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A formal formulation of the differential cross section for x-ray inelastic scattering is given for a
real solid, in particular, in terms of the polarization propagator and the inverse dielectric function.
The differential cross section is related to the causal functions of electron properties rather than those

retarded functions.
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A few years ago, the present author formulated the
differential cross section for x-ray inelastic scattering
in a unified way such that core electrons as well as
valence electrons were treated on an equal basis [1].!
This formulation aided explanation of the then un-
resolved x-ray Raman scattering problem. In this
paper, the differential cross section will be expressed
in terms of causal rather than retarded functions in
model-independent form. The results are similar in
form to the Noziéres-Pines [2] results for an electron
gas in the dielectric formulation.

Several results of this paper have been reported
previously or used separately in papers published
elsewhere [3, 4]. It is, however, desirable to present
the entire formulation in a systematic way, although
the formulation is a trivial one to those who are familiar
with Schwinger’s many-body formulation and the spec-
tral function technique.

In previous papers [1, 5] it was shown that the dif-
ferential cross section for x-ray inelastic scattering is
given by the double four-dimensional Fourier transform
of the electron charge (or current) correlation:

(k= k) = C(k, k')(e-e')zjfd% dty (Ap(x)Ap(y))

exp [—i(k—=k') (x—=»)], (1-a)

where k and k' are the four-vectors consisting of the
wave vectors and the energies of the incoming and the
outgoing photons, respectively, and € and €’ are their
polarization directions. The quantity C(k, k") is defined
by

C(k, k')=(27) ~*(e?/m)?(kk") ~ 1. (1-b)

The function p(x) is the electron charge operator and
Ap(x) is given by

Ap(x) =p(x) —(p(x)), (2)

where (Q) indicates the expectation value of an
operator () with respect to the ground (Fermi vacuum)
state of the electron system. This ground state? is a
Heisenberg state of the electron system in the absence
of radiation fields [1]. Units are such that A=c=1
and the metric is kx=k - r—|k[t if the four vectors
are given by k= (k, |k|) and x= (r,t).

Since the charge correlation in eq (1) is defined
by the Fermi vacuum expectation value of the system
of electrons per se, one can proceed via the standard
approach for many interacting electron problems to
calculate it. In particular, we use Schwinger’s action
principle [6] by adding an external c-number source
function to the Hamiltonian density of the electron
system. The Hamiltonian density due to the external
source, U (x), is given by

Hs(x)=U(x)P* (x)P(x), (3)

where {(x) is the electron field operator and i+ (x)
is its adjoint. Then the action principle gives

iS_él?T(zl))l: (TIQ ()Y (2)w(2)])

—(Q)) (P (2)y(2)) (4)

nces at the end of this paper.

! Figures in brackets indicate the literature ref
(. . .) must be replaced by an average

2 At finite temperatures, the ground state ave
over a grand canonical ensemble.
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where the variable, say 1, is short for x;=(r1, ¢1);
O (x) is any operator in the Heisenberg representation;
the symbol T [. . . .] implies the time ordering opera-
tion for fermions. The electron Green’s function is

defined by
G(12)=(—i) (T[YyQ)y*(2)]) . ()

From this, the vacuum expectation value of the electron
charge operator, p (x),is given by

(p(1)) = (P (14)ypQ)) =(=i)6(L 1), (6)

where 1, indicates the four vector (ry, t; +0).
If we substitute (6) into (4), we obtain

. .8 {p()) 8G(1,1,)
S12)=i =@y — wEe)

(T[Ap(1)-Ap(2)]) . (D

This quantity is a causal Green’s function, while the
quantity in eq (1) is merely a time correlation. These
two are, of course, different functions. However,
there is a definite mathematical relation between'
them in the spectral representation [7, 8], provided
that translational time invariance holds. In our electron
system, this invariance holds since the total Hamilton-
ian of the electron system is thought of as being time
independent.

At absolute zero,? the spectral relationship between
the time correlation and the causal function is given by

(Ap(1)Ap(2))w=—2Im[(=i)(T[Ap(1)Ap(2)])u],
®)

where (. . .), implies the spectral intensity (the
Fourier transform using a basis of exp [ —iw(t1—t2)])
of the function (. . .), and the symbol Im denotes
“the imaginary part of”’. Since the differential cross
section, eq (1), contains the quantity given by eq
(8), we now study the properties of the causal function
eq (7).

The electron system which we are dealing with must
represent that of a real crystal. In such a system
translational invariance may not hold for spatial
coordinates. Therefore we deal with quantities,
such as eq (7), as they are written, in terms of space-
time coordinates; but not in terms of their Fourier
transform until we reach the very end. The electron
Green’s function, G(12), satisfies the electron Green’s
function equation:

G-1(11)6(12) =G(A1)G-1(12) =8(12), (9

where the convention for integrations applies to the
repeated variables with a bar. The vertex function for
electron-electron interaction (not a radiation part)
is defined by

G-1(12)

re(12: 3) =2 - (10)

The quantity G-! can be given in terms of the total
average potential, ¥(1), of the system and the self-
energy operator 2(12):

G-1(12) = [i%+%+§ Zwe(1, Ry) +%’f]8(12)
—V(1) §(12) —3(12), (11)
and
V(1)=UQ1)—iv.(11)G(11,), (12)

where R, denotes the position of the nucleus n,
Zn |e| is the charge of the nth nucleus, v, is the instan-
taneous Coulomb interaction, and &; is the Fermi
energy. The self energy operator ¥ is given by

> (12)=—iv.(11)G(12) Iy (22; 14).

The time ordered product of Ap has been connected
to the variational derivative of the electron Green’s
function by eq (7). In terms of the vertex function,
eq (10), we can write

13)

S(12)=:16(11)I'y(12;2)G(21,). (14)
This expression provides a way of calculating the
charge correlation from eq (7). However, there is
another way [9] to express it, emphasizing the dynamic
properties of interacting electrons. Such dynamic
properties of electrons can be characterized by a
generalized dielectric or inverse dielectric function
of the system, which represents the true response of
the system, including the dynamic screening effect

of electron interactions. The inverse dielectric function
can be defined by

oy V(1)
€ (12)—8U(2) (15)
Then we obtain
S(12)=P(11ye1(12), (16)

where P is the irreducible polarization propagator
[9, 10]. This propagator is now given in terms of a new
dressed vertex function I' by

P(12)=i CAT)T (12; 2)G (21, ), a7)
where
r(12: 3) = 8G-1(12) 18
’ 57 (3) (18)
3 At finite temperatures, the right-hand side of eq (8) should be multiplied by the following
factor
flw.T) SRR S 8’
e “1+mexp [~ o/kT) )
where T is absolute temperature, k is Boltzmann’s constant and 7 is —1 for fermions.
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We have thus calculated the causal function S (12)
originally defined by eq (7). We have also found that
the spectral intensity of the time correlation is related
to that of the causal function by relation (8). Since the
differential cross section (1-a) is given by the Fourier
transform of the electron charge time-correlation, it
is now possible to calculate the differential cross
section (1-a) from the causal function S(12) through
eq (16). We write the double Fourier transform of
function F' (12) as follows:

F(]2)=fg—;_)(2d—7l;_‘)13(—il:—§3F (ki, ks w) (19)
exp [ikir; —ikers —iw (6 —t2)].
In terms of these Fourier transforms, eq (8) gives
N (ki, ko; ) =—2 Im S (ky, ke; o), (20)

where N (k;, ke; w) is the Fourier transform of the
charge correlation (Ap(x)Ap(y)). It is convenient
at this stage to introduce two experimental variables.
One is the momentum transfer k which is given by
both the energy (or wave-length \;;) of the incoming
x rays and the scattering angle . The other is the
energy transfer £ which is the energy loss of the out-
going x rays. These quantities are defined by
k=k —k'; || = (47/\y) sin (6/2) (21)
and
E=|k|—|K'|. (22)
Then the differential cross section (1-a) is rewritten
in terms of the double Fourier transform of the charge
correlation, N(k, k, E) as

€€ )ZfdtN(K, Kk, E). (23)

It should be noted that the differential cross section
defined by (1-a) is the total transition probability
instead of the customary transition probability per
unit time (i.e., rate). As seen from (23), the customary
transition rate & (k, E') is given by the integrand of eq
(23) since the integrand turns out to be time
independent:
U(K,E)=fdt6-(K,E). (24)
Finally the customary differential cross section is given

via eq (20) by
0 (k,E)=(—2) C(kKk') (e€)?

Im [f (;ljrk)3P(K,E; E)e (k, K;E)],

(25)

where the Fourier transform of eq (16) is used to ex-
press S (k, K, E). This expression has been used to
calculate the inelastic scattering profiles at different
scattering angles in both the Hartree-Fock and the
random phase approximations [3, 4] .

As mentioned previously, the present formulation is
model-independent and also holds for real crystals.
In such crystals, periodic spatial translational invar-
iance may not hold, thus forbidding the use of a Fourier
series-integral expansion. As seen in the expression of
the differential cross section, the final result is given
by the double Fourier transforms of the physical quan-
tities. Even in the crystal with imperfect spatial trans-
lational invariance, one can always expand the nonlocal
functions by the double Fourier integrals as we have
shown here.

Another advantage of the present result is found in
its capability of separating, for instance, the core elec-
tron contribution from the valence electron contribu-
tion, thus filling in the gap between the modern x-ray
inelastic theory and the traditional Waller-Hartree
expression [11]. This separation can be done, because
the polarization propagator, P, can be expressed as a
sum of two terms: P = P.y. + Pyatence- 1t is also possible
to deal with the interaction of electrons in crystals
realistically through a proper decomposition of the P:
for iHStance’ B= Pdiau(mal + Pnondiuuonal-

As a final point, note that, substituting expression
(12) into (15), we obtain

e1(12)=8(12) +ve (11)S (12). (15")

The Coulomb potential, v.(12), is instantaneous and
a function of 1-2. Therefore, the Fourier transform
of ve can be diagonalized. Utilizing this property, one
may express the imaginary part of S (12) by that of
€1(12), like in an electron gas model.

References

[1] Kuriyama, M., Acta. Cryst. A27, 634 (1971).
[2] Noziéres, P., and Pines, D., Phys. Rev. 113, 1254 (1959).
[3] Cohen, G. G., Alexandropoulos, N. G., and Kuriyama, M.,
Solid State Comm. 10, 95 (1972).
[4] Alexandropoulos, N. G., Cohen, G. G. and Kuriyama, M., Phys.
Rev. Letters 33,699 (1974).
[5] Kuriyama, M., and Alexandropoulos, N.
Japan 31,561 (1971).
[6] Schwinger, J., Proc. Nat. Acad. Sci. 37, 452 and 455 (1951).
[7] Martin, P. C. and Schwinger, J., Phys. Rev. 115, 1342 (1959).
[8] Zubarev, D. N., Soviet Phys USPEKHI 3 No. 3, 320 (1960).
[9] Hedin, L., Phys. Rev. 139, A796 (1965).
[10] Engelsberg, S., and Platzman, P. M., Phys. Rev. 148, 103
(1966).
[11] Waller, I. and Hartree, D. R., Proc. Roy. Soc. A124,119 (1929).

G., J. Phys. Soc.

(Paper 79A2-847)

417



	jresv79An2p_415
	jresv79An2p_416
	jresv79An2p_417
	jresv79An2p_418

