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This equation of s tate was de veloped from PVT c ompressibility data on m ethane and etha ne. The 
hi ghl y-co ns train e d form o ri gi na tes on a given liquid-vapor cuexiste nce boundary (desc ribed by equations 
fur th e vapor pressures a nd th e urthobar ic d e ns ities). It the n requires onl y five leas t-sq ua res coe ffi 
cient s . a nd e nsures a qualitatively correc t be havior uf th e P (p, T) s urface a nd of its de riv atives. es pe
cial ly abo ut the criti ca l po int. This nonanal ytic e quation yields a maximum in th e specifi c hea ts C,,(p, T ) 
a t th e criti cal point. 
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Symbols and Units 

Subscripts !2 and.!.. refe r to c riti ca l and liquid triple 
points 

Subscri pt q refe rs to Liquid-vapor coexiste nce 
a, b, [) nonlinea r co ns t.ants in the eq uat ion'of state 
8(p), de ns ity-de pe ndent coe ffi c ie nts in the equa-

C(p) tion of s tate 
Cer (T), molal heat ca pacity for saturated Liquid 
C~ (T), molal heat capac ity for ideal gas states 
C r (p , T) , molal heat capacity at co ns tant de nsity 
C,,(p ,T) , molal heat ca pac ity at constant pressure 
d, de nsitY , mol/l 
j, the Joule, l N-m 
l , the liter , 10 - 3 m 3 

mol, 16.043 g of CH 4 ; 30.070 g of C 2H(;, (C 12 

P, 

Per(p) , 
R, 
p, 

er, 
T, 
Ter(p) , 
() (p) , 
U(p, T), 

v, 
W(p ,T) , 
x (T), 

x" (p), 

Z(P,p ,T) 

scale) 
pressure in bars, 1 bar= 105 N/ m 2, (1 

atm = 1.01325 bar) 
the vapor press ure, bar 
the gas constant, 8.31434 (J/mol}/K 
did"~ de nsity reduced at the liquid triple 

point 
d/dc , density redu ced at the critical point 
te mpe ra utre, K, (IPTS-1968) 
te mperature at liquid-vapor coexistence 
defin ed locus of te mperatures, figure 3 
T/T (T (p), temperature reduced at 

coexistence 
l/d, molal volum e, l/mol 
the speed of sound 
T/Te, tem perature redu ced at the criti cal 

point 
T rr(P )/T e, redu ced te mperature at 

coexist ence 
Pv/RT, the "compress ibility fac tor" 

*This work a l the National Bureau of Stand ard~ was support ed by The American Cas 
Association. 1515 Wi lson Buule vard . Arlingto n, Va. 22209. 
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1. Introduction 

A proble m of im portance for the nat ural gas in 
dustry is th e prediction of thermodynamic properties 
of liquefi ed , m u Iti co m ponent mixtures. For t he wide 
range of co mpos iti ons enco untered , it may be neces
sary to utilize accurate prope rti es of th e pure co m
ponents. We the refo re be li eve that it will be helpfu l 
to hav e a re latively simple and rational eq ua ti on of 
state of ide ntical form for each co mpone nt , s uch as 
the equation of s ta te described below. 

This eq uation originates on a give n , liquid -vapo r 
coexiste nce boundary, thu s eliminating the long
s tanding problem of co nsiste ncy betwee n eq uations 
of s tate a nd thi s inde pende ntly-derived e nvelope 
[261. It ensures a maximum in the s pec ifi c heats 
Ct. (p,T) approaching th e c riti cal point, qualita
tively co nsis te nt with ex perime ntal behavior near, but 
not necessarily exac tly at thi s pole [161, and it has 
only fiv e arbitrary, leas t-sq uares coeffi cients. Experi
me ntal co mpressibility data for methan e and e than e 
have been used at densiti es to the triple-poi nt liquid 
density , te mperatures to twice the c riti cal, and 
pressures to 350 bar or greate r. 

Our objective in the present repo rt is to give a co n
cise desc ription of thi s new type of eq uation of s tate 
which , with full docume ntation, has been presente d 
in previous publications [14 , 15J. 

For me thane we have show n in [141 tha t a n equation 
similar to that described below yields calculated 
specifi c heats, C(J"(T), Cv(p,T), Cp(p,T), and speeds 
of sound in acceptable agreement with experim ental 
data , without any weighting of the e quation of state 
to those data. In a c urrent re port on e thane [15J 
we co mpute provisional thermod ynamic and related 
properties by means of th e simpler equation of stat e 
(1) described herein. 

Symbols and units used here are given in a List. 
Fixed-point values from [14, 15] are given in table 1. 



For equation of state (1) the gas constant IS 

R ;= (0.0831434)· (d t ) bar/K, consistent with use of 
the dimensionless density, p ;= d/d t• 

TABLE 1. Fixed·point values from [14,15] 

Triple point 

Densit y ................ mol/I.. 

Vapor ............. . ......... . 
Liquid ...................... . 

Te mperature ............. K .. 

Methane 

1.567 865.10 - 2 

28.147 
90.680 

Ethane 

1.35114'10 - 6 

21.68 
89.899 

Pressure ............... bar" .. 0.1174 35675 1.009 906.10 - 5 

Critical point 

Density ............. mol/l.. 
Temperature ........ . K .. 
Pressure ............. bar.. 

10.0 
190.555 

45.988 

6.74 
305.37 

48.755 

a Precision required for vapor-pressure equation. 

Various methods for utilizing the equations of state 
of pure components to derive properties of mixtures 
are described in a number of recent publications, e.g., 
[1 , 4a, 17, 18, 19, 20,21, 21a, 22, 23,24,271. 

Tc T-

FIG URE 1. The locus of isochore inflection points. 

2. The Equation of State 

The P(p, T) surface and equations of state are 
described in several reports, e.g., [6,7,10,12,14,15, 
20, 24, 28J. Figure 1 shows the qualitative behavior of 
isochores as indicated by Rowlinson [20J, needed to 
give a calculated maximum in C v (p, T) at the critical 
point via the isothermal co m putation-

(a) 

Figure 2 shows the well-known zero slope and 
curvature of the critical isotherm at the critical point. 
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This monotonic behavior (nonnegative slopes) is 
difficult to achieve from equations of state, yet is very 
important for such computations as-

W(p, T) = [Cpo (ap/ap)/Cv] 1/2. 

I 
I 
I 
I 
I 
I 
I 
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Pc p-

FIGURE 2. Bp.havior of the critical isother",. 

The liquid-vapor envelope , T ()" (p), figure 3, is an 
important boundary of the P(p, T) surface for the equa
tion of state. We constrain the equation to this bound-
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FIGURE 3. Behavior of the locus O(p). 

D 

Point C is the criti ca l po int. a nd Tu( p ) is the liquid-va pur coexis te nce e nvelope. 



ary as follows, by use of the vapor pressures and the 
coexiste nce te mpe ratures T" (p) formulated in the 
appendix. 

For any density (isochore), obtain the coexiste nce 
te mperature from the fun ction T,,(p) . Use this to 
obtain the vapor pressure P,,[T,,(p)] as a function of 
density , thus defining the equation of state a t coexis t
ence. By subtraction one then obtains an equation of 
the type of eq (1) . The melting lin e is not a part of thi s 
equation of s tate 

wh ere, 

F(p , T) == B(p)'CP(p , T)+C(p)''I'(p , T). (1) 

The fun ction s B (p) and C)p) are polynomial coeffi
cie nts to be found by leas t squares. Th e te mpe rature· 
dependent functions cP (p , T) and 'I' (p, T) must be 
defin ed to be zero on the coexis tence boundary at 
T = Ta(P) , as s hown by fi gures 4 and 5. 

..... 

>8<0 

o T-

FIGURE 4. Behavior oJtheJunction <J:>(p, T). 

FIGURE 5. Behavior oj the Junction "' (p, T). 

Equation (1) has, in addition to pR T, only two tem· 
perature-dependent fun ctions, which is the minimum 
number of functions (monotoni c in T) needed to 
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describe the sigmoid shape of isochores in the de nsity 
range pc < p < 2·pc, figure 1. 

The first of these functions is-

<t> (p, T) == x ' /2 'ln [u(p , T)], (2) 

where u(p, T) == T/ T,,(p) . It is linear (a 2cp/ap = O) 
e verywhere on the coexiste nce boundary at u = 1, 
figure 4. It therefore gives a criti cal isochore whic h is 
linear at the cri tical point because C(p) = 0 by de fini
tion along this isochore, eq (6). 

The second of th ese functions, 'I'(p , T) , is defin ed 
suc h that eq (1) wiU yield a maximum in the specific 
heats Cv(p,T) at the cri ti cal point via eq (a). We 
first define the arguments-

W(p,T) == o· [T/ fJ(p) -1]. 

wa(p) == o· [T,,(p) /(}(p) -1 ] , 

where 0 is an arbitrary constant , and fJ (p) is ou r 
locus of tempe ratures in side the coex iste nce e n· 
velope , figure 3, 

fJ(p) == T,,(p) . exp [-ex ·f(u) ]. (3) 

The function feu) here is normalized to unity a t the 
liquid triple-point density-

where u, == d,/dc is a cons tant. 
Function 'I' (p, T) now is defined as the difference, 

'I'(p ,T) == tf;(p,T) -tf;,,(p) , (4) 

such that 'I' = ° at coexisten ce, T = T" (p). Com pone nt 
functions , tf; (p , T) , are designed to give infinite c urva
ture (a 2tf;/ap) at the origin, w = O, 

tf;,(p ,T) == [1- W 'In(1 + l/w)] /x , (4-a) 

tf;rr(P) == [1- Wrr . In(l + l /wrr )]/x". (4-b) 

Figure 5 shows behavior of 'I' (p , T). Sufficie ntly far 
away from the critical point it behaves roughly like 
1/T2, found in the well-known , Beattie-Bridge man 
equation of state. 

Behavior of the coefficients B(p) and C(p) in eq 
(1) is shown by figure 6 for methane. The following 
polynomial re presentations have been developed 
tediously by trial , 

C (p) == (u - 1) . (u - Co) . (C 1 + C 2 • p) . (6) 

The sign of the curvature of isochores (a 2p/ap) 
at the coexistence boundary is determined uniquely 
by the sign of C (p) , figure 6, because <t> (p, T) is linear 
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FIGURE 6. Behavior of th.e coefficients B (p) , C(p) for methane. 

on this boundary. The root in C (p) at (T = 1. 9 was found 
by least squares for methane and for ethane. It then 
was introduced as the constant Co in eq (6). This con 
straint is valuable because, under various conditions, 
we often have failed to obtain any such root from 
PVT data by least squares. 

~ O t----------~------~~~------~ 
<.> 

o 1.0 

FIGURE 7. Presumed behavior of C(p) Jor h ydrogen , reflecting 
observed positive isoch.ore curvatures in compressed liquid states a.t 
the lowest temperatures [7 1. 
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Figure 7 shows the presumed behavior of C(p) for 
hydrogen, needed to give the observed positive curva
ture of isochores in compressed liquid states at the 
lowest temperatures [3, 7J. The behavior of figure 7 
is described by a double root at Co, e. g., 

C(p) =C)' ((T-l)' ((T-C o)2, 

or without a root by-

Table 2 presents constants of eq (1) for methane and 
ethane. Individual deviations of expe rimental PVT 
data from eq (1) are given for ethane in [ISJ. For 
methane with eq (1) they are comparable with those 
obtained in [14] using nine least-squares coefficients. 
Complete computer programs are reported in [151 
for adjusting the vapor-pressure equation, the ortho
baric-densities equations, the coexistence-tempera
tures equations, and the equation of state (1). 

TABLE 2. Constants for equation oj state (J) 

Methane Elhane 

ex 2 2 
b 1 1 
8 1/2 1/2 
Co 1.9 1.9 

Bo 1.5082 12989 1.8481 67996 
B, 0.6544 90304 1. 5697 04511 
B2 4.1320 82291 5.5601 86452 

C, -0.7654 09076 - 1. 0428 42462 
C2 -0.0590 88717 + 0.2249 78299 

N 756 562 
t:J.PIP , % 0.42 0.57 

3. Comments on the Equation 

Behavior of the criti cal isotherm from eq (1) at the 
critical point is deduced as follows. The functions 
P(J'[T(T(p)] and <I> (p, T) depend directly upon T" (p), 
which gives the overpowering factor exp [- y/l (T -11 ] 
for derivatives with respect to density at the critical 
point, (T= 1. The function 'I'(p , T) has a finite third 
derivative because it depends also on () (p), eq (3). 
Its coefficient, C (p), however, is zero at the critical 
density, eq (6). The first, second, and third derivatives 
of eq (1) th erefore are zero at the critical point. 

Detailed examinations of this isotherm from eq (1) 
show, however, that small variations in the assigned 
(Pc, Te) critical point give small irregularities (nega
tive slopes) nearby at (J' § 1. We find that, given an 
accurate value of Te , eq (1) serves to find the critical 
density which yields a well-behaved critical isotherm 
[15]. For methane and ethane the value of the critical 
density obtained by this method is roughly 1 percent 
lower than estimated by the conventional procedure 
of extrapolating the rectilinear diameter to the critical 



tempe rature [14, 15, 20], but in each case falls within 
bounds of un certainty in published works . 

Ioschore inAection points figure 1, calc ulated from 
eq (1), are obtaine d as the diffe rence of second deriv· 
atives (vers us T) from the fun ctions co mposing 
F(p, T). We th er efore expect high sensitivity to th e 
analytical form s of ct>(p, T) and \)f(p , T). Variations 
of these form s might improve accuracy in re prese nting 
PVT data. In the following we desc ribe two a lte rnative 
fun c tions for \)f(p, T) from among many different 
fun ctions investi gate d both for ct> (p , T)' and for 
"'(p , T). We the n compare co mputed specific heats 
obtained via th ese two forms in the modified equation 
of state d esc ribed be low. Each of the following com· 
ponent fun ction s must be diffe re nced, as indicated by 
eq (4), to obtai n \)f(p , T) for the equation of state. The 
a rgument for each of the followin g fun c tions is changed 
to -

w(p , T) == [l-8(p) IT]. 

Table 3 for me thane gives th e rms of relative density 
de viations for authors in [14], corresponding to each 
function t/J (p, T) d escribed above and, on the bottom 
line, the mean of combined pressure d eviation s . 
Tables 4 and 5 giv e the co ns tants for eq (I-A) , so that 
it will be poss ible to co mpute s pec ific hea ts. 

TABLE 3. Methane density deviations . rillS percent 

Equation of s ta te ... eq (1) e q (I-A) 

Fun ction <p(P. T) ... . .... <Ph eq (4-a) <p" e q (7) <p", e q (8) 

Authors N 

Vi rial eq . [141 ... ...... 46 0.06 0.12 0.16 
Dou slin e t aL [41 . .... 171 .06 .13 .10 
NBS [141 .. .... ........ 539 .51 .60 .50 

Me an tlP/? % .. 756 .42 .46 .45 

TABLE 4. Co nstants for equation of state (I - A). using <p,(p,T). 

In (7) the adjustable expon e nt is 1 < E < 2, and th e eq (7) 

adjustable coefficient was selected by tri a l to be 0= l iE, 

t/J2(P, T) == 1 - (w - o·w')/(I-o). (7) 

This fun c tion approaches zero at high te mp'e ratures 
in proportion to IIT2, as seen by expanding w' . By 
trial with methan e a nd eth a ne PVT data , we found 
E= 3/2, and he nce a2 t/J2la p be haves like (I/w) 1/2 on 
approach to the origin , w = O. 

In (8) we use the arbitrary co nstant 0 ~ 0 ~ 1 to gi ve 
relative we ighting to two te rms be ha vin g, respective ly, 
like lIT and liP at hi gh te mpe ratures, 

t/J3(P , T) == 0·(81T) +(l-0) ·[1 - w+ w·ln (w)). 
(8) 

The last t e rm in (8) was ex plored for hydroge n [10]. 
Equation (8) can be simplified for co mputations. Thi s 
function gives a2t/J3la p - (l/w) on approach to the 
origin, w = 0, si milar to de finition (4-a) above . 

With ab ove fun ction s, we find th at coefficients B I 
and C 2 of eq (1) become nonsignificant for methane, 
leaving an equation of s tate with only three arbitrary, 
leas t-squares coefficie nts . 

For computations on mixtures, the simplest possible 
equation of state is desirable. We have modified (1) 
s uch that it is s uitable for corresponding-states adapta
tion s, by s pecifyin g that de nsities shall be reduced at 
the c ritical point (he nce R = 0.0831434' dc, bar/K), 
a nd by introducing th e criti cal pressure. The fun ctions 
<p(p , T) and \)f(p , T) remain un chan ged-

P-Pfr( p) = rJR · [T-TO'(p)] +Pc·rJ2.F(p , T) , 

(I-A) 

(5 - A) 

C(rJ) == C I · (rJ-I)' (rJ - Co). (6-A) 

7S 

Meth a ne Ethane 

b 1/8 1/8 
a 1/2 1/2 
Il 2/3 2/3 
E 3/2 3/2 

80 1.9894 21671 2.2373 56347 
8, 0.7924 35706 0.9304 97491 

Co 1.9 1.9 
C, - 0.8309 40825 - 1.0494 11810 

N 756 562 
tlP/p. % 0.46 0.79 

T AB LE 5. Constants f or equation of sta te (i - A), /l.sing <p" (p , T ) , 
eq (8) 

Meth ane E t ha ne 

b 1/8 1/8 
a 1/2 2/3 
Il 1/3 1/2 

8 0 1. 9794 55787 2. 1805 54662 
8 , 0.8017 24817 0. 9814 53571 

Co 1.9 1.9 
C, - 0.9465 70360 - 1.3543 33999 

N 756 562 
tlP/? % 0.45 0.75 

The inte rac tion s pec ifi c heats (C,. - Cn for me than e 
have bee n co mpared along the c riti cal isoc hore, as co m
puted by equations (a) and (I-A), usin g th e fun c tions 
t/J2(P, T) and t/J3(P , T). Experimental b ehavior of spe
c ifi c heats s ugges ts that these data should be d escrib ed 
very near the c ritical te mperature by-

(9) 



where exponent 0 < n < 1, and usually, 0.05 ~ n ~ 0.15 , 
[16] . 

Figure 8 shows the computed results via !fJz( p, T), 
eq (7). Their qualitative behavior is correct, but they 
cannot be represented by (9). Instead , they are 
described accurately to 210 K by-

(Cv -C~) = 15.1-I8.0·(T /Tc- I) 1/ 3, ] /mol/K, 
suggesting that they might become finite at the critical 
temperature. 

o 
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u 

Using !fJ3(P, T), eq (8), on the other hand, yields 
results on the logarithmic plot of figure 9. The slope, 
n = 1/3, is close to that observed for our experimental 
oxygen specific heats [8]. 

We conclude that o/z(p, T) gives too weak a curva· 
ture to isochores from (I-A) approaching coexistence, 
and that the forms 0/1 (p, T) and I/13(P, T) may be pref· 
erable, despite the logarithmic infinity in their first 
derivatives versus T at the origin, w=O. 
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FIGURE 8. Computed interaction specific heats (C" - C~) of methane 
along the critical isochore, via eq (I-A) and 1/12 (p, T). 
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4. Conclusions 

As argued above, the present equation of state 
(1) is rational because we understand the purpose of 
most of its component parts. Inclusion of the vapor 
pressures and orthobaric densities in this equation 
merely incorporates these physical properties which 
almost invariably must be used for a consistent net
work of thermodynamic functions, and eliminates 
the long-standing problem of continuity at the co
existence boundary [26]. 

We believe eq (1) to be valuable for thermal computa
tions because it ensures an inherently correct be
havior of the pep, T) surface, giving a maximum in the 
specific heats Cv(p,T) at the critical poipt. The very 
small number of arbitrary least-squares coefficients 
(five, and possibly only three) facilitates compari
sons of the equation of state for different substances, 
and may be attractive for work on mixtures. 

FIGURE 9. Computed interaction specific heats (C" - C~) of 
methane along the critical isochore, via eq (I-A) and 1/13 (p, T). 

We cannot expect eq (1) to represent some high
precision PVT data as well as equations with a much 
greater number of arbitrary constants. As the preci
sion of "good" PVT data probably is often much bet-
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ter than absolute accuracy, especially in the critical 
region, it would appear to be a self-defeating exercise 
to strive for the ultimate "representation" while ignor
ing essential features of the P (p, T) surface _ Any in
accurac ies in the given, liquid-vapor, P-p-T 
boundary for eq (1), however, will be propagated along 
calculated isochores because eq (1) originates on this 
boundary. 

Equation (1) almost certainly cannot be integrated 
analytically to express deri ved properties in closed 
form. It therefore would not be convenient for multi
property analysis [2] . Equations amenable to in
tegration, however, probably are not accurate in the 
critical region, which influences a large fraction of 
the pep, T) surface. To some extent, this must create 
a need for multi property analysis. 

For methane with an equatio n of state similar to 
eq (1), on the other hand, we have used a minimum of 
specifi c heat data only to compute around the critical 
point for high densities near the critical temperature 
(fig. 3). In a ll other regions we co mputed specific heats 
and speeds of sound "a priori" via ideal gas specifi c 
heats and the equation of s tate, finding acceptable 
agreement with experimental data. We concl uded 
that if such data do not exist experime ntally , they could 
be estimated via the present type of equation of state 
for many but probably not all regions of the P (p, T) 
surface [14]. 

5 . Appendices 

5 .1. The Vapor Pressure Equation 

The or iginal form of our vapor pressure function [9] 
is satisfactory for methane [14], but for ethane it has 
been necessary to add the term d'x 4 [15]. Define the 
argument-

x(T) == (l-T,/T)/(I-T,/Tc )' 

when the function is-

In (P/P,) = a'x+ b'x2 + c'x3 + d'x4 + e'x ' 0- X)3 /2 . 

(5.1) 
Table 6 presents the coefficients. 

TABLE 6. Constants for vapor-pressure equation (5.1) 

Methane Ethane 

a 4.7774 8580 10.7954 9166 
b 1.7606 5363 8.3589 9001 
c - 0.5678 8894 -3.1149 0770 
d 0.0 - 0.6496 9799 
e 1.3278 6231 6.0734 9549 

5 .2. The Orthobaric Densities 

The following expressions are constrained to the 
boundaries, the triple- and criti cal points [15]. In each 
case the basic behavior is described by-

Yep, T) =const., 
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and polynomials are selected to re pre'se nt small devia
tions. For the saturated liquid, define the variables , 

x(T) == (Tc-T)/(Tc-T,), 

yep) == (p-Pc)/(p'-Pc), 

Yep, T) == (y-x)/(x'-x), 

when the function is-

Y= a+b·x 2/ 3 +c·x. 

For the saturated vapor , de fine the variables , 

x(T) == (Tc/T-I)/(Tc/TI-I), 

yep) == In (pc/p)/ln (PC/PI) 

Y(p , T) == (y-x)/(x'-x), 

when the fun ction is-

5 

Y=A, + L Ai' Xi /3. 

i = 2 

Table 7 presents co nstants for (5.2) and (5.3). 

TABLE 7. Constants for orthobaric densities equ.ations 

€ 

a 
b 
c 

€ 

Al 
A2 
A3 
A. 
A, 

Methane Ethane 

Saturated liquid densities , eq (5.2) 

0.36 
.8595 3758 
.0243 6448 

-.0268 5285 

0.33 
.7219 0944 
.2965 7790 

- .3003 6548 

Saturated vapor densities, eq (5.3) 

0.41 0.39 
.4171 4211 .2158 7515 

-.5194 9762 -.0852 2342 
1.2077 7553 - .6152 3457 

-1.4613 0509 .2545 2490 
0.5765 8540 .1517 7230 

5.3. The Coexistence Envelope, Tu (p) 

(5.2) 

(5 .3) 

This envelope is shown by fi gure 3. For the equation 
of state (1) we obtain the coex is te nce te mperature for 
any density from the following analytical descrip
tions. If the coexistence de nsity must be found at a 
given temperature , it is obtained (for co nsistency in 
the equation of state) fro m the followin g ex pressions 
by iteration, using eqs (5.2) and (5.3) only to esti mate 
an initial density. 

An important feature of the present formulations 
[15] is that derivatives-

dnTu/dp" 

of all orders, n, are zero at u= 1 , the critical point. 
We describe T (f (p) in two parts , according as u § 1. 



This simplifies constraint to the boundaries (liquid and 
vapor triple points). For each range the dependent 
variable is-

and we use the following function, infinite at the critical 
density 

where U-t= dr/de is a constant, and dt refers to vapor 
or liquid at the triple point according as u- § l. 

For the liquid range at u- ~ 1 the equation is-

5 

In (Y) = U(u-) + L Ai . (u- i - u-n· (5.4) 
i = 1 

For extremely low densities in the vapor range at 
u- ~ 1 we modify the above expression as follows. 
Define the variable 

W(u-) == In (l + s/u-)/ln (l + s/U-t) , 

where s is an arbitrary constant. Our equation for the 
vapor range now is-

7 

+ B2 . ((T2 /3 - U-~ /3) + L Bi . (U- i - 2 - U-; - 2). 
i = 3 

(5.5) 
Table 8 presents constants for (5.4) and (5 .5) 

TABLE 8. Constants for the T <Y(p) equations 

Methane Ethane 

Saturated liquid . eq (5.4) 

y 1/2 1/2 
A, 11.4317 7230 23.7245 1840 
A2 -3.8765 9480 -14.8860 5161 
A3 0.5378 8326 5.4317 7443 
A4 .0 -1.0715 0566 
A" .0 0.0913 5183 

Saturated vapor, eq (5.5) 

s 1/4 1/4 
Bo 0.9034 9557 0.8681 0517 
B, .0 . 0151 6978 
B2 .0 -.7296 0432 
B3 -.3834 4338 1.0096 5493 

B, -3.9210 8638 -8.7340 2710 
B5 6.2600 3837 21.1071 2823 
B. -9.3296 0083 -31.4499 4087 
B, 5.6060 2816 17 .8637 0397 
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Anneke L. Sengers emphasized to us some time ago 
the importance of the critical region for the entire 
equation of state, thus motivating present develop
ments. In this laboratory, R. D. McCarty provided the 
essential least-squares program, and we are indebted 
to D. E. Diller and L. A. Weber for discussions and 
valuable suggestions. The American Gas Associati on 
very kindly has supported this work. 
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