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It is standard procedure to fit an applicable isotherm equation to water vapor adsorption data
using the method of least squares in arriving at a value for the surface area accessible to the water
molecule. The least squares technique has been extended in the present investigation to determine,
in addition and simultaneously, a “‘best value” for the zero-humidity sample weight of the material.
The application is equally valid for desorption insofar as the zero-humidity weight is concerned, although
the derived value for ““surface area” from desorption data will be over-estimated in the general case
because of hysteresis. There is no limitation on the range of humidities since the method is not re-
stricted to the BET equation (i.e., between 0.1 and 0.3 r.h.). In fact, good agreement with the zero-
humidity points measured experimentally has been obtained even from drying curves in which the
relative humidity has been confined to the region above 50 percent. An iterative method is employed
in the calculations for which computer assistance is especially adaptable. Fortran IV programs are
included in the appendix whose use requires no extensive computer experience. A fraction of a second
in computer processing time is all that is required for each determination.
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1. Introduction

What constitutes the dry weight of a solid has never
been completely resolved. Some materials like hydrox-
ide gels of aluminum, silicon, iron, etc., continue to
lose water when evacuated at ambient temperatures
and more so on heating, yet a trace of water always
seems to remain. Other materials readily give up their
water, but suffer irreversible changes in the process.
This leads to the adoption of a concept of water of
constitution as distinguished from excess water.

A novel approach to this problem of dry weight
prediction is portrayed in this paper based on the
assumption that adsorbed water is certainly not water
of constitution, and, consequently, is excess. To
establish the precise point of dryness, therefore, it is
only necessary to determine the weight of the solid
under conditions where the amount of physically
adsorbed water would be zero. This is determined by
fitting vapor adsorption theory to the experimental
data by an unorthodox application of the least-squares
technique.

Since the development in 1938 of the Brunauer,
Emmett, and Teller (BET) multimolecular adsorption
free-surface equation [1]', many other adsorption
isotherm theories [2, 3,4, 5 6, 7] have appeared in the
literature. Most of the resultant isotherm equations,

! Figures in brackets indicate the literature references at the end of this paper.

despite their differences, shared certain important
attributes:

(1) They were expressable in some linear form.

(2) Each equation possessed physically significant
parameters which could be evaluated either from
the slope or intercept of the experimental plot
or a combination of both.

(3) These parameters bore a simple functional
relationship with the specific surface of the
adsorbent.

For these reasons, any such theory would appear to
qualify as a candidate for prediction of dry weight in
the method to be described.

At the onset of this study, no a priori preference
was made of any one adsorption theory over the others,
although, in practice, the BET equation is probably
more widely used than all of the others combined.
This reason alone would justify its inclusion among the
theories selected. In addition to the BET, the other
adsorption theories tested in this work were: the
Polarization theory [6], Harkins and Jura (H-J) theory
[3], and Polanyi’s Potential theory [6].

It will be shown that the same experimental points
that are normally employed using least-square methods
to determine only the surface area of an adsorbent
can, at the same time, be called upon to furnish an
additional piece of information; namely, its dry weight.
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2. Theoretical Development

(1) The BET [1] free-surface equation in its most
familiar form may be represented as a linear function
of the relative pressure:

y=a+ bx (1)

where x = relative pressure (humidity, where water
vapor is the adsorbate) expressed as a dimensionless
decimal such that 0 < x < 1. The dependent variable
y is, in itself, an expression:

y=x/[qg (1—2x)] (2)

containing both x and ¢. The latter quantity represents
the number of moles of adsorbate per g of adsorbent
obtained under steady state conditions at the corre-
sponding value of x.

The y-intercept, a, and slope, b, are the parameters
1/(gmc) and (¢ — 1)/(gmc), respectively. The quantity
gm, In turn, represents the number of moles of ad-
sorbate required to constitute a monolayer and, as
such, is proportional to the surface area. The cvalue
is related exponentially to an average energy of
adsorption. In the conventional application of eq (1),
the parameters a and b are evaluated from the ex-
perimentally obtained adsorption points (x, q) prefer-
ably by use of the method of least squares [8]. These
“best” estimates of a and b are then used to obtain
gn and c. Finally, the surface area is obtained con-
ventionally by multiplying ¢.» by an appropriate
constant sometimes referred to as the ‘“packing
factor.”

Most laboratory workers in surface chemistry are
painfully aware of the fact that the good linearity of
eq (1) is destroyed when the experimentally deter-
mined initial weight of the sample is in error. One
should, therefore, expect that the best straight line
would result only when a zero-point weight very close
to the correct value is used in the calculations. This
criterion was employed in the present investigation
for determining the dry weight of a solid adsorbent
when water vapor was the adsorbate. In other words,
the humidified sample weights themselves, utilizing
a least-squares technique, were permitted to determine
that value of the dry weight, p, along with the usual
two parameters a and b required to optimize the
linearity:

If Wirepresents the weight (in grams) of the sample
at the ith point corresponding to a relative humidity
xi, the number of moles of water vapor adsorbed per
g of dry adsorbent would be

Wi—p

18p 3)

qi =

The value of x; is assumed to be error-free here as it
is in the conventional derivation.

The residual, R;, is the experimental error of the
ordinate of the ith point as indicated by the difference

yi — (a+ bx;)). Equations (1), (2), and (3) may be
combined to yield:

18x,-p
(1—=xi)(Wi—Dp)

Ri= — (a+ bx;). (4)

It is required to determine the values of the three
parameters p, a, and b for which the sum of the
squares of the residuals is a minimum.?

This amounts to solving three nonlinear simultaneous
equations for these parameters given by eqs (5), (6),
and (7):

-i["Rﬂzo 5)

%[iRﬂ=0 )

(7)

By taking the partial derivative of the summation
with respect to p as indicated by eq (5), the result is
eq (8):

n xiWi i x2W;
> RDY ’ -
2 M=) Wi—p)? & (T=x) (Wi—p)

a

&S Z, 0
-1 pig (1=x)*(Wi—p)*

(8)

In the same way, eqs (6) and (7) give rise to eqs (9) and
(10), respectively.

Xi

+b S i=18 > ’
We i:21x pizzl (1—x;)(Wi—p) ©)

n # 2 L x12
eSutbIa=1803 Gyipmy (9
i=1 i=1 =

A cursory inspection of eqs (8), (9), and (10) discloses
that the nonlinearity is ascribable entirely to the
unknown parameter, p. In fact, the terms to the left
of the equals signs in eqs (9) and (10), respectively,
are identified with those obtained [8] in the “normal-
ized” equations during the derivation of the least-
square solution for a linear system. This observation
suggests a relatively simple method for the simul-
taneous solution of eqs (8), and (9), and (10) for the
parameters p, a, and b. An initial value p, is selected
for p which is not quite as large as the lowest value of
Wi. This value of p is substituted in eqs (9) and (10)

2 This is rigorously valid only when the error represented by R; has a normal (Gaussian)
distribution over its entire range. Experience has confirmed that in the present application,
this assumption is reasonably well approximated.
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making it possible to solve them simultaneously for
a and b which are then designated a; and b, respec-
tively. The values of ai, by, and p, are then substituted
in the left side of eq (8). The resultant value is called
D,

Since p; was initially selected to be somewhat high,
it is decreased by a small predetermined amount to
obtain its second iterative value, p,. Corresponding
values of a, and b, are again calculated from eqs (9)
and (10), as before, and all three contribute to the
determination of ®, from eq (8). If ®,has the same sign
as ®,, it should be smaller in absolute value and the
iterative process is repeated until there is a change in
sign of ®. At that point the incremental change in p is
reduced to one-tenth of its previous value and its sign
is automatically reversed. Again, the new direction is
maintained with the smaller increment until the next
change in sign of ® is encountered. The process is
repeated until negligible changes are obtained in suc-
cessive values of p, a, and b while successive values
of ® approach zero in the limit. Usually this occurs
within about 25 iterations and gives an estimate of
surface area and goodness of fit as well as the dry
weight of the sample.

The entire process has been programmed for
computer operation (FORTRAN 1V) and is given in the
appendix (fig. Al) in a form used with a teletype time-
sharing terminal.?

The values for the slope and the intercept were
combined in the usual way at the end of each iteration
by taking the reciprocal of their sum to obtain g¢p.
The factor 7.529 X 10*m?2/mol was used [10] to convert
gm to surface area. Only the final value, however, after
convergence was complete could be considered valid.

(2) The Harkins and Jura (H-J) isotherm equation.

A linear relationship based on a two-dimensional
equation of state was proposed by Harkins and
Jura [3]. It took the form

w=iz—B (11)
q
where
w=In (1/x) (12)

while 4 and B are constants.

There are no relative humidity restrictions on its
range of applicability. (This is in contrast to the more
familiar BET equation valid only within the inclusive
values from about 0.1 to 0.3.) The surface area applica-
ble to the H-J equation is proportional to the square
root of the parameter A. The proportionality constant
is, of course, dependent upon the adsorbate and the

3The Control Data “KRONOS™ System (6000 series) high-speed digital computer re-
quired only about 1Ya s in a typical computation. The central computer time can be further
shortened to about '/; s when several independent determinations are performed, since
the compiling time (c.a. 1 s) need not be repeated. Similar results were obtained using the
Sperry Rand “UNIVAC 1108”" System.

Certain commercial materials and equipment are identified in this paper in order to
specify adequately the experimental procedure. In no case does such identification imply
recommendation or endorsement by the National Bureau of Standards, nor does it imply
that the material or equipment identified is necessarily the best available for this purpose.

temperature of the isotherm. The value used in this
work corresponding to water vapor at 23 °C was
5.620 X 10*m2/mol [12].

Using the same procedure described for the BET
theory, the least square normalized equations re-
sulting from the H-J isotherm equation are:

®:Ap{§%—(18)2/41)2 zﬁ
+B§lﬁ;} (13)
(18)2 p24 é,ﬁz‘l}": iz:"'wi (14)
221(Vfw17 (15)

The iterative procedure previously described was
again resorted to and a computer program given in
appendix (fig. A2) was tailored to accommodate the
H-J equation. This resulted in converged estimates
of dry weight and surface area while at the same time
affording a measure of goodness of fit.

(3) Other Isotherm Equations
The Polarization Equation of deBoer and Zwikker

[9]:

g=a +b Inow (16)
and the Polanyi Potential Theory [9]:
g=a'+b"' w13 (17)

were both subjected to the same treatment as described
for the other two theories and will be discussed in a
later section.

3. Equipment and Procedures

The gravimetric adsorption equipment employed
used a circulatory flow system and a means for
supplying water vapor at predetermined humidities
to the carrier gas as described in a recent publication
[10]. A drying tube mounted vertically and filled with
P,O; supported on glass wool had a trap sealed to its
lower end for holding back the phosphoric acid pro-
duced and isolating it from the gas stream during
desiccation of a sample. The drying step was carried
out at room temperature (23 °C) as were all of the
humidity exposures. Drying was performed either ini-
tially or at the end of a humidity sequence, depending
upon whether it was an adsorption or desorption
series. The zero-humidity data were, of course, not
used in the calculations and served only as experi-
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mental verification of the calculated values. Saturated
salt solutions were used for obtaining the desired hu-
midities, details of which were described previously
[10]. However, any standard commercial equipment
would work equally well in order to apply the tech-
nique in any particular case.

The order in which the experimental points are
obtained is extremely important. They must be in a
continually decreasing (desorption or drying) or in a
continually increasing (adsorption) sequence to avoid
hysteresis scanning loops [11].

Table 5 shows that even low area adsorbents
respond well in dry weight prediction regardless of
whether adsorption or desorption data are used.

The dry weights predicted in table 6 are significant
because most of the data were collected at relative
humidities above 50 percent. The ability to do this is
especially valuable in nondestructive testing where
complete dehydration might cause irreversible changes
in the sample.

4. Results

Tables 1 through 6 summarize the results of several
determinations. The grouping of the experiments helps
to emphasize the capabilities as well as the limita-
tions inherent in the method.

Most of the examples in table 1 give reasonably good
agreement in surface area between BET and H-J. The
experimentally measured dry weights, in the majority

TABLE 1.

of cases, are slightly greater than the calculated values.
This suggests the possibility that the last traces of
physically adsorbed water may not have been com-
pletely removed by the experimental procedure used.
In one instance this effect is rather striking.4

The two experiments involving barium glass?
(water extracted) represent the initial and final adsorp-
tion sequence in an adsorption-desorption-adsorption
cycle in which the relative humidity started at zero—
went stepwise to saturation—then down to zero— and
finally back up again to 0.334.

Good agreement between surface area predicted
from desorption data with that from adsorption is
not generally to be expected. Table 2 shows exceptions
occur where hysteresis is either absent entirely or
negligibly small.

Some insight may be deduced from the results of
both isotherm equations even when only desorption
(drying) data are available. Fair agreement between
the “‘areas” as shown in the latter two examples of
table 3 where hysteresis is known to be virtually
nonexistent suggests that these values may be reason-
ably valid estimates of the true surface area.

Table 4 is self explanatory and shows consistency
of both surface areas and predicted dry weights
between widely different portions of the adsorption
isotherm.

4See Cellulose Acetate Membrane (table 4).
5 Corning Glass Company X95-1FD.

Adsorption

Low humidity range (0.082 — 0.334)
Comparison of BET with H-J for the Same Data

Surface Dry weight
Expt. No. area
(m?/g) (2)
A503094 | Synthetic Hydroxyapatite (6 points)
Calculated:
— 0.2708
2717
.2733
A444168 | Activated Bentonite (5 points)
Calculated:
.7161
.7193
7378
A444161 | Polycarboxylate Cement (4 points)
Calculated:
BET 60.4 1.255
H-] 61.3 1.241
EXPErimental. .. ... ..coooiiiii e e e 1.249
A444143 | Zinc Phosphate Cement (6 points)
Calculated:
1.5646
1.5703
1.5779




TABLE 1. Adsorption— Continued

Sl’"ﬁf(‘e Dry weight
Expt. No. alt
(m?/g) ()
A444155 |Barium Glass —as received (6 points)
Calculated:
1.2886
1.2889
1.2895
A444156 | Barium Glass — Water Extracted (4 points)
Calculated:
o o O N O P D SN SR SR S 8.7 0.9636
- 4.6 .9648
.9649
A444175 | Barium Glass — Water Extracted (6 points)
Calculated:
BET (no convergence) _
9646
9657
A444164 | Zinc Oxide-Eugenol Cement (4 points)
Calculated:
BET (NO CONVEIZEIMCE). .. vneneninenententnenaneteatsetssneseeesenssensnssnensessnssensssesesesssensassessssnsedoresereneasnend —
3.1274
3.1297
TABLE 2. Adsorption versus desorption
Surface
Expt. No. Hysteresis: Absent or minimal IR Dry weight
(m?/g) ()
Poly(methyl methacrylate) (Low Humidity range 0.082 — 0.334)
A444065 Adsorption (5 points)
Calculated:
T O e S 30.4 3.5029
Hed e e 24.9 3.4878
A444064 Desorption (6 points)
Calculated:
BT P S O S R L | (31.6) 3.5022
HJ...oooooo. .. (29.4) 3.4847
X D ETITIY G A ] o N S RN SIS | SR 3.5039
“BIO GEL” (commercial hydroxyapatite)
A444136 Adsorption (Intermediate Humidity range 0.312 — 0.804)
Calculated (4 points):
BET (N0t @pPliCabIE). .. c.uinieiiininiiiieiieneietiietetnteteeeneenaeneneneneaesnenssesssnsasnsssnnenssssaned — =
N N NS S| 43.3 0.3788
A444138 Desorption (High Humidity range 0.926 — 0.542)
Calculated (5 points):
18 s s cvs e 561056 6080006 90D GG ACHBOOBEIRIIA IO B B G B ES A AR O BEIRGOBRBESHO LIS s (47.2) .3792
X D T T TN L e T LN | ey | .3802




TABLE 3. Desorption
Low Humidity Range (0.334 — 0.082) Comparison of BET with H-J for the same data

| Surface .
Expt. No. area e
(m?*/g) (2
A444159 |Barium Glass — Water Extracted (5 points)
Calculated:
BTy S VT SO D OO e e T e 9.2) 0.9639
. (2.3) 9659
.............. 9657
A503137 | NPG-GMA Coated HA (6 points)
Calculated:
.4808
.4799
.4805
A444139 | “BIO GEL” (commercial hydroxyapatite) (5 points)
Calculated:
.3792
.3784
.3811
TABLE 4. Adsorption
Low humidity versus high humidity
Surface .
Expt. No. p— Dry weight
(m2/g) (2
Dentin
A503140 Calculated (6 points 0.082 — 0.334)
123 3 B e snoeo A e B DR BB BB AR OO OO O A0 TECRR BCAGRG o 2.0202
H-J (poor convergence). —
Experimental ..o e 2.0671
A503078 Calculated (5 points 0.082 — 0.312)
BET (110 CONVEIZEICE) . eueeueunennintnetneinenteaeeeeeeu et eaeeeeaneeetuaaneenansaseseneanennensssasnssassnsend - -
e N 143 .2847
A503079 Calculated (4 points 0.334 — 1.000)
BET (not applicable)........oooiiii e e - -
L v .2848
Experimental .2898
Cellulose Acetate Membrane
A444148 Calculated (6 points 0.082 — 0.334)
BET.... 191 .06424
| 8 s mnansnaononanaennnansnn soseRaRNRaa0aRe B0 0a0HOag R ANt G COHE SoHg I ORI ERaDA0AAHNACOR 176 .06480
A444149 Calculated (7 points 0.435 — 1.000)
.06491
.06681




TABLE 5. Adsorption—desorption

High humidity range (0.435-0.971)

Surface D -
Expt. No. area Y/ “;e“‘ L
(m?*/g) ®
Pulverized Dental Amalgam
Ad444124 Adsorption (7 points)
Calculated
| B b B ron0narn con0 oA IO A O00E O B O A SO OB Oa O DB B BB OO G ea0a0 0.44 5.6135
A444126 Desorption (4 points)
Calculated
B ) o acason oo 000 AIRREE OO CaE D OBA A R DO BT DO KOO OO TIO0 (0.74) 5.6132
XD E LI 10 L] P OO PRV NTRVNISSITI | SYSSEN ot 5.6145
TABLE 6.  High humidity drying (desorption) curves for predicting water content *
Surface Dry weight
Expt. No. area (g)
(m2/g)
A444145 | Cellulose Acetate Membrane (Humidity Range 0.926— 0.655)
Calculated (4 points): H-J .... (148.3) 06645
| B G somai0000m000000000000m 008 00aE0 0000 A BUOHAGACRRGSIRDG A COIROGOAONOaTB 00O A0aNAIRIO0ABANDTAN BIGBOSEHBRI00d 06681
A444153 | Barium Glass (Humidity Range 0.926 — 0.435)
Calculated (6 points): H-J oo e e e e 1.28897
Experimental 1.28947
A444158 | Extracted Barium Glass (Humidity Range 0.971 — 0.435)
Calculated (7 points): H-J oo e e e (3.4) 19663
D CT 1T G UL S VT U U USSR VSIS | NPT 9657
A444171 | Activated Bentonite (Humidity Range 0.926 — 0.542)
LTl At SR oI It )N Ve P N, (242) 7113
X C LA TTLCTLL oLl R Uy SR S PR O SRS SS PR | O 7378
A503091 | Commercial Synthetic Hydroxyapatite (Humidity Range 1.000— 0.757)
Calculated (5 points): H-J .2612
| YR E N saooonooaesacoatonboe0s000amacan6000N0 KB 0a0p AR AANENGAORaYAAOIONOIECGAAOOaaNnEARDOORAGANCOA00ONACoRTANa0] 2733
A503136 | NPG-=GMA Coated HA (Humidity Range 1.000— 0.542)
Calculated (7 points): HeJ oo e e e e e et (25) 4788
| I U | noocomononeasenonn fie0 6605030000 I050AIE000 5000000 BS0G A0 ACIEDAORGINEPRSIEINONas ICA G AEEOBOTasEOsasaso s bostoosaprotond .4805

*Other examples included in tables 2 and 5.

5. Discussion

The fact that the least-squares technique can be
applied successfully for determining unbound water
content along with surface area for the BET and the
H-J isotherm equations raises the question of whether
it would work equally well for other adsorption theories.
Accordingly, computer programs were developed for
testing the Potential theory and the Polarization theory,
each of which could be expressed in linear form [9].
It soon became clear that this method would not be
applicable to either one of these latter isotherm
equations. They seemed to be “ill-conditioned” or
not sufficiently sensitive to perturbation in sample
weight to be of practical use in instances where both
BET and H-J converge readily. Further testing was

therefore abandoned. The possibility remains that
still other isotherm equations [2, 4, 5] (besides the four
tested here) might well be adaptable to this technique.

It is instructive to assess the relative advantages of
BET and of H-J as applied to the present work:

(1) The H-J would, of course, be used for all values
beyond the relative pressure (about 0.3) of the appli-
cable BET range.

(2) For very small surface area samples where the
points in the BET range may be too erratic for success-
ful convergence, the points higher up on the isotherm
may have sufficiently reduced relative error to give
successful convergence using H-J.

(3) In the valid BET region where both isotherm
equations could be used, the BET equation appeared
to be the more sensitive. When the experimental
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error of the points was excessive, neither computer
program would converge. At moderate error such that
only one equation led to successful convergence it
was usually H-J (see tables 1 and 4).

(4) In many instances where no convergence was
found when using the BET equation, a minimum in the
residual variance (mean-square deviation of the or-
dinates of the experimental points from the assumed
curve) was useful as a rough estimate of the correct
dry weight and surface area.

(5) When convergence was attained using both
isotherm equations and the predicted surface areas
were in reasonably good agreement (see first four
experiments in table 1), it served to reinforce one’s
confidence in the validity of the results. When agree-
ment was somewhat less than desired for a homo-
geneous adsorbent (see table 1, Expt A444156), the
BET value would be preferred. Note that the BET
surface area value of 8.7 m?/g (rather than the H-J
value of 4.6) was in better agreement with the results
of Experiment A444175 for the same adsorbent (also
table 1) for which the H-J value of 9.5 m?/g was
calculated.

(6) For a nonhomogeneous adsorbent where aggregate
behavior might lead to an erroneous BET value [12] as
a result of large differences in energies of adsorption
among the components of the solid, the H-J area would
always be preferable.

Throughout tables 2, 3, 5, and 6 surface area
values obtained from desorption experiments are shown
in parenthesis. They are likely to be erroneous unless
the desorption curve is substantially a retracing of the
adsorption curve (absence of hysteresis). This is a
property of the adsorbent-adsorbate system and must
be considered case by case. Virtual absence of
hysteresis is portrayed by the materials listed in table
2 and exists to only a slight degree for those listed in
table 3. The dry weight values, however, are just as
valid with desorption as with adsorption provided the
desorption originates at saturation resulting in a
descending boundary curve [13]. Other instances which
have been found to agree with the experimental re-
sults for dry weight include primary descending
scanning curves; although the predicted surface area
would not be valid. A case in point is illustrated by an
experiment not shown in the tables. Water vapor was
adsorbed on a desiccated sample of Bio Gel® to a
relative humidity of 0.804 after which seven additional
successive desorption values were obtained. Con-
vergence was successful using H-J resulting in a
predicted dry weight of 0.3788 g compared with the
experimental value of 0.3811 g obtained after taking
the sample again to dryness.

Desorption along scanning curves other than those
already mentioned as well as adsorption along scanning
curves, will invariably result in erroneous values for
dry weight prediction in spite of satisfactory con-
vergence of the computer program. Two experiments
performed with the same sample of human dentin will
serve to illustrate this. In both cases, the starting

6 BIO-RAD Laboratories, Richmond, California.

point was saturation (relative humidity = 1.00). In the
first experiment (A444090), desorption occurred along
the descending boundary curve to a value of 0.175
relative humidity. This was followed by adsorption
along a primary ascending scanning curve to a rela-
tive humidity of 0.757. Desorption was next carried
out stepwise along this secondary descending scan-
ning curve. The sample weights measured were:
0.249303 g, 0.247758 g, 0.246568 g, and 0.245402 g at
the corresponding relative humidities of 0.757, 0.655,
0.542, and 0.435, respectively. The dry weight pre-
dicted from using the H-J equation was 0.2356 g as
compared with 0.2288 g measured experimentally. In
the other experiment (A444091) the initial turning
point between the descending boundary curve and
the primary ascending scanning curve took place at
0.122 r.h. (instead of 0.175 r.h.). In this experiment,
the sample weights at the same respective humidities
along the secondary descending scanning curve were
0.248456 g, 0.247364 g, 0.245881 g, and 0.244989 g.
These values gave rise to a predicted dry weight of
0.2369 g. It is significant that in both of these experi-
ments the dry weight was predicted about four percent
on the high side compared with the actual measure-
ment. A detailed study of the behavior of scanning
curves in adsorption-desorption hysteresis is beyond
the scope of this paper [13].

It was stated earlier in this discussion (subparagraph
3) that the BET equation was extremely sensitive
regarding the effect of experimental error on con-
vergence of the computer program. If a sufficient
number of points are available in a system in which
the BET equation is known to be valid and yet the
computer program does not converge, it is useful to
plot the original data especially when it is impractical
(or impossible) to repeat the experiment. If one of the
points does not fit a smooth curve which passes through
the remaining points, those remaining points may very
well allow the computer program to converge. Of
course, the results should be examined carefully for
reasonableness of the predicted quantities before they
are accepted. This suggestion is submitted in lieu of
a valid test for outliers [14] in a system as compli-
cated as this.

It is appropriate to caution the reader that the
method described in this paper is not proposed as a
substitute for measuring the zero humidity point in
routine surface area determinations. It is also en-
tirely feasible that experimental errors might combine
in such a way as to permit convergence and yet yield
incorrect results. In other words, the need for careful
experimental work is probably even more important
when the additional demand is placed on the sorption
points to estimate the zero humidity value as well as
the surface area.

Some applications in which the methods described
in this paper would be especially valuable are:

(1) Where routine measurements have yielded good
linear BET results yet, now and then, a sample of the
same type of material when plotted in accordance
with eq (1) produced a curve instead of a straight line.

572



In such instances, the entire experiment would
normally have to be discarded and all because an
error in the experimental determination of the dry
weight was reflected in all the other points on the plot.

(2) Dry weight of materials that evolve gases during
decomposition at low pressures.

(3) In agricultural products (such as grain) and
other materials where the last traces of water may be
extremely slow coming off during drying (desorption),
provided again that the isotherm equation employed
is known to be appropriate for that system.

(4) In biological applications where viability of the
organism (or tissue) would be destroyed by complete
drying while, perhaps, equilibration at, say, fifty
percent relative humidity might be tolerated, non-
destructive determinations of dry weight could be
made. This would be especially useful in growth rate
studies.

(5) In situations where no other method may be
available for estimation of dry weight and/or surface
area from previously obtained data which may be
incomplete.

6. Summary

(1) It has been demonstrated that adsorption or
desorption data are capable of estimating the unbound
water content of solid adsorbents. This was accomp-
lished by the convergence of a computer program
which employed a least-squares technique applied
to an appropriate isotherm equation.

(2) The Brunauer, Emmett, and Teller free surface
equation and the Harkins and Jura equation were
readily adaptable to this treatment (the Polarization
equation and the Potential theory equation did not
respond).

(3) A valid estimate of surface area was also obtained
when data from adsorption experiments were used or
with such desorption experiments for which no
hysteresis existed. Where there was hysteresis, the
predicted surface area while incorrect was a useful
order-of-magnitude estimation, usually as an upper
limit.

(4) Applications of the technique for determining
the dry weights were compared with experimentally
measured values for solids which cover a wide range
in surface area. The agreement was within about one
percent and the calculated dry weight was usually on
the low side.

(5) The capabilities as well as the limitation in the
application of these methods were compared and
discussed.

7. Appendix. Procedure for Using Isotherm
Data With Time Sharing Teletype Terminal

Fortran Computer programs are given in figure Al
for the BET equation in figure A2 for the Harkins and

Jura equation. A minimum of four data points is
required, although a larger number is preferred. The
adsorption (or desorption) data can be pre-punched
on paper tape before connecting the terminal with the
computer. (The input format has been designed such
that the same data tape may be used with either
program.) A typical data file, for example, (A444153)
transposed from the tape is shown in table Al. The
initial line (here designated as 10) contains:

a. The number of data points in the experiment
(in this case, 6).

b. The maximum number of iterations.

c. A starting value (tentative) for the dry weight.

d. The initial decrement (or amount by which the
preceding numeral is changed in initiating the
iterative process).

Subsequent lines of table Al contain the sample
weight along with the corresponding humidity to
which the sample was exposed until that steady-state
weight had been attained.

The order of the points in table Al indicates in this
illustration that a desorption process originating at a
relative humidity of 1.00 was measured initially at
0.926 r.h., and finally at 0.435. While a maximum of
33 iterations was provided for in this example, only
about 20 were needed before no further change of any
consequence resulted.

TABLE Al. Input data for Expt. A444153

10 06 33 01.289000 —0.000400
11 01.294267 0.926
12 01.291396 0.804
13 01.290930 0.757
14 01.290616 0.655
15 01.290353 0.542
16 01.290112 0.435

The initiating value of 01.289000 ¢ was chosen to be
less than any of the data points and yet obviously
greater than the expected dry weight. The choice of
—0.000400 for the weight change meant that a value of
1.288600 g for a tentative dry weight would be tested
by the computer in its next iteration. The Harkins and
Jura program (HARJUR) would, of course, be used for
the data file A444153, since the humidities are beyond
the valid range applicable to the BET theory.

In the course of the computer run the value of ®
must change signs repeatedly as it converges toward
zero. This is a necessary criterion for a successful
determination. The value predicted for dry weight
for this particular set of data was 1.28897 g while the
predicted 7 surface area was 2.49 m?/g. (Other columns
present in the computer printout (not shown here)
represent intermediate steps in the calculations or
estimate the goodness of fit to the linear form of the
isotherm equation.)

An interesting application of the computer program
is the degenerate case where the iterations are sup-
pressed. This would occur when the dry weight is

7 The predicted surface area would normally not be valid in the case of a desorption ex-
periment (such as this) unless hysteresis was absent. It is useful, however, as an estimate of
the order of magnitude of the surface area.
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¢ee1e PEOGEAM VASSER (INPUT,OUTFUT, TAPEIL)

@222@*THIS PROGFAM 1S DESICNED TO FIND THE DRY WEIGHT P(JJ) VWHERE
@2@3@*X(1) 1S THE RELATIVE HUMIDITY, V(I) IS THE WEIGHT OF SAMFLE
@CQue*AT EQUILIERUM VITH X(I), AND J IS THE ITERATION OF THE PAFR-
QPCS@*AMETER., MAX I IS Il. MAX J IS JJ. THE VALUE OF I1
C@@E@*MUST EE AT LEAST 4. THE EANGE OF X(I) SHOULLC EE @.08 TO €.33.
22270 DIMENSION V(S@), X(58), P(99), F3(5@), F4(56), F5(5@),
oee8¢+ FE(S@), F8(50)

2209@ READ (1,61) 11, JJ, PC1), DELP

22180 €1 FORMAT (3X, 12, 1X, 12, 1X, F9.€, 1X, F9.6)

eel11e PFINT €2

2@12¢ €2 FOEMAT (/3X, 2HII, 1X, 2HJJ, 5X, 4HP(1), 7X, 4HDELF//)
22130 PRINT €1, I1,JJ, PC1), DELP

@el4@ FEAD (1,€63) (VW(I), X(I), I=1,11)

€e15¢ €3 FORMAT (3X, F9.6, 1X, F5.3)

C@1€@ PRINT 64

€017¢ €4 FORMAT (///5X, 4HV(1), 5X, 4HX(I1)//)

€@18@ PFINT €3, (W(I), X(I), I=1,11) *

2219¢ PRINT 65

@0c@@ €S FOFMAT (////1X, 1HJ, 6X, 4HP(J), B8X, 3HPHI, 9X, lHA, 9X,
@¢210+ I|HE, 8X, 4HAEEA, 7X, 1@HMN SGR DEV//)

eg22¢ AIl = II

@023¢ PFEPHI = @.¢@

@e24@ DO 104 J=1,JJ

20250 CX2 = €.¢

@e26¢ DO 92 I=1,11

20278 92 GX2 = CX2 + X(I)**Z

2e28¢ GX = 0.0

20290 DO 94 I=1,11

20300 94 GX = GX + X(I)

28316 DEN = AII*CX2 - GX*%2

ee32¢ Do 111 I=1,11

20332 111 F3(I) = X(I)/C1.2=XC1))/(V(I)=P(J))

ee340 GF3 = 0.0

2e3se Do 112 I=1,11

@@3€@ 112 GF3 = CF3 + F3(I)

@e37¢ ©O 113 I=1,11

@382 113 F4a(l) = XC(I)*F3CI)

2039¢ GF4 = 2.0

Q0400 DO 114 I=1,11

@C4l@ 114 GF4 = GF4 + F4(l)

2ga20 DO 115 I=1,11

@e4a3@ 115 FS5CI) = F3CID*VCID/(WCIdI=-P(J))

2e44l GFS = 0.0

204s@ DO 11€ I=1,11

@46 116 GFS = GF5 + F5(I)

2e47@ DO 117 I=1,11

2e480 117 FECI) = X(I)*FSCI)

Q490 GF6 = 0.0

205e@ DO 118 I=1,I1

28510 118GF€ = GF€ + FECI)

@gsce DO 119 I=1,11

2253@ 119 F8(CI) = F3(I)*F5(I)

2eS54C GF8 = 0.0

2esse Do 12¢ I=1,11

@@5€@ 120 CF8 = GF8 + F8(I)

22570 A = 18.@*%P(J)*(GXZ*GF3 - GX*GF4)/DEN

P0580@ E = 18.2*P(J)*(AII*GF4 - CX*GF3)/DEN

@059@ AREA = 7.S529E+Q4/CA+E)

P06C@ PHI = A%GFS + B*GF€ - 18.0%xP(J)*GF8

@R€E1C SSQRS = 2.0

oce2@ DO 4 I1=1,11

2263@ 4 SSQRS = SSQRS + (V(I) = P(JI*(1.Q + 18.0%X(1)/
POELB+ (1.0 - XCI))/CA + ExXC(I))))%%2

22650% SSQRS OF DEVS OF V(1) FFOM CURVELINEAR REGRESSION
20€6@ VAF = SSQRS/CAII - 3.2)

@2e7¢ PRINT 99, J, P(J), PHI, A, E, AREA, VAR

PCE8Q@ 99 FOFMAT (12, 2E13.5, 2E1@.2, 2E12.4)

02690 1F (PHIX*PREPHI) 95,96,96

2278@ 95 DELP = =-@.1%xDELP

22710 96& PREPHI = PHI

2872@ P(J+1) = P(J) + LDELP

22730 104 CONTINUE

22742 STOP

22750 EMD

FIGURE Al. Computer Program, WASSER, (FORTRAN IV) for determination of unbound water content (dry weight)
and Surface Area from water vapor sorption data according to the BET adsorption theory.
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20012 PFOCFAM HAFJUE(INFUT,OUTPUT, TAPE!L)

Q@@20*THIS PROCFAM IS DESIGNED TO FIND THE DEY WEIGHT P(JJ)
@ee3¢*"HEFE X(I) IS THE EELATIVE HUMICITY, W(I) IS THE
@OC4@*VEIGHT OF SAMPLE AT EGUILIERUM WITH X(I), ANL J IS THE
@00Se*xI TERATION OF THE PAFAMETERs MAX I IS Il. MAX J IS JJ.
PCPEC*THE VALUE OF Il MUST EE AT LEAST 4.

@e¢@7@ DIMENSION V(5@), X(58), P(99), HI1(S@), H2(5@)
eee8@ READC1,61) Il, JJ, PC1), DELP

00090 €1 FOFMAT (3X, I2, 1X, IZ, 1X, F9.6, 1X, F9.€)
@el1ee PEINT €2

Q2110 62 FORMAT (/3X,2HII1,1X,2HJJ,SX,4HP(1),7X, 4HLELP//)
22120 PEINT 61, 11,JJ, PCl1), DELP

20138 READC1,63) (V(I),X(I), I=1,1I)

22140 €3 FOFMAT (3X,F9.€,1X,F5.3)

€215@ PFRINT €4

00162 64 FOFMAT (///5X, 4HV(I), 5X, 4HX(I)>//)

2e17@ PRINT 63, (W(I), X(I), I=1,1I)

@218@ PEINT €5

22190 €5 FOFMAT (////1X, 1HJ, €X, 4HP(J), 8X, 3HPHI, 9X,
@e2ee+ 1HA, 9X, IHE, 8X, 4HAFEA, 7X, 1@HMN SQR DEV///)
gez21e All = 11

@@22@ PFEEPHI = 0@.@

@e23@ DO 124 J = 1,JJ

@@24€¢ DO 9@ I = 1,11

@225¢ 9@ HICI) = ALOGC(1.0/X(I))

@@2€0 GH1 = HICD)

ge27e¢ Do 91 I = 2,11

Qe28e 91 CHI = GH1 + HIC(I)

oe2%9@ Do 92 1 = 1,11

ge3ee 92 H2(I) = 1.08/CV(I) - P(J))

00310 GH2 = H2(1)**2

ge32¢ Do 93 1 = 2,11

@@33¢ 93 GH2 = GH2 + H2(I)**2

@2340 GH1Z2 = HIC1)*H2(1)*%*2

22350 Lo 94 I = 2,11

@@360 94 GH12 = CGHIZ + HICI)®H2(I)**2

@@37@ GH4 = H2(1)*x4

ee38¢ Do 95 I = 2,11

@@39¢ 95 CH4 = GH4 + HZ(1)**x4

@C4@0@ GHV3 = W(1)*H2(1)**3

Q0410 DO 9€¢ I = 2,11

@@420 9€ GHV3 = CHV3 + V(ID*H2(I)*%*3J

20430 GHIW3 = WVCI)*HI1C1)*H2C1)**3

eo44e DO 97 I = 2,11

@@45@ 97 GHIV3 = GHIW3 + WVCI)*HICI)*H2(I)**3

@O4€@ GHWS = W(1)%®H2(1)*%5

00470 DO 98 I = 2,11

2@480 98 GHVS = CHVS + V(ID*H2(1)*x%x5

@0490@ CEN = (18.C%P(J))**x2%(AIlI*xGH4 - CGH2%x*2)

@e5¢@ ANUM = AII*GH12 - GHI1%*GH2

€@510 A = ANUM/DEN

@@52@0 ENUM = (18.0@%P(J))**2x(CGH2%CHIZ - GHI1*GH4)

90530 BE = ENUM/DEN

P@54@ PHI = A*P(J)*(GHIV3 - A*(18.@%P(J))**ZxGHVS + E*CGHW3)
@@550 SSQFES = 0.0

@@5€0 DO 4 I = 1,11

@@57¢ DISC = A/(HIC(I) + B)

@@s8¢ IF (DISC) 7@,69,¢€9

20590 69 DSCR = DIEC

@B6C0@ SSQRS = SSQRS + (W(I)=P(J)*(1.0+18.0*xSART(LSCR)))**2
0610 GO TO 4

@@62@ 7@ SSQRS = 1.0QE+08

P2632 4 CONTINUE

@@e4P*x SSQRS OF DEVS OF V(I) FROMM CURVILINEAF REGRESSION
2065¢ VAF = SSQES/(AIl-3.0)

P2€€6C IF (A.LT.0.8) GO TO 111

@0€70 AFEA = S5.62E+04%SQRT(A)

eee8e 6o To 112

P2€90@ 111 AFEA = 0.0

@@70@ 112 PRINT 99, J, P(J), PHI, A, B, AREA, VAR

22710 99 FORMAT (I2, 2E13.5, 2E1@.2, 2El2.4)

20720 IF (J.EQ.1) CcO ToOo 101

92730 IF (PHI*PREPHI) 1@0,100,1@1

@@74@ 100 DELP = =-0.1%DELP

2@75¢ 101 PREPHI = PHI

@760 P(J+1) = P(J) + DELP

2e77@ 124 CONTINUE

2@78¢ STOP

2@79@ END

FIGURE A2. Computer Program, HARJUR, (FORTRAN IV) for determination of unbound water content (dry weight)
and Surface Area from water vapor sorption data according to the H-J adsorption theory.
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available experimentally along with the rest of the
data points and the experimenter is primarily interested
in the least-squares value of the surface area. In the
first line of the input data file (table A1) he would set
the number of iterations equal to 01 and would insert
the known dry weight for the initial value of p which
is the next entry on that same first line. The final entry
(corresponding to the initial decrement) while it will
be ignored by the computer should, never-the-less, be
present even if all its digits are zeroes.

The computer programs used in this work are
reproduced in figures Al and A2.
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