JOURNAL OF RESEARCH of the National Bureau of Standards – A. Physics and Chemistry Vol. 79A, No. 6, November–December

Corrections to Paper Entitled "Third Virial Coefficient for Air-Water Vapor Mixtures"

R. W. Hyland and E. A. Mason*

Institute for Basic Standards, National Bureau of Standards, Washington, D.C. 20234

(August 28, 1975)

This note points out errors in the values of the third virial coefficients for pure water vapor which appeared in a 1967 paper by Hyland and Mason. The errors arose while converting from the units of Goff and of Keyes to the desired units of (liter/mole)². The consequences of the errors are outlined, and it is shown that there is no effect on the primary results of the paper, namely, in the preferred values of the third interaction virial coefficient for air-water vapor mixtures, C_{aww} .

Key words: Chemical association; Lennard-Jones potential parameters; third interaction virial coefficients; virial coefficients; water vapor-air mixtures.

1. Introduction

In 1967 Hyland and Mason [1] ¹ published a paper in which a third interaction virial coefficient for airwater vapor mixtures, C_{aww} , was derived. In that paper, a computational error was committed while converting the third virial coefficients for pure water, C_{www} , from the units of Goff [2] and Keyes [3] to the desired units of (liter/mole)². This note points out the consequences of that error.

2. Error Source, and Consequences

The incorrect values of C_{www} appear in the last two columns of table 1 of [1]. The proper values would be obtained by subtracting the squares of the corresponding second virial coefficients. The revised version of table 1 is given below.

The errors were propagated into the first two columns of table 2 of [1], which gives values for B_{ww_2} , into equations (21a, b) and (24b, c), and finally into the C_{aww} values of table 3 based on eqs (24b, c). The revised version of table 3 is given below. The appendix to this note indicates the changes necessary to correct the text, and points out that the C_{aww} values which appear in table 3 (revised) are not significantly different from those given in table 3 of [1].

The viscosity-based values of C_{aww} , which are the preferred values, and their stated uncertainties, are the same in both versions of table 3. Obviously results

TABLE 1. (Revised) Experimental values of the second and third virial coefficients of water vapor; extropolated values in parentheses

Temp.		$-B_{ww}$ cm ³ /mol	$-C_{www}$ liter ² /mol ²		
	Goff [4]	Keyes [8]	Ave.	Goff [4]	Keyes [8]
°C 0 10 20 30 40 50 60	(1834) 1510 1265 1074 924 803 705 (25	1854 1520 1266 1070 917 794 695	1844 1515 1266 1072 920 798 700	$\begin{array}{c} (61.1)\\ (32.4)\\ (18.1)\\ (10.5)\\ (6.34)\\ (3.93)\\ 2.51\\ \end{array}$	90.4 47.0 26.0 15.1 9.03 5.63 3.58
80 90 100	558 501 (453)	546 489 441	552 495 447	1.64 1.09 0.738 .506	$ \begin{array}{c} 2.38 \\ 1.62 \\ 1.13 \\ 0.793 \end{array} $

in reference [1] depending on the incorrect values of C_{www} must be ignored.

3. Appendix 1

In reference [1] the paragraph ending page 222, and the paragraph below eq (20b) could be rewritten by substituting the value -0.89 liter/mol for the -1.11value, -0.57 liter/mol for the -0.79 value, and -0.73 liter/mol for the -0.95 value.

The paragraph containing eqs (21a, b) would be rewritten as follows:

Empirical curve fitting with B_{ww2} , matching at the adjusted limit of -0.73 liter/mol, leads to the parameters

^{*} Present address: Brown University, Providence, R.I. 02912.

¹Figures in brackets indicate the literature references at the end of this paper.

$$t^* = 1.1, \ \sigma_{ww_2} = 3.45 \ \text{\AA}, \ \frac{\epsilon_{ww_2}}{k} = 380 \ \text{K}.$$
 (21a)

TABLE 3. (Revised) Calculated values of the third interaction virial coefficient C_{aww} based on the parameters of eqs (24) and (25)

Temp.	$-C_{aww}$, litter ² /mol ²								
	Virial			Viscosity*	Limits				
	Eq (24a)	Eq (24b)	Eq (24c)	Eq (24d)	Eq (25a)	Eq (25b)			
°C									
0	0.152	0.137	0.123	0.203	0.062	0.549			
10	.117	.105	.094	.156	.047	.424			
20	.092	.082	.074	.123	.037	.332			
30	.073	.064	.058	.098	.029	.266			
40	.058	.052	.047	.080	.024	.216			
50	.048	.042	.038	.065	.019	.178			
60	.040	.034	.031	.054	.016	.148			
70	.034	.028	.026	.046	.013	.123			
80	.028	.024	.021	.039	.011	.105			
90	.024	.020	.018	.033	.009	.090			
100	.021	.017	.015	.028	.008	.077			

*Best estimates.

Within the limits specified by eqs (20a, b), the parameters cannot be adjusted to force the fit through the Goff-based value of -0.57 liter/mol at 100 °C. By adjusting the parameters as far as possible, we obtain

$$t^* = 0.98, \ \sigma_{ww_2} = 3.58 \text{ A}^\circ, \ \frac{\epsilon_{ww_2}}{k} = 380 \ K, \ (21b)$$

which leads to a value of B_{ww_2} of -0.62 liter/mol at 100 °C.

The reader can obtain the relationships corresponding to eqs (24b, and 24c) of [1] leading to the C_{aww} values appearing in columns 3 and 4 of table 3 (revised). The magnitudes are roughly 13 percent greater than the corresponding values appearing in table 3 of [1], and, in any event, are not the preferred values.

4. References

- Hyland, R. W., and Mason, E. A., Third Virial Coefficient for Air-Water Vapor Mixtures, J. Res. Nat. Bur. Stand. (U.S.), 71A (Phys. and Chem), No. 3, 219-224 (May-June 1967).
- [2]. Goff, J. A., Standardization of Thermodynamic Properties of Moist Air, Heating, Piping and Air Conditioning (Journal Section), 21, 118 (1949).
- [3]. Keyes, F. G., The Thermodynamic Properties of Water Substance from 0° to 150 °C, J. Chem. Phys. 15, 602 (1947).

(Paper 79A6–874)