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T he coe ffi c ient s in va n del" Poe!'s equa ti on fo r c alc ul atin g the shear modulu s of a parti c ulatc 
com posite have b een g r~a tl y sim p lifi ed. making the ca lcul ati on mu ch less un w ield y. Approx im ate 
so lut lOnsof va n d~ r Poe l s equation are al so de ri ved. and it is show n that on e of th e low o rd er approx i . 
mat lOns IS Ke ~'n e r s equati on. or I-I as hin and Shtrik ma n's equati on fur the highes t lowe r bo und. The 
Kelnel appl OXI llHlt lO1l IS oft en too low In va lue when the vu lu me fraction of fill er exceeds 0.2. but it 
can be used to. provide fu r~ h er s imp lifi ca t IO n In va n der Poel's equ ation . or it can be used as a first 
ap prOX i mat IOn In a Newton s meth ud of so lution . 

Key wu rd s: Co m posi te materi a ls: elas ti c co nstant s: fi lled po ly mers: mec hani ca l pro perti es; pa;" 
tl c ul ate co mposit es; shea r nwdulu s; theor y o f e lasti c it y. 

1. Introduction 

Va n der P oel's me th od [1] t for calc ula tin g the 
s hear modulu s of a pa rti c ula te co mpos ite is an excel· 
le nt method capable of giving acc urate res ults [1 , 
2] , but because of seve ra l di sadv a ntages has not bee n 
widely used. In the ori gin al p rese nta tion the calc ul a
ti on was co mpli cated. A table of values was ther efore 
provided , but thi s tabl e was limited to materi als for 
whic h P oisson's ra ti o of th e m alrix was 0.5. In addition, 
the re was an e rror in the de ri vation [3] , and its effect 
on the res ults was not known . Recently, howe ve r, van 
de l' P oel's method has bee n reexamined [4], the error 
corrected , and th e method exte nded for use with ma trix 
mate ri als ha vin g any valu e for Poisson 's ratio. The 
effec t of the e rror was shown to be mino r, and a new 
table of values was provided . Co ntinued s tudies have 
now res ulted in an improve d unders tanding of the 
th eory, and have pro vided s ignifi cant simplifications 
in the calcula tion. This work is presented here. 

2. Review of the Method 

A detailed de riva tion based upo n a method de
ve loped by F riilj c h and Sack [5] has been give n else
where [4]. Conside r a n ideali zed co mpos ite mate ri al 
cons istin g of s ma ll s ph e res im bedded in a matrix. 
The spheres are of approxi mately the same size, are 
firml y attached to the matri x, and a re uniforml y di s
tributed so th at the co mposite mate ri al is macro
sco pically homogeneous and iso tropic. T o s implify 

1 Fi gures in brac ke ts indi ca te lit e rat ure refe rences at the e nd II f thi s pape r. 

ca lc ul ations co nside r a unit le ngth chose n uch th a i 
on th e a ve rage th e re is o ne sphe re of fill e r in each 
sp heri ca l vo lum e 47T/3 of unit radius. If a is Ihe ra diu s 
of th e fill e r s ph e re, th en by de finiti on of th e unit radiu s 
a3 is equ al to the vo lume fraction 'P of the fill e r. ' 

Co ns ide r a la rge s phe re of ho mogeneous mater ia l. 
Co ns id e r a lso a seco nd sp he re of th e sa me s ize co n
s is tin g mos tl y of th e ho morre neo us mate ri a l but hav in a 

th e followin g stru c lure in ~h e ce ntra l regio n: A fill e7-
s P.here of radius a is loca led a l the ori gin . S ur ro undin g 
thIS out to a radiu s unit y is a s he ll of matri x mate ri al, 
whi ch in turn is imbedded in the homoae neo us mate
ri aL The mecha ni ca l properti es of thi s "'ho moo-e neous 
mate rial are ass umed to be th e sa me as the ~ve ra(Te 
macroscopi c properties that are sought for the co ~
posite mate ri al cons ide red he re. 

If the same boundary s tresses a re a pplied to each of 
the spheres, it is ass umed that the di splace me nts in 
th e two spheres will be the sa me at a di s ta nce r ~ 1 
exce pt for te rm s of a high order in 1/ r. Thu s it is re: 
quired that 

Di splace ment at r ~ 1 in second s phere 
Displace ment a t r ~ 1 in firs t sphe re 

1 

+ L Co ns t. (1 ) 
11 > 3 (II 

Le t the firs t s phe re be s ubj ected a t th e boundar y to 
th e devia tori c stress sys te m 

T ,·O = TPHCos 0), 
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where (Ir is the radial tensile stress, and T r 8 and Trq, 

are the tangential shear stresses on the spherical boun
ary surface at radius r. The corresponding boundary 
displacements in the r, 0, and cP directions are 

In the above equations T is a stress magnitude, and 
G is the shear or rigidity modulus. P2 (Cos 0) is the 
second Legendre Polynomial, and P2 (Cos 0) is its 
derivative with respect to o. 

The stresses and displacements at any radius r 
within sphere 1 of the homogeneous material are also 
given by eqs (2, 3), but the stresses and displacements 
within sphere 2 having the special structure must be 
found by solving Lame's equations. These solutions 
subject to the requirement of symmetry about the 
0= O. axis, and the requirement that the solutions 
possess the same P2 symmetry as those of eqs (2, 3), 
have been derived in the previous paper [4] and are 
given by 

(5) 

(Ir=2G", [ Am-4B",r5-~C",r2 
2(5-vm ) ] 

-5-4v", Dmr-3 P2 (Cos 0) (6) 

(7) 

where the quantity v is Poisson's ratio. 
In the above solutions the subscript m refers to the 

matrix medium of the region a .;:; r';:; 1 in which these 
equations hold. Similar equations holding within the 
filler sphere r';:; a are designated by the subscript J, 
but in order that these solutions be finite at the origin 
the coefficients Bf and Df are set equal to zero. For 
solutions holding in the region r;';;': 1 outside the matrix 
shell no subscripts are used. In these solutions the 
coefficients C and D do not appear because of the 
requirement eq (1), and the coefficient A is set equal 
to T/G for consistency with the applied boundary 
stresses, eq (2). 

At the boundaries r= a and r= 1. continuity of 
stress and displacement is required. This results in a 
system of ei!!ht equations in the seven unknowns 
Af, Cf , Am, Bm, Cm, Dm, B, assuming for the moment 

that the shear modulus G is known. If T is considered 
as an additional unknown, a system of linear homogene
ous equations results. In order that the solution of this 
system be nontrivial, or that Af , Cf, Am, etc. can be 
expressed in terms of the quantity T, the determinant 
of the matrix of coefficients must vanish. Setting this 
determinant equal to zero evaluates G, the shear 
modulus of the homogeneous material and the quantity 
sought, in terms of the known quantities Gf , Gm , Vf, Vm. 

3. Results 

The determinantal equation for G can be reduced 
to the form 

aX2+ (3X +y=O. (8) 
where 

a= [4P(7 -lOvm ) -Sa7 ][Q- (8-lOvm )(M -l)a3 ] 

-126P(M -l)a3 (1- a2 )2 (9) 

{3= 35(1- v".)P[Q- (8 -lOvlll)(M -1)a3 ] 

-15(1- vm ) [4P(7 -IOvm ) -Sa7 ] (M -1)a3 

and the quantities P, Q, and S are defined as 

Q= (8-1Ovm)M + 7 -5vm 

(10) 

(11) 

(12) 

(13) 

S = 35 (7 + 5Vf)M (1- V/1/) - P(7 + 5vm ) (14) 

M is the ratio Gf/Gm, and the quantity X is equal to 
(G/Gm ) -1. Equation (8) has two real roots, one of 
which is negative and extraneous. The positive root 
provides the required value for G. 

Equations (8) through (11), although more compact 
than those given previously [4] are still unwieldy, so 
it becomes worthwhile to search for an approximate 
solution. Such a solution could be obtained as a series 
ex pansion in powers of a = cpl /3, but in order to obtain 
sufficient accuracy too many terms would be required. 
A more compact solution is one of the Pade type: 

where the parameter A is given by 

\ = (M-l)a3 = (M-l)cp 
1\ Q -'----=-Q---'-'- (16) 

To obtain this approximate solution AQ is substi
tuted for (M - l)a3 in eqs (9), (10), (11) for a, {3 and y, 
and these equations are then substituted together with 
eq (15) into eq (8). The unknown constants nl, n2, dJ, 
d2, etc. are evaluated by equating to zero the coeffi-
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cients of 'A in the resulting expression. Several different 
expansions of the form eq (15) can be obtained, because 
the pairs of constants n2, d l ; TIs, d2; etc. are interrelated. 
Thus one of the pair members is arbitrary and may be 
set equal to zero. A suitable approximate expression is 

X4 = 

1- (8 -lOvm)'A -108(1- a2 )2[8-lOvm -3R/14P]'A3 

(17) 

where R is given by 

R = 4P(7 - lOv",) - Sa7 • 

To a first approximation eq (17) beco mes 

15(1- VIII) (M - l)cp 
XI = ---------

(8 -10v",)M + 7 - 5vm 

(18) 

(19) 

This approximation has been given previously by 
Hashin [6], and by Eshelby [7] , who found it by different 
methods . It may be regarded as a generalized form of 
Smallwood's equation [8]. 

To a second approximation eq (17) beco mes 

X 2 = 15(1- VIII) (M - l)cp (20) 
Q - (8 - 10v",) (M - l)cp 

It can be shown by algebraic manipulation that this 
approx im ation is the same as Kerner's equation [9], 
or Hashin and Shtrikm an's equation for the highest 
lower bound [10]. 

Equation (20) provides a means of further simpli· 
fying the exact calculation of X. If the quantities 0', {3 , 
yare multiplied by the facto r 

15(l-v lII)/ [Q- (8-lOvm) (M -1)a3 ], 

the following new quantities 0" , {3' , y' are obtained 

0" = 15(1- v",)R -126P(1- a2)2X2 (21) 

{3' = 525P(1- vlIl )2-15(1- vm)RX2 (22) 

y' =-525P(1- VIIl )2X2 (23) 

These new quantities 0", {3', y' may be substituted 
into eq (8) to calculate X. 

The approximate solution eq (20) can be used with 
Newton's method to obtain a better approximation. 
Let 

F(X) = a'X 2 +{3'X + y' 

, ( {3')2 ({3 '2 ,) 
= 0' X + 20" - 40" - Y (24) 

The n to a first approximation 

Evaluating the quantities F(X2) and F' (X2 ) gives 

126P(1-a2 )2X3 
X + 2 

2 525P(1- vlIl )2 + 15(1-v",)RX2 - 252P(1 - a2)2X~ 

(27) 

The function F(X) is a parabola symmetric about 
the axis X = - {3' /20". At the point where F (X) inter· 
sects this axis F(X) is negative. As X increases 
positively F(X) becomes less negative and is zero 
where it intersects the X axis. The value of F(X2) is 

F(X 2 ) = -126P(1 - a2)2X~ (28) 

and is negative , so that eq (20) provides a value of G 
less than the true value. On the oth er hand the value 
of F(XN ) is 

(29) 

and is positive. If X2 is a sufficiently good approxima· 
tion, Xv will be an improved a pproximation , sli ghtly 
exceeding the true value . 

4. Discussion 

The exact solution of eq (8) and the approximate 
solutions eqs (17) and (27) have bee n studied for 
volume fractions of fill er cp be twee n O. and l.0, using 
the following values for th e param eters VI. VfI/. , and M: 

Vf = 0.1 ; VIII = 0.4; M = 30,100 
Vf = 0.1; VIII = 0.5; M = 1000 
Vf= 0.25; v'" = 0.3; M = 10 
f}f = 0.25; VIII = 0.4; M = 30, 100 
Vf = 0.25; v'" = 0.5; M = 100, 103 , 104, 7 X 104, 00 

Vf = 0.35; v'" = 0.4; M = 30,100 
Vf= 0.35; v'" = 0.5; M = 1000. 
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F(XN ) =F(X2) + (XN -X2)F'(X2) =0. 
or 

(25) FIGU RE 1. Plot of relative shear modulus C/Cm versus volume 
fraction of filler for the case CrlC m = 30, Vr = 0.25, Ilm = 0.40. 

F(X2 ) 

X N =X2 - F' (X2 ) 
(26) 

Solid curve, exact so lution of eq (8) : Dash curve 2. X2 a ppruxirnation (Ker ne r 's equation). 
C{I (20): Dash c urve 3. X3 approximaliun. eq (1 7); Das h c urve 4. X .. a ppruxi ma tion. e(1 (17): 
Das h c urve N. Newton 's me thod appruximation X,\" cq (27). 
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FIGURE 2. Plot of relative shear modulus CIC m versus volume 
fraction of filler for the case CrlC m = 70,000, Vr= 0.25 , Vm = 0.50. 

Solid cu rv e , e xact so lution of c q (8): Dash c urve 2. X~ approximation (Kel'llcr's equation), 
eq (20): Das h c ur ve 3. K , app rox imatio n. eq ( 17); Das h curve 4. XI approximation. eq ( 17); 
Das h curve N. Newlon' s method approximatiun X v, eq (27). 

Plots selected from these calculations are given for 
two representative composite materials in figures 
I and 2. In figure I the dependence of relative shear 
modulus CIC m on the volume fraction of filler <p is 
shown, as calculated from eqs (8), (17) and (27). The 
parameter values used were Vf = 0.25, VI/I = 0.4 and 
M = 30, and are representative of a composite consist· 
ing of small glass spheres imbedded in a rigid epoxy 
matrix. For this example it is seen that the plots for the 
X4 and Xv approximations lie reasonably close to either 
side of the plot for the exact value, but that the plotted 
values for the X 2 approximation are too low when the 
volume fraction <p exceeds 0.4. 

Figure 2 is a similar plot of values calculated using 
the parameter values Vf= 0.25, Vm = 0.50 and 
M =70,000. These values are representative of a 
composite consisting of small glass spheres imbedded 
in a matrix of lightly vulcanized rubber. In this ex
ample the Xv approximation calculated from eq (27) 
gives values close to the exact values calculated from 
eq (8), when <p is less than 0.4. The approximate values 
X2 , X3 , X are good only for values of <p up to 0.2. 

Equation (16) for the parameter 'A may be expressed 
in the following form 

'A= <p 
8-10 .+15(l-vlI/) 

V III (M-l) 

(30) 

When vm=0.4, M=30, <p=0.4, the value of 'A is 
A = 0.09, and when Vm = 0.5, M = 70,000, cp = 0.4, the 
value of 'A is 'A = 0.13. Thus for values of <p greater 
than 0.4 the terms in eq (17) representing the suc
cessive approximations X2 , X3 , X4 are relatively large, 
indicating that this series solution does not converge 
very rapidly, as evidenced in figures I and 2. The 
approximations provided by eq (17) are probably 
reliable only for values of <p up to 0.2. In this connec
tion it is appropriate to recall that the approximation 
X2 is equivalent to the widely used equation of Kerner 
[9], or Hashin and Shtrikman's equation for the highest 
lower bound [10]. 

It has bee n pointed out previously that values of 
CICII/ calculated from van der Poel's equation are 
insensitive to values of VI' The extent of this insensi
tivity can be seen from eq (17). The values of Rand P 
are moderately dependent on the values of Vf, and these 
quantities first appear in the coefficient of 'A3 in the 
denominator of eq (17). In other words the approxima
tion X4 is the first one to be affected by the value of Vf' 

Although in the examples of figures 1 and 2 the 
approximation of eq (27) gives reasonably accurate 
values , there are situations when eq (27) fails because 
the approximation X2 is not good enough . This occurs 
when for a sufficiently high value of <p the coefficient 
f3', eq (22), changes from a positive to a negative 
value. The axis of the parabola F(X) = O. then inter
sects the X axis at the positive point X = (- f3') 12(X'. 
This point will usually be near X2 , and as <p increases 
will exceed it. In either event the slope F' (X2 ) will 
be too low or even negative, and the calculated value 
of XN will be grossly inaccurate. 

In the studies using the parameter values listed 
above, it was found that (x' was always positive and 
y' was always negative, but when <p exceeded 0.5, 
f3' changed sign and became negative. For values of 
<p exceeding 0.5 the values of Xv were reasonably 
accurate when M was less than 100, but when M ex
ceeded 100 the values of Xv were grossly inaccurate 
or negative. 

It is fortunate that eq (27) gives a good approxima
tion for values of <p up to 0.4 or 0.5. At values of <p 
greater than 0.5 the assumptions upon which the theory 
is based are no longer valid. For instance, the packing 
fraction of spheres of equal size arranged on a cubic 
lattice is 0.52, and the packing fraction of equal size 
spheres in hexagonal close packed arrangement is 
0.74. As a practical matter it is difficult to prepare a 
particulate composite material with a volume fraction 
of filler <p exceeding 0.5 without introducing excessive 
void content. However Schwarzl [2] and van der Poel 
[1] report that the theory agrees well with experimental 
data for values of <p up to 0.5. It seems then that the 
calculations of the theory have an empirical validity 
beyond the theoretical expectations. 
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