I§, =1, uy, (F)= 0, (42a)
which gives
Vo= l';;,l.»iJ' PP, (r) da; (43a)
.1“
then choosing
I8, =0, ul,(F)=8(F—F"), (42b)
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which gives

l)(f) =3I V:ll_g (f)]0+f p’_,’ (f,f())lln(fu) d(ln. (4'3b)

I“
Comparison of (43) with (9) shows that the various spatial impedances equate as

Zy=Vy,, h'(F) == p¢ (F),
(44)
h(F) ==V, (7), Zo(F.F0) = p4 (F,Fo).

The PWSM equations (8) are disclosed in a similar manner once (2. 3. 6) and the acoustical
reciprocity theorem,

f (p'uz — pul) da + j (p'ui—p*u!) dR=0, (45)
1 Sh -

as applied to any two acoustic fields supported by the fluid between 4 and S, . convert (41) to

nao(boal —biay) i/ (K) [a(K)b" (—K) —a" ( —K)b(K)] dK=0. (46)
K
Since the values of ao, a and af, a* may be designated arbitrarily and independently of each

other, choose

afy,=1.a(K)=0, (47a)
and

ap,=0,a3(K)=8(K+1L), (47b)

to extract the PWSM equations from (46),

1 VO
bo = by, au+n—fn(L) be(—L)a(L)dL (48a)
0
I -
b(K) ::n—fb;;z(k)mﬁ%f b (K. —Lya(L) dL. (48b)
N(K) n(K) J. :

Equations (48) coincide with (8) under the replacements,

Soo= [)(','l, Soi (Z ):i"l)‘]l ib;'i—l_z)/”f)n .
(49)

Sm(k) :In()[)::z(k)/'f]([(). Sll = 7)114 )bglk. *ij )/7)1[(’.

If the conditions of (42) and (47) are applied to the given transducer rather than its adjoint
transducers, (41) and (46) produce (43) and (48) with the given transducer and adjoint transducers
interchanged. That is. the SIM relations and the PWSM equations describe the adjoint transducers
as well as the original transducer.

The generalized reciprocity relations between a given transducer and its adjoint transducers
may also be extracted from (41) and (46) by eliminating the pressures and voltages of (41) with
the SIM relations, and the outgoing amplitudes of (46) with the PW SM equations. Such a procedure
yields
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I:f(Z;,'—Zh)In—f‘lu f

Ay

[A(F)=F h(F) | (F) da —l”-[ [A"(F)=F h"(F)|uu(F) da

if| fl w P2 (Fo, F)— Zo(FFo) lun(Forday da =0 (50)
for (41), and

peadiwi S dtde fl [m0Sty (L) F9(L)Sw(—L) Ja (L) dL
+uﬂf [0Sm (L +7)(L)Sm L)]a(L)dL 51)

ffm(/)[n VSt (=K, L) —n(L)S1 (=L, K)]a (K)dKdL=0

for (46).

Since they must hold for arbitrary values of the inputs, (50) and (51) imply

Zi=17, (52a)
I (F) === o (7) (52b)
he(F)==h'(F) (52¢)

Z{(Fo, F)=Z0o(F, Fo) (52d)
and
S — (53a)
n0S4 (K) =1 (K)S10(—K) (53b)
1 (K)S¢, (K) =%n0Su (—K) (53¢)
n(K)S! (—K,L)=xn(L)S,(—L,K). (53d)

Either the b6 or “¢” equation of (52) and (53) may be considered redundant since the entire
derivation could be repeated with the given and adjoint transducers interchanged.

It is (53b) that enables the characteristic receiving matrix So; of an arbitrary linear transducer
to be expressed mathematically as a function of the equivalent sources within the adjoint trans-
ducers [19]. As mentioned in the introduction, such expressions have special utility in the extrapola-
tion techniques of the PWSM formulation [4, 8].

When a transducer is self-adjoint with respect to L or L=, (52) and (53) reduce to the original
reciprocity relations of (10) and (11). Reciprocity defined by both Kerns and Foldy-Primakoff is
satisfied by an electroacoustic transducer that exhibits electric-type coupling (e.c.. the condenser
microphone) to form a self-adjoint operator L. Antireciprocity is satisfied by a transducer that
exhibits magnetic-type coupling (e.g., the dynamic speaker) to form a self-adjoint operator L
If the static fields as well as the piezoelectric and piezomagnetic coupling coeflicients vanish,
comparison of (30a) with (37) reveals that both adjoint transducers become identical to the original
transducer, and by (52) and (53), the transmitting and receiving parameters h, h', Sy, So1 also
vanish. In other words, there would be no electroacoustic coupling— a result that the constitutive
relations (14—18) confirm.
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6. Adjoint Reciprocity Theorems

The generalized reciprocity relations (52) and (53) may find expression in a variety of derivative
“reciprocity theorems and principles.” As a consequence of (52) or (53). the ‘“‘electroacoustic
reciprocity theorem” [6, 20| for reciprocal transducers extends to nonreciprocal transducers by
the relating of the microphone response of the given transducer to the speaker response of its
adjoint transducers (and vice versa). Similarly, the “principle of reciprocity” [21] that relates
scattered pressure at a point B from a point source at 4 to scattered pressure at point 4 when the
point source is moved to B may be extended to nonreciprocal transducers through the concept of
the adjoint transducer. The following derivation of the aforementioned results are performed
easily and in great generality by using the Kerns PWSM description.

The standard speaker response S(7) of a given transducer is defined as the ratio of the pressure
at a point r in the ambient fluid to the transducer input current [, [6],

p (7)
](D ’

S = (54)

Because incoming acoustic waves are assumed zero, i.e., a(K) =0, the pressure in (2a) may be
expressed in terms of b(K) =V (K) alone,

p(r) =3

1 S e = o=

b(K)eivzeik-TdK. (55)
IR
The factor e’¥# appearing in the integral of (55) allows the z-coordinate of 7 to assume values other
than zero. (The fluid must contain no sources or inhomogeneities between z=0 and the z in (55).)
The PWSM equations (8), which reduce to

bo=Swa (56&)
b(K)=S10(K)ay (56b)
when @(K) =0, combine with (6b) to yield the following expression for 5(K) in terms of I,:

=N Sm([Z)]n

b(K)—m. (57)

After substitution of 5(K) from (57) into (55). the speaker response (54) takes the final form of

f Sw([Z)eﬁ;'r dIZ, k=K+ veé
K

o 1
S(r)_27T(1-Stm)7)0 < .

(58)

The adjoint microphone response is defined as the ratio of the open-circuit voltage ¥ for an
adjoint transducer in the presence of a spherical pressure wave centered at point 7 in the fluid to
the pressure in the spherical wave at a reference point 7. [6],

Vl)

M) =5

5 (59)

_Ae¥|F— 7|

pr(f(') (60)



(The amplitude of the spherical wave is denoted by .«7.) Since I, is zero, a, equals by, and V, is
equal to 2ay. The scattering-matrix equation (8a) for an adjoint transducer relates a, to a(K),

1 = =i o=
ay= (1 —5m) J;.S"‘(K)”(k)(”\' 61)

The incoming amplitudes « (K) are given by (4a) as
e I )

M@=V@FrLfm@mﬂNJE. (62)
2 T JS,

Replacement of the pressure in (62) by its value given in (60) enables the explicit determination

of a(K),

_ AL .
a(K) = L eivie iKR (63)
Y
which combines with (61), (60), and (59) to produce the final form of the adjoint microphone
response,

i 2id fSM—K), _ -
M(7) = A —Siyen ) » eikrdK, d= |r. — F|. (64)

00

Since the adjoint reciprocity relations require that

S(')'“ - S()(l
nSy, (— K) === S10(K),
wPo
(58) and (64) show that
I M(F) _4l(1 65
S(F) wpPo ’ (69)

or that the magnitude of the ratio of microphone response at 7 of the adjoint transducers to the
speaker response at 7 of the original transducer is a constant independent of the position 7 and of
the particular transducer involved. The constant could also be made independent of the distance
d to the reference point 7. if the microphone response were “normalized” to the amplitude .« of
the spherical wave. If the transducer is self-adjoint (reciprocal or antireciprocal) (65) becomes
identical to the standard electroacoustic reciprocity theorem [20)].

Next, consider the derivation of the adjoint “principle of reciprocity” which applies to the
scattering of a spherical wave from a given scatterer (or transducer terminated in a passive load).
The scattered pressure pg (7. 7)) at a point 7y in the fluid caused by a spherical wave centered
at a point 74 in the fluid is given, as in (55). by

1 - ik-r =
1).\'1'(Flf-f.l):._J [)(K)(’ ! (IK. (66)
27 ),
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where b (K) may be found in terms of a (K) from the scattering equations (8):

e Sio(K)Sor (L)T'y _ L
b(K)_fz: < (1—iSe)  Tom (K1) )a(L) dL. (67)

The reflection coefhicient I'y is related to the terminating load Zr=—V,/I, by

\ _Z7“T)0_1

Iy = A 68
! Zmo+1 (65)

Since the source is a spherical pressure wave centered at 7, the amplitudes a(L) take the same
form as in (63), i.e.,

7N _ Ml iy(L)zs —iL-R,
a(L)———y(L)e e (69)

Substitution of (69) and (67) into (66) results in the scattered pressure

<Sm (k)Sm ( _I:)];)
I A1 1 —I'sSoo
I)S(‘(rl)ar‘)_% < Ji

If the position of the source and observer is interchanged and the given transducer is replaced
by an adjoint transducer, the scattered pressure at 7, is found in a similar manner to be

+s.l(12,—£)>

) e* el dL dK. (70)

Sa(K)S%,(—=L)I'y _ _
| 1o(K)St(—D) )+S{,1(K’_L))
_ A1 I_ITS(()'() iR-Fa il F IT =
p(.'. (rr*’rﬂ): L @ e " dL dK. (71)
2m JKJL y(L)

(The termination for the adjoint transducers is kept at Zr. )
The adjoint reciprocity relations (53) demonstrate from (70) and (71) that

Psc(Fp, Fa) =Pl (Fa, T8), (72)

which completes the proof of the adjoint principle of reciprocity. (Note that the bracketed quantity
in the integrands of (70) and (71) represents an equivalent scattering matrix with reciprocal proper-
ties identical to S;;.) That is, the scattered pressure measured at a point 7z from a point source at
71 is equal to the scattered pressure measured at the point 7y when the point source is moved to
7z and an adjoint transducer replaces the given transducer. If the transducer is self-adjoint (re-
ciprocal or antireciprocal) (72) expresses the usual principle of reciprocity [21] for scatterers.

7. Power Relations

In this section power relations are developed and used to show that the dissipative character-
istics (lossiness, losslessness, and “gaininess”) of the material of the given transducer are preserved
pointwise in the adjoint transducers. Such a result lends support to the feasibility of producing the
adjoint transducers in the laboratory.
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For harmonic fields, the time-average em and acoustic power flow per unit area is given by
1 = e 1 = . . . . .
5 Re [E X H*] and — 5 Re [T - @*] respectively. (The asterisk denotes the complex conjugate.)

The total time-average power P flowing into the electroacoustic transducer through its surface 4,
is, therefore, given by

1 o =
P=gRe é (£ x B* — T+ 2*] - da, (73)
|l|

where n denotes the unit normal into the transducer. Since the surface 4, lies in or on the boundary
of the ambient fluid,

S

1]

IN|
¥
I

— puy*,

and the power equation (73) becomes

R"f [(EX H*)-n+ pu; ] da. (74)
lﬂ

If the transducer is electromagnetically shielded, the em part of the integral (74) evaluates simply

as Vol by expanding E and H* in terms of the waveguide mode, i.e.. from (5)
E, an’u. Hr —In hn

and making use of the normalization equation (7). (Waveguide theory shows that the basis fields
(@0. ho ) of a propagating mode in a uniform, isotropic guide may be chosen real.)

The SIM relations (9) convert the power expression (74) to an Hermitian form containing con-
tinuous (u,(7)) and discrete (Iy) variables:

P=1(Z,+2)) f (Lo(h' (7)) + h(7))u(F) + T (R (F) + h*(7) )ua(7) ] da

f j“u ) 71)(f 7o) +Z (Im r)]u d(ln da. (75)

(The taking of the real part has been accomplished by adding each term to its complex conjugate.)

A transducer may be classified as lossy, lossless, or “gainy” if, for all values of wu, and I,
(except uy, Iy all zero), the power P is positive, zero, or negative, i.e., if the Hermitian form (75)
is positive definite, zero, or negative definite [22].

Mercer’s theorem [23], which can be generalized to provide necessary and sufficient conditions
on the spacial impedances Z;, h, h', and Z, for the power P to belong to one of the “definite” value
classes, reduces to very simple relationships among the spacial impedances when the transducer
is lossless. In the lossless case, i.e., when the power expression (75) is identically zero for all values
of u, and I, various combinations of I, equal to zero and u, (7) equal to zero or a sum of delta func-
tions can be chosen to prove that the spatial impedances satisfy the following equalities:

Z,+ Z,’f =X() (i.e., Zp, is imaginary) (76a)
h'(F) + h*(F) =0 (76b)
Zo(r, f())+Z‘T(T_“0, f):() (76¢)
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A reciprocal or antireciprocal transducer also satisfies (11), which combine with (76) to show
that Z, (as well as Z;) is imaginary, and that both A, A" are imaginary or real depending upon
whether the transducer is reciprocal or antireciprocal respectively. It can be demonstrated [9]
that no simple relations similar to (76) exist among the scattering matrices of lossless transducers.

Substitution of the adjoint relations (52) for the spacial impedances into (75) yields an expres-
sion (similar to (75)) which can be manipulated slightly to prove that the power input to both adjoint
transducers (one associated with L, the other with L) belong to the same value class. i.e.. have the
same definite or indefinite form, as the power input to the original transducer. However, the
power input to the adjoint transducers does not, necessarily remain the same as the power input
to the original transducer for given excitation I, and w, (7).

Finally, consider the problem of expressing the power relation (73) in terms of the internal fields
and material parameters of the electroacoustic transducer. The divergence theorem transforms the
surface integral (73) into a volume integral over the volume 77 (enclosed by Sy) of the transducer
to produce,

l’zf,[17*-(v><E)+H'(VxE’*)—E_-(VXH*)—E*'(VXH)

. Va*—T*: Va) dv,

S|l

—(V:T) -a*— (V-T*) - i—

after the divergence is expanded. and the taking of the real part is accomplished by adding each
term to its complex conjugate. The equations (12-19) allows the integrand P, of the power integral
(77) to be written as an Hermitian form.,

(H* E*, s*. @*] [iw(p— @) io(v—7)) iw(E_E; ) 0 H
= (=) liwle—e®) —(e+5)]ioa—a)) Bix(o+a/) \ [ E
iw(B'—B*) iw(a'—a¥) o) 0 :
0 _Bu X (5’+3’,) 0 B() X ((:T+O:',) X B() u
(78)
or simply .
P.=X*xX. (79)

P, may be interpreted as power input per unit volume of the transducer.

A sufficient condition for the total time-average power input to be positive definite, zero,
or negative definite is for the Hermitian integrand (78) to be correspondingly positive definite, zero,
or negative definite. Likewise, a standard theorem of linear algebra [22] states that the matrix #
must belong to the same value class as the associated Hermitian form (78). provided H. E.
s and # may assume arbitrary values at a point. In particular, if P, is zero, the transducer is
lossless, # must be zero and therefore the material parameters satisfy the following simple
relationships:

S
II
|
S
m
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m
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I
tH
<
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:'H
S

(80)

If, in addition, the transducer is reciprocal or antireciprocal, (30) and (37) show that the
material parameters also satisfy

:Ty.?zil. a,:i(:ly. 'dlld B,:IB’:F. (81)

=~

— 0

I

i) E:%t

Qi
Qi

where the upper and lower sign in the last two equations of (81) refer to reciprocal and antireciprocal
transducers respectively. Equations (80) and (81) together imply that a lossless (in the sense of (80))

reciprocal or antireciprocal transducer possesses real o, €. m. ¢, and imaginary v and 7. The
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piezoelectric triadics a.a’ are real for reciprocal and imaginary for antireciprocal lossless trans-
e

ducers. Conversely. the piezomagnetic triadics 8.8’ are imaginary for reciprocal and real for
antireciprocal lossless transducers.

Equations (30) and (37) may also be used to demonstrate from (78) and (77) that the total power
input for the two transducers adjoint to the original transducer belong to the same value class or

have the same dissipative character as the original transducer—a result which concurs with the
previous analysis on the spacial impedance power relation (75).

8. Concluding Remarks

A brief summary of the main properties of the L and L~ adjoint transducers is displayed in
tables 1-4. From an experimental standpoint, it is naturally of interest to know if the adjoint trans-
ducers are physically realizable, i.e., producible in the laboratory. For example. if a transducer
adjoint to a given transducer could be produced. the receiving characteristics (So;) of the given
transducer could be determined by measuring the transmitting characteristics (S{,) of the adjoint

transducer. Such an indirect experimental procedure would be desirable with a set-up designed
to measure transducer far-field patterns.

TaBLE 1.
Given transducer
(described by eqs (12-19)) L Adjoint transducer L Adjoint transducer
Internal Characteristics Internal characteristics Internal characteristics
Conductivity T =g, =0
Permittivity [ =T F=g
Permeability m ?" = ;T, i" =il
Hooke’s tensor F (E” = ?=7 T = ;E‘I
Magneto-electric tensors 7.7 Vi=—T F71=—7, Ve =—"r, 70 =—7
Direct peizoelectric and piezomag- == = = = = : — L= =
netic tensors «, B a=a,, B*=—, ‘ a’=—a,, =6,
Converse piezoelectric and piezo- - = — = = = | = = = =
magnetic tensors a', B a® =, BY=— B ‘ a’ =—a, Y= By
Mass density Y, (= oy, ; (o= oh
Static magnetic induction B, BRe=—B, Bi= B,
Static charge distribution po P =p peo=—p?
TABLE 2
Given transducer
(described by eqs (12-19)) L Adjoint transducer L Adjoint transducer
External characteristics External characteristics External characteristics
Transmitting (PWSM) Si(K) S;’f) (K) = Su(—K)naln Sa,(K) = — Su(— K)no/n
Receiving (PWSM) Su(K) Su (K) = Sw(=K)n/me St (K) —=S10(—K)n/mo
Acoustic scattering (PWSM) Si(K, L) Se (K, L)= S'I’I(I{'. D)=
Si(=L. = K)n(L)/n(K) Si(=L.—=K)n(L)/n(K)
EM reflection (PWSM) Soo Sé = Soo S& =S
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TABLE 2— CONTINUED

Given transducer
(described by eqs (12-19)) L Adjoint transducer L.~ Adjoint transducer
External characteristics External characteristics External characteristics
Speaker transfer (SIM) h(F) h(F) = h'(F) he(7)=—h'(F)
Microphone transfer (SIM) h'(F) h'(F) = h(F) R (F) = — h(F)
Open-circuit acoustic (SIM) Z(F. o) Zy(F. Fo) = Zo(Fo, T) Z(F, Fo) =Zo(Fy, T)
Blocked electrical (SIM) Zy Z;: =X Z;') =27,

TABLE 3

Given transducer
(described by eqs (12-19)) L Adjoint transducer L~ Adjoint transducer
Power input Power input Power input
Passive transducers p >0 = () p' >0
p=0 p'=0 p'=0
p=0 p'=0 pl=
\ctive transducers p <0 p'<0 pr<0
p=0 p'<0 p'<0
Indefinite Indefinite Indefinite
TABLE 4

Given transducer

(described by eqs (12-19)) L Adjoint transducer L~ Adjoint transducer
Adjoint reciprocity theorems Adjoint reciprocity theorems Adjoint Reciprocity theorems
Speaker Response S(F) S(r) = M(F)wpoe™[4mid S(F) = — M(F)wpoe/Amid
|

Microphone response M (F) ‘ M (r) = S(F)dmid]wpoe™™ M (F) = — S(F)dmid|wpoe®

Scattered pressure
at 7y from point
source at r Dae(TraT ] IJ;',.(fn-fl) = pye(Fas Fp) Pl (Fyy i) = psc(Fa, Fy)

The complex problems involved in synthesizing transducer materials of prescribed electro-
acoustic properties is not the subject of the present paper. However, two groups of nonreciprocal
transducers should be mentioned for which the creation of the adjoint transducers require, in prin-
ciple, a relatively simple procedure. Transducers in both groups have symmetric conductivity, &.
permittivity €, permeability 7, Hooke’s tensor & and magneto-electric tensors related by 7=—7,.
Transducers of the first group have, in addition, the piezoelectric and piezomagnetic tensors
related by

=]

=,
= a,

Transducers of the second group satisfy

E_ E,

B - :81'
Table 1 shows that the L adjoint to transducers in the first group can be realized by simply
reversing the direction of the static magnetic induction B, which biases the given transducer. (For
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some gyrotropic media, e.g.. ferrites. transposition of the permittivity and permeability tensors is
also accomplished by the reversal of the magnetic induction. In fact, the reversal of By to form the
L adjoint transducer is analagous to the reversal of the dc magnetic field necessary to obtain purely
em reciprocity relationships for gyrotropic media [24].)

Table 1 also shows that the L~ adjoint to transducers nf' the second group can be realized simply

by

reversing the sign of the static charge distribution p!. or equivalently, the static electric field

and electric polarization which biases the transducer.

The author is grateful to D. M. Kerns for the original suggestion of the work and for the many

helpful discussions throughout its completion.
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