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This equation of state was developed from PVT compressibility data on methane and ethane. The
highly-constrained form originates on a given liquid-vapor coexistence boundary (described by equations
for the vapor pressures and the orthobaric densities). It then requires only five least-squares coeffi-
cients, and ensures a qualitatively correct behavior of the P (p, T') surface and of its derivatives, espe-
cially about the critical point. This nonanalytic equation yields a maximum in the specific heats C,(p, T)

at the critical point.
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Symbols and Units

Subsecripts ¢ and t refer to critical and liquid triple
points
Subscript @ refers to liquid-vapor coexistence

a, b, nonlinear constants in the equation’of state
B(p), density-dependent coefficients in the equa-
C(p) tion of state

Co(T), molal heat capacity for saturated liquid

Co(T), molal heat capacity for ideal gas states

C.(p.T), molal heat capacity at constant density

C,(p,T), molal heat capacity at constant pressure

d, density, mol/l

J, the Joule, 1 N-m

[ the liter, 10-3m?3

mol, 16.043 g of CH 4; 30.070 g of C,Hg, (C12
scale)

P, pressure in bars, 1 bar =105 N/m2, (1
atm=1.01325 bar)

Pa(p), the vapor pressure, bar

R, the gas constant, 8.31434 (J/mol)/K

R d|d;, density reduced at the liquid triple
point

o, d/d., density reduced at the critical point

T, temperautre, K, (IPTS—-1968)

To(p), temperature at liquid-vapor coexistence

0(p). defined locus of temperatures, figure 3

u(p,T), T/T,(p),temperature reduced at
coexistence

v, 1/d, molal volume, 1/mol

W (p,T), thespeed of sound

x(T), T|T., temperature reduced at the critical
point

x0(p), T,(p)|/T, reduced temperature at
coexistence

Z(P,p,T) Pv/RT,the “compressibility factor”

*This work at the National Bureau of Slumlard.; was supported by The American Gas
Association, 1515 Wilson Boulevard, Arlington, Va. 22209.
** Cryogenics Division, National Bureau of Standards, Boulder, Colo. 80302.
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1. Introduction

A problem of importance for the natural gas in-
dustry is the prediction of thermodynamic properties
of liquefied, multicomponent mixtures. For the wide
range of compositions encountered, it may be neces-
sary to utilize accurate properties of the pure com-
ponents. We therefore believe that it will be helpful
to have a relatively simple and rational equation of
state of identical form for each component, such as
the equation of state described below.

This equation originates on a given, liquid-vapor
coexistence boundary, thus eliminating the long-
standing problem of consistency between equations
of state and this independently-derived envelope
[26]. It ensures a maximum in the specific heats
C.(p,T) approaching the critical point, qualita-
tively consistent with experimental behavior near, but
not necessarily exactly at this pole [16], and it has
only five arbitrary, least-squares coefficients. Experi-
mental compressibility data for methane and ethane
have been used at densities to the triple-point liquid
density, temperatures to twice the critical, and
pressures to 350 bar or greater.

Our objective in the present report is to give a con-
cise description of this new type of equation of state
which, with full documentation, has been presented
in previous publications [14, 15].

For methane we have shown in [14] that an equation
similar to that described below vyields calculated
specific heats, C,(T), C,(p,T), C,(p,T), and speeds
of sound in acceptable agreement with experimental
data, without any weighting of the equation of state
to those data. In a current report on ethane [15]
we compute provisional thermodynamic and related
properties by means of the simpler equation of state
(1) described herein.

Symbols and units used here are given in a List.
Fixed-point values from [14, 15] are given in table 1.



For equation of state (1) the gas constant is
R =(0.0831434)- (d;) bar/K, consistent with use of
the dimensionless density, p = d/d,.

TABLE 1. Fixed-point values from [14, 15]
Triple point Methane Ethane

Density................ mol/l

Vapor.....coocooeeieiineann. 1.567 865102 1.35114-10-¢

Liquid.........cooooon 28.147 21.68
Temperature............. K. 90.680 89.899
Pressure............... bar 2 0.1174 35675 1.009 906-10->
Critical point

Density............. mol/l 10.0 6.74

Temperature...........K.. 190.555 305.37

Pressure.............. bar 45.988 48.755

4 Precision required for vapor-pressure equation.

Various methods for utilizing the equations of state
of pure components to derive properties of mixtures
are described in a number of recent publications, e.g.,

[1, 4a, 17, 18, 19, 20, 21, 21a, 22, 23, 24, 271.
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FIGURE 1.

2.

The locus of isochore inflection points.
The Equation of State

The P(p, T) surface and equations of state are
described in several reports, e.g., [6, 7, 10, 12, 14, 15,
20, 24, 28]. Figure 1 shows the qualitative behavior of
isochores as indicated by Rowlinson [20], needed to
give a calculated maximum in C,(p, T) at the critical
point via the isothermal computation —

AC,=—T- f " (92P[oT?) - dplp?. (a)
0

Figure 2 shows the well-known zero slope and
curvature of the critical isotherm at the critical point.
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This monotonic behavior (nonnegative slopes) is
difficult to achieve from equations of state, yet is very
important for such computations as —

Co(p, T)=Cy(p, T)+T- (3P/dT)?* (3P|3p)/p?, (b)
W(p, T)=[C,- (3Plap)/C,]"2. (c)
P\ (%P\ _
(E) _<ap2> =0

P —

FIGURE 2. Behavior of the critical isotherm.

The liquid-vapor envelope, T,(p), figure 3, is an
important boundary of the P(p, T) surface for the equa-
tion of state. We constrain the equation to this bound-
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FIGURE 3. Behavior of the locus 6(p).
Point C is the critical point, and T';(p) is the liquid-vapor coexistence envelope.



ary as follows, by use of the vapor pressures and the
coexistence temperatures T, (p) formulated in the
appendix.

For any density (isochore), obtain the coexistence
temperature from the function T,(p). Use this to
obtain the vapor pressure P,[T,(p)] as a function of
density, thus defining the equation of state at coexist-
ence. By subtraction one then obtains an equation of
the type of eq (1). The melting line is not a part of this
equation of state

P—P,(p) =pR-[T—Ts(p)] +p*RTF (p, T).
where,

F(p.T)=B(p)®(p, T)+C(p)¥(p,T). (1)

The functions B (p) and C)p) are polynomial coefhi-
cients to be found by least squares. The temperature-
dependent functions ®(p, T) and ¥ (p, T) must be
defined to be zero on the coexistence boundary at
T=T,(p), as shown by figures 4 and 5.

0 To(r) T —
FIGURE 4. Behavior of the function ®(p, T).
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FIGURE 5. Behavior of the function V(p, T).

Equation (1) has, in addition to pRT, only two tem-
perature-dependent functions, which is the minimum
number of functions (monotonic in T) needed to

describe the sigmoid shape of isochores in the density
range p. < p < 2:pe, figure 1.
The first of these functions is —

®(p, T)=x"Inlu(p,T)], (2)
where u(p, T) =T|T,(p). It is linear (92P/aT2=0)

everywhere on the coexistence boundary at u=1,
ficure 4. It therefore gives a critical isochore which is
linear at the critical point because C(p) =0 by defini-
tion along this isochore, eq (6).

The second of these functions, W(p,T), is defined
such that eq (1) will yield a maximum in the specific
heats C,(p,T) at the critical point via eq (a). We
first define the arguments —

w(p,T) =6 [T/0(p) —1].
ws(p) =8 [Ty(p)o(p) — 1],
where & is an arbitrary constant, and 6(p) is our

locus of temperatures inside the coexistence en-
velope, figure 3,

0(p) =Ty (p) ~exp [—a-f(o)]. 3)

The function f(o) here is normalized to unity at the
liquid triple-point density —

flo) =lo—1[3 (o —1)%,

where o, = d;/d.is a constant.
Function W (p, T') now is defined as the difference,

WV (p,T) =4 (p.T) =, (p), (4)
such that W= 0 at coexistence, T=T,(p). Component
functions, i (p, T'), are designed to give infinite curva-
ture (92/dT?) at the origin, w =0,

ll‘l(P’T) = [1 -~ w
lbrr(p) = [1 — Wy ln(l S l/w(r)]/x:r-

In(1+ 1/w)]/x, (4—a)

(4=b)

Figure 5 shows behavior of W (p,T). Sufficiently far
away from the critical point it behaves roughly like
1/T2, found in the well-known, Beattie-Bridgeman
equation of state.

Behavior of the coefficients B(p) and C(p) in eq
(1) is shown by figure 6 for methane. The following
polynomial representations have been developed
tediously by trial,

B(p) =By+Bi p+B,-p(1+b-p2, (5

Clp) = (o—=1) - (6d—=Co) - (C:+C:p). (6)

The sign of the curvature of isochores (92P/3T?2)
at the coexistence boundary is determined wuniquely

by the sign of C(p), figure 6, because ®(p,T) is linear



4.5
T T S\
o)
()
]
4.0 [— ° —
(]
[)
o)
8B = [0} —
o]
[}
+ o
~ 3.0 — [} -
S [o)
£H [}
[o}
[o} |
2.5 —
[o}
[o}
[o)
00
2.0 — oo
[}
°° | |
[}
1.5 L0 ! !
' l | l
000000
[5) [}
o) [o}
[} [o)
i [o} [}
:Q-.S = o) o}
() [o] [0}
[o) [0]
-1.0— o [o) —
o [o}
o] []
-1.5 — —
! I ! !

B/pe
FIGURE 6. Behavior of the coefficients B(p), C(p) for methane.

on this boundary. The rootin C(p) at c=1.9 was found
by least squares for methane and for ethane. It then
was introduced as the constant Cy in eq (6). This con-
straint is valuable because, under various conditions,
we often have failed to obtain any such root from
PVT data by least squares.

H,

Clp)—

e

1.0
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FIGURE 7. Presumed behavior of C(p) for hydrogen, reflecting
observed positive isochore curvatures in compressed liquid states at
the lowest temperatures [7].
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Figure 7 shows the presumed behavior of C(p) for
hydrogen, needed to give the observed positive curva-
ture of isochores in compressed liquid states at the
lowest temperatures [3, 7|. The behavior of figure 7
is described by a double root at Cy, e.g.,

C(p)

or without a root by —

C, - (cg—1) - (cd—Cy?2,

C(P):(O'_l) : (Cl+Cz'p+C3'l)2)-

Table 2 presents constants of eq (1) for methane and
ethane. Individual deviations of experimental PVT
data from eq (1) are given for ethane in [15]. For
methane with eq (1) they are comparable with those
obtained in [14] using nine least-squares coefficients.
Complete computer programs are reported in [15]
for adjusting the vapor-pressure equation, the ortho-
baric-densities equations, the coexistence-tempera-
tures equations, and the equation of state (1).

TABLE 2. Constants for equation of state (1)
Methane Ethane

a 2 2

b 1 1

) 1/2 1/2

Co 1.9 1.9

B, 1.5082 12989 1.8481 67996
B, 0.6544: 90304 1.5697 04511
B, 4.1320 82291 5.5601 86452
C, —0.7654 09076 —1.0428 42462
C, —0.0590 88717 +0.2249 78299
N 756 562

APIP, % 0.42 0.57

3. Comments on the Equation

Behavior of the critical isotherm from eq (1) at the
critical point is deduced as follows. The functions
P,[To(p)] and ® (p, T') depend directly upon T, (p),
which gives the overpowering factor exp [—y/|oc—1]]
for derivatives with respect to density at the critical
point, o =1. The function ¥(p, T) has a finite third
derivative because it depends also on 6(p), eq (3).
Its coefficient, C(p), however, is zero at the critical
density, eq (6). The first, second, and third derivatives
of eq (1) therefore are zero at the critical point.

Detailed examinations of this isotherm from eq (1)
show, however, that small variations in the assigned
(pes Te) critical point give small irregularities (nega-
tive slopes) nearby at o = 1. We find that, given an
accurate value of T., eq (1) serves to find the critical
density which yields a well-behaved critical isotherm
[15]. For methane and ethane the value of the critical
density obtained by this method is roughly 1 percent
lower than estimated by the conventional procedure
of extrapolating the rectilinear diameter to the critical



temperature [14, 15, 20|, but in each case falls within
bounds of uncertainty in published works.

loschore inflection points figure 1, calculated from
eq (1), are obtained as the difference of second deriv-
atives (versus 7T') from the functions composing
F(p, T). We therefore expect high sensitivity to the
analytical forms of ®(p, T') and W (p, T). Variations
of these forms might improve accuracy in representing
PVT data. In the following we describe two alternative
functions for W(p, T) from among many different
functions investigated both for ®(p, T) -and for
W(p, T). We then compare computed specific heats
obtained via these two forms in the modified equation
of state described below. Each of the following com-
ponent functions must be differenced, as indicated by
eq (4), to obtain W(p, T) for the equation of state. The
argument for each of the following functions is changed
=

w(p, T)=[1-0(p)/T].
In (7) the adjustable exponent is 1 <€ <2, and the
adjustable coefficient was selected by trial to be §=1/e,

Pa(p, T) =1— (0= w)/(1-5). (7

This function approaches zero at high temperatures
in proportion to 1/T2, as seen by expanding w¢. By
trial with methane and ethane PVT data, we found
€=3/2, and hence 0%,/dT? behaves like (1/w)'? on
approach to the origin, = 0.

In (8) we use the arbitrary constant 0 <& <1 to give
relative weighting to two terms behaving, respectively,
like 1/T and 1/T? at high temperatures,

Us(p, T)=8-(0/T)+(1—-8) [l—o+tw-In (w)].
(8)

The last term in (8) was explored for hydrogen [10].
Equation (8) can be simplified for computations. This
function gives d*3/dT? ~ (1/w) on approach to the
origin, w =0, similar to definition (4-a) above.

With above functions, we find that coefficients B,
and C; of eq (1) become nonsignificant for methane,
leaving an equation of state with only three arbitrary,
least-squares coefficients.

For computations on mixtures, the simplest possible
equation of state is desirable. We have modified (1)
such that it is suitable for corresponding-states adapta-
tions, by specifying that densities shall be reduced at
the critical point (hence R=0.0831434-d., bar/K),
and by introducing the critical pressure. The functions

®(p, T) and V(p, T) remain unchanged —
P—P,(p)=0R-[T—T,(p)]+Pc-0*F(p,T),

(1-A)
B((T)EB()+8102/(1+b(72), (S—A)
C(og)=Ci-(c—1) (c—Cy). (6-A)

Table 3 for methane gives the rms of relative density
deviations for authors in [14], corresponding to each
function Y (p, T') described above and, on the bottom
line, the mean of combined pressure deviations.
Tables 4 and 5 give the constants for eq (1-A), so that
it will be possible to compute specific heats.

TABLE 3. Methane density deviations, rms percent
Equation of state............. eq (1) eq (1-A)
Function Y(p, T')............ U, eq (4=a) | Un, eq (7) U3, eq (8)

Authors N
Virial eq, [14]......... 46 0.06 0.12 0.16
Douslin et al. [4]..... 171 .06 13 .10
NBS [14].......coone. 539 51 .60 .50
Mean AP /P, %... | 156 42 .46 45

TABLE 4. Constants for equation of state (1-A), using Y. (p,T),
eq (7)
Methane Ethane

b 1/8 1/8

@ 1/2 1/2

) 2/3 2/3

€ 3/2 3/2

By 1.9894 21671 2.2373 56347
B 0.7924 35706 0.9304 97491
Cy 1.9 1.9

€ —0.8309 40825 —1.0494 11810
N 756 562

AP[P,% 0.46 0.79

TABLE 5. Constants for equation of state (1-A), using Y3 (p.T).
eq (8)
Methane Ethane

b 1/8 1/8

« 1/2 2/3

b 1/3 1/2

B, 1.9794 55787 2.1805 54662
B, 0.8017 24817 0.9814 53571
Cy 1.9 1.9

C, —0.9465 70360 —1.3543 33999
N 756 562

APIP, % 0.45 0.75

The interaction specific heats (C,—C?) for methane
have been compared along the critical isochore, as com-
puted by equations (a) and (1-A), using the functions
Yo (p, T) and Yi3(p, T). Experimental behavior of spe-
cific heats suggests that these data should be described
very near the critical temperature by —

(Co—C) ~ (TIT—1), 9)



where exponent 0 < n < 1,and usually,0.05 <n <0.15,
[16].

F%gure 8 shows the computed results via y2(p, T'),
eq (7). Their qualitative behavior is correct, but they
cannot be represented by (9). Instead, they are
described accurately to 210 K by —

(C,—C% =15.1—18.0-(T/T.—1) /3, J/mol/K,
suggesting that they might become finite at the critical
temperature.

Using y3(p, T), eq (8), on the other hand, yields
results on the logarithmic plot of figure 9. The slope,
n=~1/3, is close to that observed for our experimental
oxygen specific heats [8].

We conclude that yi(p, T') gives too weak a curva-
ture to isochores from (1-A) approaching coexistence,
and that the forms {5 (p, T) and ¥3(p, T') may be pref-
erable, despite the logarithmic infinity in their first
derivatives versus T at the origin, w=0.

12

10

J/mol/K

(¢]
CV,

METHANE
bR

| 1

0
190 200

TEMPERATURE,

210

220 230

K

FIGURE 8. Computed interaction specific heats (Cy,— C°) of methane
along the critical isochore, via eq (1-A) and s> (p, T).
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FIGURE 9. Computed interaction specific heats (C,—C°%) of
methane along the critical isochore, via eq (1=A) and 3 (p, T).
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4. Conclusions

As argued above, the present equation of state
(1) is rational because we understand the purpose of
most of its component parts. Inclusion of the vapor
pressures and orthobaric densities in this equation
merely incorporates these physical properties which
almost invariably must be used for a consistent net-
work of thermodynamic functions, and eliminates
the long-standing problem of continuity at the co-
existence boundary [26].

We believe eq (1) to be valuable for thermal computa-
tions because it ensures an inherently correct be-
havior of the P(p,T) surface, giving a maximum in the
specific heats C,(p,T) at the critical poirt. The very
small number of arbitrary least-squares coefficients
(ive, and possibly only three) facilitates compari-
sons of the equation of state for different substances,
and may be attractive for work on mixtures.

We cannot expect eq (1) to represent some high-
precision PVT data as well as equations with a much
greater number of arbitrary constants. As the preci-
sion of “good” PVT data probably is often much bet-



ter than absolute accuracy, especially in the critical
region, it would appear to be a self-defeating exercise
to strive for the ultimate “representation” while ignor-
ing essential features of the P(p,T) surface. Any in-
accuracies in the given, liquid-vapor, P—p—T
boundary for eq (1), however, will be propagated along
calculated isochores because eq (1) originates on this
boundary.

Equation (1) almost certainly cannot be integrated
analytically to express derived properties in closed
form. It therefore would not be convenient for multi-
property analysis [2]. Equations amenable to in-
tegration, however, probably are not accurate in the
critical region, which influences a large fraction of
the P(p,T) surface. To some extent, this must create
a need for multiproperty analysis.

For methane with an equation of state similar to
eq (1), on the other hand, we have used a minimum of
specific heat data only to compute around the critical
point for high densities near the critical temperature
(fig. 3). In all other regions we computed specific heats
and speeds of sound “a priori” via ideal gas specific
heats and the equation of state, finding acceptable
agreement with experimental data. We concluded
that if such data do not exist experimentally, they could
be estimated via the present type of equation of state
for many but probably not all regions of the P(p,T)
surface [14].

5. Appendices
5.1. The Vapor Pressure Equation

The original form of our vapor pressure function [9]
is satisfactory for methane [14], but for ethane it has
been necessary to add the term d-x* [15]. Define the
argument —

2x(T)= QA—-T1,/T)/(1—-T./T.),
when the function is—

In(P/P))=ax+bx2+cx3+dxt+ex(1—x)%2
(5.1)
Table 6 presents the coefhicients.

TABLE 6. Constants for vapor-pressure equation (5.1)

Methane Ethane
a 4.7774 8580 10.7954 9166
b 1.7606 5363 8.3589 9001
c —0.5678 8894 —3.1149 0770
d 0.0 —0.6496 9799
e 1.3278 6231 6.0734 9549

The following expressions are constrained to the
boundaries, the triple- and critical points [15]. In each

5.2. The Orthobaric Densities

case the basic behavior is described by —

Y (p, T) = const.,

and polynomials are selected to represent small devia-
tions. For the saturated liquid, define the variables,

(L) = (T, F)(T.—T)),
y(p) = (p—pc)(pi—pc),
Y(p,T)= (y—x)/(x¢—x),

when the function is—
Y=a+bx23+4cx. (5.2)

For the saturated vapor, define the variables,

Il

x(T) = (T /T — V)T [Ty — 1),
y(p) = In(pc/p)/In(pc/pe)
Y(p,T) = (y —x)/(x* —x),

when the function is—

Y=Ai+ 3 4«5, (5.3)

i=2

Table 7 presents constants for (5.2) and (5.3).

TABLE 7. Constants for orthobaric densities equations

Methane Ethane

Saturated liquid densities, eq (5.2)

€ 0.36 0.33

a .8595 3758 .7219 0944
b .0243 6448 .2965 7790
& —.0268 5285 —.3003 6548

Saturated vapor densities, eq (5.3)

€ 0.41 0.39

A, 4171 4211 .2158 7515
A —.5194 9762 —.0852 2342
Ay 1.2077 7553 —.6152 3457
Ay —1.4613 0509 .2545 2490
A4; 0.5765 8540 1517 7230

5.3. The Coexistence Envelope, T, (p)

This envelope is shown by figure 3. For the equation
of state (1) we obtain the coexistence temperature for
any density from the following analytical descrip-
tions. If the coexistence density must be found at a
given temperature, it is obtained (for consistency in
the equation of state) from the following expressions
by iteration, using eqs (5.2) and (5.3) only to estimate
an initial density.

An important feature of the present formulations
[15]is that derivatives —

d"TO’/dp"

of all orders, n, are zero at o =1, the critical point.
We describe T, (p) in two parts, according as o = 1.



This simplifies constraint to the boundaries (liquid and
vapor triple points). For each range the dependent
variable is —

Y[T:(p)] = (TTe—1)(Tc/T—1),

and we use the following function, infinite at the critical
density

U(o) =—y[1/|loc—1|-1/|o—1]]

where o=d;/d. is a constant, and d; refers to vapor
or liquid at the triple point according as o S 1.

For the liquid range at o = 1 the equation is —

ln(Y)=U(0')+§5:Ai' (oi='al)h (5.4)

i=1
For extremely low densities in the vapor range at
o <1 we modify the above expression as follows.
Define the variable
W(o)=In(14+s/o)/In(1+s/o/),

where s is an arbitrary constant. Our equation for the
vapor range now is —

In(Y)=U(c) +Bo-In (W) +B, - ('3 —a)
i
+ By (g — o) + 3 B+ (0i-2— ai?).
i=3

(5.5)
Table 8 presents constants for (5.4) and (5.5)

TABLE 8. Constants for the T,(p) equations

Methane Ethane
Saturated liquid. eq (5.4)
Y 1/2 1/2
A, 11.4317 7230 23.7245 1840
A, —3.8765 9480 —14.8860 5161
As 0.5378 8326 5.4317 7443
A, .0 —1.0715 0566
A .0 0.0913 5183
Saturated vapor, eq (5.5)
s 1/4 1/4
By 0.9034 9557 0.8681 0517
B, .0 .0151 6978
B, .0 —.7296 0432
B; —.3834 4338 1.0096 5493
B, —3.9210 8638 —8.7340 2710
B; 6.2600 3837 21.1071 2823
Bs —9.3296 0083 —31.4499 4087
B; 5.6060 2816 17.8637 0397

Anneke L. Sengers emphasized to us some time ago
the importance of the critical region for the entire
equation of state, thus motivating present develop-
ments. In this laboratory, R. D. McCarty provided the
essential least-squares program, and we are indebted
to D. E. Diller and L. A. Weber for discussions and
valuable suggestions. The American Gas Association
very kindly has supported this work.
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