JOURNAL OF RESEARCH of the National Bureau of Standards —A. Physics and Chemistry
Vol. 79A, No. 2, March—April, 1975

Simplification of van der Poel’s Formula for the
Shear Modulus of a Particulate Composite

Jack C. Smith

Institute for Materials Kesearch, National Bureau of Standards, Washington, D.C. 20234

(November 14, 1974)

The coefficients in van der Poel’s equation for calculating the shear modulus of a particulate
composite have been greatly simplified, making the calculation much less unwieldy. Approximate
solutions of van der Poel’s equation are also derived, and it is shown that one of the low order approxi-
mations is Kerner’s equation, or Hashin and Shtrikman’s equation for the highest lower bound. The
Kerner approximation is often too low in value when the volume fraction of filler exceeds 0.2. but it
can be used to provide further simplification in van der Poel’s equation, or it can be used as a first

approximation in a Newton’s method of solution.
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1. Introduction

Van der Poel’s method [1]' for calculating the
shear modulus of a particulate composite is an excel-
lent method capable of giving accurate results [1,
2], but because of several disadvantages has not been
widely used. In the original presentation the calcula-
tion was complicated. A table of values was therefore
provided, but this table was limited to materials for
which Poisson’s ratio of the matrix was 0.5. In addition,
there was an error in the derivation [3], and its effect
on the results was not known. Recently, however, van
der Poel’s method has been reexamined [4], the error
corrected, and the method extended for use with matrix
materials having any value for Poisson’s ratio. The
effect of the error was shown to be minor, and a new
table of values was provided. Continued studies have
now resulted in an improved understanding of the
theory, and have provided significant simplifications
in the calculation. This work is presented here.

2. Review of the Method

A detailed derivation based upon a method de-
veloped by Frolich and Sack [5] has been given else-
where [4]. Consider an idealized composite material
consisting of small spheres imbedded in a matrix.
The spheres are of approximately the same size, are
firmly attached to the matrix, and are uniformly dis-
tributed so that the composite material is macro-
scopically homogeneous and isotropic. To simplify

! Figures in brackets indicate literature references at the end of this paper.

calculations consider a unit length chosen such that
on the average there is one sphere of filler in each
spherical volume 47/3 of unit radius. If ais the radius
of the filler sphere, then by definition of the unit radius
a®is equal to the volume fraction ¢ of the filler.

Consider a large sphere of homogeneous material.
Consider also a second sphere of the same size con-
sisting mostly of the homogeneous material but having
the following structure in the central region: A filler
sphere of radius a is located at the origin. Surrounding
this out to a radius unity is a shell of matrix material,
which in turn is imbedded in the homogeneous mate-
rial. The mechanical properties of this homogeneous
material are assumed to be the same as the average
macroscopic properties that are sought for the com-
posite material considered here.

If the same boundary stresses are applied to each of
the spheres, it is assumed that the displacements in
the two spheres will be the same at a distance r>1,
except for terms of a high order in 1/r. Thus it is re-
quired that

Displacement at r > 1 in second sphere
Displacement at r > 1 in first sphere

Const.

+3 = ()

Let the first sphere be subjected at the boundary to
the deviatoric stress system
a,=2TP;(Cos 0),

79 = I'P3(Cos 6), Tre=0.

(2)
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where o, is the radial tensile stress, and 7,9 and 7,4
are the tangential shear stresses on the spherical boun-
ary surface at radius r. The corresponding boundary
displacements in the r, 6, and ¢ directions are

Tr Tr ,
ur=E P, (Cos 0), u0=2—G P;(Cos 0), us=0. (3)

In the above equations T is a stress magnitude, and
G is the shear or rigidity modulus. P»(Cos 6) is the
second Legendre Polynomial, and Ps(Cos 6) is its
derivative with respect to 6.

The stresses and displacements at any radius r
within sphere 1 of the homogeneous material are also
given by eqs (2, 3), but the stresses and displacements
within sphere 2 having the special structure must be
found by solving Lamé’s equations. These solutions
subject to the requirement of symmetry about the
0=0. axis, and the requirement that the solutions
possess the same P, symmetry as those of eqs (2, 3),
have been derived in the previous paper [4] and are
given by

ur= [Amr + Bur—*+ Cnr3+ Dpr—2] P, (Cos 0) 4)

|1 1 4 T—4vm
up [2Amr 3er + 2 (G
+1 2va r2 [ P,(Cos 0 5
5 4‘Vm m ] 2( 08 ) ( )

1
0r=2Gn | Apw—4Bur-> 5 Cnr?

2(5—vm)

—m D, r—3 :| P>(Cos 0) (6)

T+ 2vm
6vm

2(1+vm) L
mDmr ]P2(C0s0) (7)

8
T 9:Gm |:Am+§ er_5+ Cmr2

r

where the quantity v is Poisson’s ratio.

In the above solutions the subscript m refers to the
matrix medium of the region a < r =<1 in which these
equations hold. Similar equations holding within the
filler sphere r < a are designated by the subscript f,
but in order that these solutions be finite at the origin
the coefhicients By and Dy are set equal to zero. For
solutions holding in the region r = 1 outside the matrix
shell no subscripts are used. In these solutions the
coefficients C and D do not appear because of the
requirement eq (1), and the coefficient 4 is set equal
to T/G for consistency with the applied boundary
stresses, eq (2).

At the boundaries r=a and r=1. continuity of
stress and displacement is required. This results in a
system of eight equations in the seven unknowns
Ay, Cg, Amy Bm, Cmy, D, B, assuming for the moment

that the shear modulus G is known. If T is considered
as an additional unknown, a system of linear homogene-
ous equations results. In order that the solution of this
system be nontrivial, or that 4y, Cy, An, etc. can be
expressed in terms of the quantity T, the determinant
of the matrix of coefficients must vanish. Setting this
determinant  equal to zero evaluates G, the shear
modulus of the homogeneous material and the quantity
sought, in terms of the known quantities Gy, G, vy, V.

3. Results

The determinantal equation for G can be reduced
to the form ,
aX"+BX+y=0. 8)
where
a=[4P(7—10v,,) —Sa”][Q — (8 — 10vy,) (M —1)a3]
—126P(M —1)a3(1—a?)? 9)
B=35(1—vu)P[Q— (8—10v,) (M —1)a?]
—15(1 —vy) [4P(7—10v,) —Sa”] (M —1) a®

(10

y=—="525P(1 —v,)*(M—1)a (11)
and the quantities P, Q, and S are defined as

P=(7+5v)M+4(7—10v) 12)

Q= (8—10w,)M+7—5v, (13)

S=35(7T+5v )M(1—vy) —P(7T+5v,)  (14)

M is the ratio G;/G,, and the quantity X is equal to
(G/Gn) —1. Equation (8) has two real roots, one of
which is negative and extraneous. The positive root
provides the required value for G.

Equations (8) through (11), although more compact
than those given previously [4] are still unwieldy, so
it becomes worthwhile to search for an approximate
solution. Such a solution could be obtained as a series
expansion in powers of a= "3, but in order to obtain
sufficient accuracy too many terms would be required.
A more compact solution is one of the Padé type:

o no+n1)\+n2)\2+———
L W W 15
where the parameter A is given by
—1)3 —
L (M—D)@_ (M=) 6

Q Q

To obtain this approximate solution AQ is substi-
tuted for (M — 1)a® in eqgs (9), (10), (11) for a, B and vy,
and these equations are then substituted together with
eq (15) into eq (8). The unknown constants ny, n,, d;,
d, etc. are evaluated by equating to zero the coeffi-

420



cients of A in the resulting expression. Several different
expansions of the form eq (15) can be obtained, because
the pairs of constants ns, di; ns, de; ete. are interrelated.
Thus one of the pair members is arbitrary and may be
set equal to zero. A suitable approximate expression is

X4=

15(1 —v)A+810(1 —wy) (1 —a?)?A3
1— (8—10v,)A—108(1 —a?)2[8—10v,,—3R/14P]\?
(17)
where R is given by

R = 4P(7 - lOVm) — Sa’. (18)

To a first approximation eq (17) becomes

B0 =v) (M —1)e

X = @ 10mM + 7= 50 19)

This approximation has been given previously by
Hashin [6], and by Eshelby [7], who found it by different
methods. It may be regarded as a generalized form of
Smallwood’s equation [8].

To a second approximation eq (17) becomes

15(1 — vw) (M — 1)
Q— (8= 10v,) (M—1)g

It can be shown by algebraic manipulation that this
approximation is the same as Kerner’s equation [9],
or Hashin and Shtrikman’s equation for the highest

lower bound [10].

Equation (20) provides a means of further simpli-
fying the exact calculation of X. If the quantities «, S3,
v are multiplied by the factor

X = (20)

15(1—vw)/[Q— (8—

the following new quantities ', 8', ¥’ are obtained

10v,) (M —1)a?],

a'=15(1—vu)R —126P (1 — a?)*X, (21)
B'=525P(1—vp)*—15(1 —vu)RX: (22)
v =—525P (1 —vn)*Xe (23)

These new quantities «', B', ¥ may be substituted
into eq (8) to calculate X.

The approximate solution eq (20) can be used with
Newton’s method to obtain a better approximation.
Let

FX)=a'X*+B'X+y'

£
<X+2a 40’ 7 k8
Then to a first approximation
F(Xy)=F(X2) + (Xy—X2)F' (X2) =0.  (25)
or
F(X,)
=Xo— ——— 26
Xv=X F'(X,) (26)

Evaluating the quantities F(X:) and F'(X:) gives

X‘\'z
126P (1 — a?)2X}
525P(1 —vm)?+15(1—vu) RX> —252P (1 — a*)%X2
(27)

X, +

The function F(X) is a parabola symmetric about
the axis X——,B /2a'. At the point where F(X) inter-
sects this axis F(X) is negative. As X increases
positively F(X) becomes less negative and is zero
where it intersects the X axis. The value of F(X,) is

F(X2)=—126P(1 — a2)2X3 (28)

and is negative, so that eq (20) provides a value of G
less than the true value. On the other hand the value

of F(Xy) is

F(Xy) = o' (Xy — X,)2 (29)
and is positive. If X, is a sufficiently good approxima-
tion, Xy will be an improved approximation, slightly
exceeding the true value.

4. Discussion

The exact solution of eq (8) and the approximate
solutions eqs (17) and (27) have been studied for
volume fractions of filler ¢ between 0. and 1.0, using
the following values for the parameters vy, v,,, and M:

ve=0.1; v, =0.4; M =30, 100

y = 01, Vm = 0.5, M = IOOO

Vy= 0.25, Vm = 0.3, M = 10

vr = 0.25; v, = 0.4; M = 30, 100

ve=0.25; v,, = 0.5; M =100, 103, 104, 7 X 10%, «

ve=0.35 v, =0.4; M = 30, 100

vr=0.35; v, = 0.5; M = 1000.
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FIGURE 1. Plot of relative shear modulus G|G,, versus volume
Jfraction of filler for the case GG, =30, v;=0.25, v, =0.40.

Solid curve, exact solution of eq (8); Dash curve 2, X, approximation (Kerner’s equation),
eq (20); Dash curve 3, Xapproximation, eq (17); Dash curve 4, X, approximation, eq (17):
Dash curve N, Newton’s method approximation Xy. eq (27).
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FIGURE 2. Plot of relative shear modulus G|G,, versus volume
fraction of filler for the case G{G,,= 70,000, v;=0.25, v,,=0.50.

Solid curve, exact solution of eq (8); Dash curve 2, X, approximation (Kerner’s equation),
eq (20); Dash curve 3, X3 approximation, eq (17); Dash curve 4, X, approximation, eq (17);
Dash curve N, Newton’s method approximation Xy. eq (27).

Plots selected from these calculations are given for
two representative composite materials in figures
1 and 2. In figure 1 the dependence of relative shear
modulus G/G,, on the volume fraction of filler ¢ is
shown, as calculated from eqs (8), (17) and (27). The
parameter values used were vy = 0.25, v, = 0.4 and
M = 30, and are representative of a composite consist-
ing of small glass spheres imbedded in a rigid epoxy
matrix. For this example it is seen that the plots for the
X4 and Xy approximations lie reasonably close to either
side of the plot for the exact value, but that the plotted
values for the X, approximation are too low when the
volume fraction ¢ exceeds 0.4.

Figure 2 is a similar plot of values calculated using
the parameter values »=0.25, »,=0.50 and
M =70,000. These values are representative of a
composite consisting of small glass spheres imbedded
in a matrix of lightly vulcanized rubber. In this ex-
ample the Xy approximation calculated from eq (27)
gives values close to the exact values calculated from
eq (8), when ¢ is less than 0.4. The approximate values
Xz, X3, X, are good only for values of ¢ up to 0.2.

Equation (16) for the parameter A may be expressed

in the following form

_ 4
IN=
8—10v, + 15(1 —vw) (30)
m (M—l)

When v,=0.4, M=30, ¢=0.4, the value of A\ is
A =0.09, and when v, =0.5, M = 70,000, ¢ = 0.4, the
value of N is A=0.13. Thus for values of ¢ greater
than 0.4 the terms in eq (17) representing the suc-
cessive approximations X, X3, X, are relatively large,
indicating that this series solution does not converge
very rapidly, as evidenced in figures 1 and 2. The
approximations provided by eq (17) are probably
reliable only for values of ¢ up to 0.2. In this connec-
tion it is appropriate to recall that the approximation
Xs is equivalent to the widely used equation of Kerner
[9], or Hashin and Shtrikman’s equation for the highest
lower bound [10].

It has been pointed out previously that values of
G/G,, calculated from van der Poel’s equation are
insensitive to values of v;. The extent of this insensi-
tivity can be seen from eq (17). The values of R and P
are moderately dependent on the values of vy, and these
quantities first appear in the coefficient of A3 in the
denominator of eq (17). In other words the approxima-
tion X, is the first one to be affected by the value of vy

Although in the examples of figures 1 and 2 the
approximation of eq (27) gives reasonably accurate
values, there are situations when eq (27) fails because
the approximation X, is not good enough. This occurs
when for a sufficiently high value of ¢ the coefficient
B', eq (22), changes from a positive to a negative
value. The axis of the parabola F(X) = 0. then inter-
sects the X axis at the positive point X = (— 8')/2«a’.
This point will usually be near X, and as ¢ increases
will exceed it. In either event the slope F'(X») will
be too low or even negative, and the calculated value
of Xy will be grossly inaccurate.

In the studies using the parameter values listed
above, it was found that «' was always positive and
v was always negative, but when ¢ exceeded 0.5,
B’ changed sign and became negative. For values of
¢ exceeding 0.5 the values of Xy were reasonably
accurate when M was less than 100, but when M ex-
ceeded 100 the values of Xy were grossly inaccurate
or negative.

It is fortunate that eq (27) gives a good approxima-
tion for values of ¢ up to 0.4 or 0.5. At values of ¢
greater than 0.5 the assumptions upon which the theory
is based are no longer valid. For instance, the packing
fraction of spheres of equal size arranged on a cubic
lattice is 0.52, and the packing fraction of equal size

spheres in hexagonal close packed arrangement is
0.74. As a practical matter it is difficult to prepare a
particulate composite material with a volume fraction
of filler ¢ exceeding 0.5 without introducing excessive
void content. However Schwarzl [2] and van der Poel
[1] report that the theory agrees well with experimental
data for values of ¢ up to 0.5. It seems then that the
calculations of the theory have an empirical validity
beyond the theoretical expectations.
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