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A form a l formul ation of the diffe re nti a l cross sec tio n fur x· ray ine las ti c sca tt e rin g is give n for a 
real so lid , in partic ul ar. in te rm s of th e po lariza tion propagator a nd th e inverse di e lec tri c fun c tion. 
Th e differential c ross sec tio n is re la te d tu the causa l fun c tiun s of e lec tron prope rti es rath e r than those 
re tard e d fun c tio ns. 
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A few years ago , the prese nt author formulal ed the 
diffe re ntial c ross sec tion for x-ray ine las ti c scatterin g 
in a unifi ed way such that core e lectrons as well as 
valence electrons were treated on a n equa l basi s [1].1 
This formulation aided explanation of the th e n un­
resolved x-ray Raman scattering proble m. In thi s 
paper, the differe ntial c ross section will be expressed 
in te rms of causal rather than reta rded fun ctions in 
mod el-inde pende nt form . Th e res ults are similar in 
form to th e Nozieres-Pines ' [2] results for an e lec tron 
gas in the di elec tri c formulation. 

Several res ults of thi s pape r have been re porte d 
prev ious ly or used separately in papers publishe d 
else wh ere [3 , 4]. It is, howeve r, des irable to prese nt 
the e ntire formulation in a sys te matic way, although 
the formulation is a trivial one to those who are familiar 
with Schwinger's many-body formulation and the s pec· 
tral function technique. 

In previou s papers [1 , 5] it was shown that the dif· 
ferential c ross section for x-ray inelastic scattering is 
given by the double four-dimensional Fourier transform 
of the electron charge (or c urrent) correlation: 

exp [-i(k-k')(x-y)], (1-a) 

where k and k' are the four-vectors consisti ng of the 
wave vectors and the energies of the inco ming and the 
outgoing photons, res pectively, and e and e' are their 
polarization directions. The quantity C (k, k') is defined 
by 

Th e [un c tion p(x) is the e lec tron c harge opera tor and 
tlp(x) is give n by 

tlp( x) = p(x) - (p(x), (2) 

where (Q) indica tes the expectation va lu e of an 
operator Q with res pect to the ground (Fe rmi vacuum) 
s tate of th e electron sys te m. This ground s tate 2 is a 
Heise nbe rg s tate of the e lectron sys te m in th e absence 
of radiation fields [1]. Units are s uc h that fi = c = 1 
and th e metri c is kx = k . r -Iklt if th e four vectors 
are given by k = (k, Ikl) and x = (I',t) . 

Since th e c harge correlation in eq (1) is defined 
by the Fermi vacuum expecta tion value of the sys te m 
of e lec tron s per se, one ca n proceed via th e standard 
approach for many inte rac tin g elec tron problems to 
calculate it. In particular, we use Schwin ge r' s action 
principle [6J by adding an ex te rnal c-number source 
function to the Hamiltonian de nsity of th e e lectron 
system. The Hamiltonian density due to th e ex te rnal 
source, U (x) , is given by 

ffts (x) = U (x) tjJ + (x) tjJ (x) , (3) 

where tjJ (x) is the electron field operator and tjJ + (x) 
is its adjoint. Then the action principle gives 

a (QOn 
au (2) 

(T[Q(l)tjJ+ (2)tjJ(2)J) 

- (Q(l) (4) 

C(k, k') = (27T) - 4(e2/m)2(kk') - I. 

I Fi " ures in brac kets indicat e the lit erature references at the e nd (If thi s pa pe r. 
2A t~finit c te mpe ratures. lhe ground Sla te average ( ... ) mus t be rep laced by a n ave rage 

over a grand ca nonical ense rnhlc. (I-b) 
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where the variable, say 1, is short for XI = (rl, tl); 
Q (x) is any operator in the Heisenberg representation; 
the symbol T [ .... ] implies the time ordering opera· 
tion for fermions. The electron Green's function IS 

defined by 

G(l2)=(-i) (T[tfJ(l)tfJ+(2)] >. (5) 

The quantity G - I can be given in terms of the total 
average potential, V(l), of the system and the self­
energy operator I(l2): 

G- I(l2) = [i~+ \}22(1) +L ZIIVC(l, Rn) + <?[]o(l2) 
atl m n 

- V(l) 8(l2) - I(l2), (11) 
From this, the vacuum expectation value of the electron 
charge operator, p (x), is given by and 

where 1 + indicates the four vector (rl, tl + 0). 
If we substitute (6) into (4), we obtain 

'S (12) == . 8 ( p (1 ) ) 
~ ~ 8U (2) 

8G(I,1+) 
8U (2) 

< T[ ~p (l) . ~p (2 )] ) . 

(6) 

(7) 

This quantity is a causal Green's function, while the 
quantity in eq (1) is merely a time correlation. These 
two are of course, different functions. Howeve_r, 
there is' a definite mathematical relation between: 
them in the spectral represe ntation [7, 8], provided 
that translational time invariance holds. In our electron 
system, this invariance holds since the total Hamilton­
ian of the electron system is thought of as being time 
independent. 

At absolute zero,3 the spectral relationship between 
the time correlation and the causal function is given by 

< ~p(l)~p (2»w = - 2Im[ ( - i) <T[~p(l)~p(2)] )w] , 

(8) 

where < .. . )w implies the spectral intensity (the 
Fourier transform using a basis of exp [ - iw (tl - t2)]) 
of the function <. . .), and the symbol 1m denotes 
"the imaginary part of'. Since the differential cross 
section, eq (1), contains the quantity given by eq 
(8), we now study the properties of the causal function 
eq (7). 

The electron system which we are dealing with must 
represent that of a real crystal. In such a system 
translational in variance may not hold for spatial 
coordinates. Therefore we deal with quantities, 
such as eq (7), as they are written, in terms of space­
time coordinates; but not in terms of their Fourier 
transform until we reach the very end. The electron 
Green's function , G(12), satisfies the electron Green's 
function equation: 

G- I(l1)G(12) =G(11)G - I(12) =8(12), (9) 

where the convention for integrations applies to the 
repeated variables with a bar. The vertex function for 
electron-electron interaction (not a radiation part) 
is defined by 

8G - I(l2) 
f u (l2;3)= oU(3) (10) 

V (1) = U (1) - ivc (11) G (11+ ), (12) 

where Rn denotes the position of the nucleus n 
Zn lei is the charge of the nth nucleus, Vc is the instan: 
taneous Coulomb interaction, and 'it[ is the Fermi 
energy. The self energy operator I is given by 

L (l2)=-i vc(lT)G(12)ru (22; 1+) . (13) 

The time ordered product of ~p has been connected 
to the variational derivative of the electron Green's 
function by eq (7). In terms of the vertex function, 
eq (10), we can write 

S(12)=i G(1T)ru (12; 2)G(21+). (14) 

This expression provides a way of calculating the 
charge correlation from eq (7). However, there is 
another way [9] to express it, emphasizing the dynamic 
properties of interacting electrons. Such dynamic 
properties of electrons can be characterized by a 
generalized dielectric or inverse dielectric function 
of the system, which represents the true response of 
the system, including the dynamic screening effect 
of electron interactions. The inverse dielectric function 
can be defined by 

-I (12) = 8V (1 ) . 
€ 8U (2) (15) 

Then we obtain 

S (12) =P (lT, €-I (12), (16) 

where P is the irreducible polarization propagator 
[9, 10]. This propagator is now given in terms of a new 
dressed vertex function f by 

P(l2)=i G(11)f(12; 2)G(21+), (17) 

where 

f (12' 3) = oG-1 (12) . 
, oV (3) (18) 

~ At finit e te mperatures . the ri ghl ·ha nd side of eq (8) s hould be multiplied by the following 
fac tor 

[ (w.n I 
1 + 1) e xp [ - w/k71 

18') 

whe re T is absolute te mperature. k is Boh zmann 's constant <H!d TJ is -I for fermiuns . 
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We have thus calculated the causal function 5 (12) 
originally defined by eq (7). We have also found that 
the spectral intensity of the time correlation is related 
to that of the causal function by relation (8). Since the 
differe ntial c ross section O-a) is given by the Fourier 
transform of the electron charge time-correlation it 
is now possible to calculate the differential cr~ss 
section (I-a) from the causal function 5 (12) through 
eq (16). We write the double Fourie r transform of 
function F (12) as follows: 

(19) 

In terms of these F ourier transform s , eq (8) gives 

where N (k" k z; w) is the Fourier transform of the 
charge correlation (L\p(x)L\p(y) . It is conve nient 
at this stage to introduce two experimental variables. 
One is the mome ntum transfer K which is give n by 
both the e nergy (or wave -length Ain) of the incoming 
x rays and the scattering angle O. The other is the 
energy tra nsfer E which is the e nergy loss of the out­
going x rays. These quantities are defin ed by 

1< = k - k' ; II<I = (47T/ Ain) s in (0/2) (21 ) 

and 
E = Ikl-Ik' i. (22) 

Then the differential cross section (I-a) is rewritten 
in t erms of the double Fourier transform of the charge 
correlation , N(I<, 1<, E) as 

a(k~k') = a(I<,£) = J 
C(k , k') (E' E')2 dt N (I<, I<;E). (23 ) 

It should be noted that the differential cross section 
? efined by (I-a) is the total transition probability 
Instead of the customary transition probability per 
unit time (i. e., rate). As seen from (23), the customary 
transition rate (j (I<, £) is given by the integrand of eq 
(23) since the integrand turns out to be time 
independe nt: J 

a(l<, E) = dt (j (1<,£). (24) 

Finally the customary differe ntial cross section is given 
via eq (20) by _ 

(j (I<,E) = ( - 2) C (kk') (E'E' )2 

[J cFk - - ] 1m (27T)3 P (I<, k ; E) € - l (k, 1<; E) , (25) 

where the Fourier transform of eq (16) is used to ex­
press 5 (I<, 1<, £). This expression has been used to 
calculate the inelastic scattering profil es at different 
scatte ring angles in both the Hartree-Fock and the 
random phase approxim ations [3 , 4] . 

As mentioned previously , the present formulation is 
model-independent and also holds for real crys tals. 
In such crystals , periodic spatial translational invar­
iance may not hold , thus forbidding the use of a F ourier 
series-integral expansion. As see n in the expression of 
the differential cross section, the fin al result is given 
by the double Fourier transforms of the physical quan­
tities. Even in the crystal with imperfect s patial trans­
lational invariance, one can always expand the nonlocal 
functions by the double F ourier integrals as we have 
shown here. 

Another advantage of the present result is found in 
its capability of separating, for instance , the core elec­
tron contribution from the valence electron contribu­
tion , thus fillin g in the gap between the modern x-ray 
inelasti c theory and the traditional Walle r-Hartree 
expressIon [ll]. This separation can be done, because 
the polarization propagator, P, can be expressed as a 
s um of two terms : P = P core + P valence ' It is also possible 
to deal with the interaction of electrons in cr ys tals 
realis ti call y through a proper decomposition of the P: 
for instance, P = P diagonal + P nond iagonal. 

As a final point , note that , substitutin g expression 
(12) into (15), we obtain 

c l (2 ) = 0 ( 2 ) +Vc (1 ) 5 (12). (15' ) 

The Coulomb pote ntial , Vc (2) , is instantaneous and 
a function of 1-2 . Therefore, the F ourier transform 
of Vc can be diagonalized. Utilizing thi s prope rty , one 
may express the im aginary part of 5 ( 2 ) by that of 
€ - I (2) , like in a n electron gas model. 
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