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A finit e class of s ke w matrices can b e assoc ia ted via " principal pivot s" with a sel f-cilial lin ea r 
syst e m . G ive n a row ind ex h , it is known th a t th e re is a s kew matrix in tllP class with nonnega tive 
11th row. Using thi s Hsaddlepoint th e ore m." we prove a s imilar res ult for nOllposilivc row s. All ope n 
qu estion is whe th e r s u c h a c lass of s ke w m a trices co nt a in s on e with both a nonn ega tive row and a 
nonpos itive row. W e s how that thi s " doubl e saddl e point propert y" hold s ('or a rbitraril y large dege ne rat e 
cases a nd ('or a ll s kew matrices of s mall order. 

Key words: Combinaturial equivalence; lin ea r in e qu a liti es; lillear progra m s: piv()t ope rat ion s; s ke w· 
sy mm e try . 

A finit e class of skew matri ces can be associated with a se lf-dual lin ea r sys te m. It is knuwn 
[1 ,2 11 tha t each such class contains one or more ske w matri ces with one type of "saddle poinL" 
a sign configuration consistin g of a nonn egative row and co rres ponding nun positive co lumn. Using 
thi s saddle point theore m, we prove a simi lar re s ult with th e reverse sign patte rn. 

An open question is wh e ther such a class of matrices co ntain s a skew matrix that simulta
neously ex hibits both a nonnegative row and a non positive row. W e ca n prove that thi s "double 
saddlepoint" property does hold for skew matrices of s mall order and for arbitrarily large finit e 
dege ne rate cases, but the ge ne ral problem remains un so lved. 

1. P-Pivots and the First Saddlepoint Theorem 

Dual sys tems of linear eq uations can be represented in th e followin g tableau format of Tu c ke r 

[51: 

VI • • • Vn v 

XI all • • • °ln =-ul 

• • • • 
• • M • or X • M = - U. 
• • • • 

xm ami • • • °mn = -um 

=YI • • • =y m = y 

A~'I S Subj(·(· t Clas!" ifiI'Cl tion : IS ,U9. ISA2L 
* Thi s \\ork was cumpldt·d wh il( · the a lllh"r \\lIS a Na liunal J\cad" lll v of S d encf's·.\' alilillal H('s t'a rc h COllnc il I'II .... td'l('llfral /{t ·sl'an·h A ... ~o('iatt· at Iht. '\]a ti tl llll i 

Bureall of Sta ndards. Wa~hin J!ton. f) ,C. Thi ~ p'l\lt" l" is d(,d i('a lf ,d 10 Professor .\. W. TtI("kn 011 Ih" occasioll of hi s n'lin'lllt'lll ffllm I) r i ll!" t"l o n L nivn..; il). 

1 Fil--(tll"es ill hrack t,t~ ilHli("alt' t ilt' lil l ' rattll'( ' 1"I.f( 'rt' Il("('~ at til l' l'IHI ,If thi s palWr. 
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Here X, Y , UT and VT are row vectors. The tableau simultaneously represents the column system 
XM = Y and the row system MV = -U. The systems are always dual in the sense of orthogonality, 
for 

XU+ YV=X (-MV) + (XM)V=O. 

Since this paper is concerned with the sign patterns in matrices , we necessarily allow variables 
and coefficients to take values only in an ordered field. The symbols $ and e respectively denote 
nonnegative and non positive elements. 

DEFINITION 1: An n X n matrix A is skew when A =_AT. 
Throughout this paper A denotes a skew matrix of order n. Over an ordered field the diagonal 

entries of A must hp, zero. The tableau of A is written a s follows: 

x A 

= y 
By negative transposition it is clear th at any solution (X, Y) to the column system XA = Y is also a 
row solution (Y, X) to AX T=-P' and conversely. Hence each of the linear systems is self-dual 

because X and Y must be orthogonal. 

DEFINI TION 2: A principal pair pivot or P-pivot in (the tableau of) a self.duallinear system is a 
simultaneous exchange of variables Xi with Yi and Xj with Yj. provided aij = - aji "'" 0, while leaving 
the remaining variables fixed . 

The P-pivot involves solving the ith column (row) equation for Xj and the jth equation for 
Xi, substituting the resulting expressions into the remaining equations. At the same time there 
occurs a (principal) permutation that exchanges row i with row j and column i with column j while 
fixing the remaining rows and columns. 

We say that we P-pivot on aij, aji in the matrix A. For aij "'" O. this operation yields another 
skew matrix A with the self-dual solution (X, Y) to X£1 = Y such that Xi = Yi, Xj= Yj, Yi= Xi, Yj = Xj 
and for all k "'" i, j we have x" = x,., y,,= YI •. The new. skew matrix A is given by the following entries 
(recall that i "'" j) : 

iiij=-a ~-I. 
I) 

for k"", i, j and h"", i, j. 

iit/=O for all t. 
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Checking the above formulae requires only straightforward algebraic manipula tions. 
Schematically. a P-pivot or seque nce of P-pivots correspond s to inversion of a nonsinguJar 

principal sub matrix of A and the a ppropriate extensions to the rest of A : 

S -I A-I S A, I 
P-p ivot 

> 

o _ST A-' , 0+ ST A-'S , 

A principal permutation places the non s ingular subma trix A 1 in the upper corne l'. 

EXAMPLE: In this 4 X 4 self-dua l tableau we show a P-pi vot on the starred e ntri es: 

XI X2 X3 x4 Y, '12 X3 X4 

X, 0 r* =-'1, Y, 0 -1* -I = - X, 

X2 -," 0 -I =-Y2 P-pivot '12 1* 0 = -X2 
< ~ 

X3 -I 0 - I =-Y3 X3 -I -I 0 -3 =-'13 

X4 -I -I 0 =-'14 X4 -I 3 0 =-Y4. 

=y, = '12 ='13 ='14 = X, = X2 = '13 = '14 

Sample solution: (X. Y) = (xt, x~, X:lo XI, Ylo y~, Y:I, Y-t) = 0, 0, - 1, 0,1,0,1,2)_ 
(X.Y)=(YI.Y~.X:I.XI,XI,X~'Y:I.Y-t)=(XI" . - ,xt,Yt,· _ .. YI). 

P-pivots preserve both skewsymmetry and solut ion sets_ The new tableau has the same solu
tion set as the original one in the sense that values assigned to the variab les in one tableau will 
hold for the same variables in the other one even though their positions may have changed_ 

From a given skew matrix of order Il, only a finite number of skew matrices can be obtained 
by a sequence of P-pivots [1. Theorem 2.2: 2, Theorem 2]_ Such matrices are in fact a subset of 
Tucker's "combinatorial equivalence class" [4: for the given matrix. and they are called P-pivot 
t ra Ilsforms. 

DEFINITlO,," 3: A nontrivial solution (X, Y) of XA =Y is elemelltary if the only other nontrivial 
solutions having the same zero components as (X, Y) are of the form (kX, kY) for scalars k 0/= O. 

DEFINITION 4: A zero saddlepoint of type (1) in a matrix is a sign configuration consisting of a 
nonnegative row and a non positive column. 

THEORE'VI 1: (First Saddlepoint Theorem) Gil'pn a skel(, lIlatrix A of order n (lnd (lTI illdex h. 
I ~ h ~ n. there exists a f/ollllegatilP 1'11'1II f' f/t(Jl '.1 sollltion of X/'.,,= Y slIch that Xli + Yh > 0. alld there 
exists a sloP/(' matrix A 1('17ich is a I)-Ilirot transform of A aTld slIch that alii ~ ° for all j. 1 ~ j ~ n. 

Theorem 1 says the existt'IJ('C of a type (1) saddlepoint occurs simultaripously with a non-
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negative elementary solution and gives the theorem its name. Since the proof of Theorem 1 is pre
sented elsewhere in full detail [1, Theorem 4.2; 2, Theorem 3], we omit it here. 

2. The Second Saddlepoint Theorem 

A result related to Theorem 1 is the following [1 , Theore m 3.1]: 

THEOREM 2: Let A be a skew matrix of order n. By a finite sequence of P-pivots outside the first 
row and column of A we can obtain a skew matrix A with either a nonnegative first row or a non
negative row whose first column entry is positive_ Schematically, we obtain one of the following: 

0 EB . . . Ea • -
e • e . 

• • · • • 

· or • • 
+ ffi • • • 0 . . • EB 

• . .. • • 
• · • e e • 

Theorem 2 can be generalized to P-pivots outside any given row and the corresponding col
umn. Hence the first row and column can be considered the "distinguished" ones without loss of 
generality. 

DEFINITION 5: A zero saddlepoint of type (2) in a matrix is a sign configuration consisting of a 
nonpositive row and a nonnegative column. 

THEOREM 3: Let A be a skew matrix of order n and let h be an index , 1 ~ h ~ n. By afinite sequence 
of P-pivots outside the hth row and column of A we can obtain a skew matrix A with either a non
positive hth row or a row in which the hth column entry is negative and every other entry is non
negative_ 

Schematically, we obtain one of the following for h= 1: 

0 e . . . G . +* 
e . e . • 

· . · • · · or * e 0 e - . . • . . . . · · . · . 
· · G) e . 

A P-pivot on the starred entries in the second alternative yields a saddlepoint of type (2) in the dis
tinguished row and column. 
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PROOF: Given the skew matrix A, form th e skew matrix B by multiplying the distinguished row 
and corresponding column of A by -1, leaving the rest of A unchanged. A P-pivot on aij, aji outside 
the distinguished row and column of A corresponds to a P-pivot on bij, bji in B. From the formulae 
following Definition 2 we can easily obtain th e entries of the P-pivot transform Bin terms of the cor
responding entries of A. When h is the index for the distinguished row and column, alii = - b/,( and 
atl, =-b tl, for all t, 1 ~ t ~ n. Otherwise ah'( = btu. He nce B = A except for the distinguished row and 
column, where b'lI =-a/II and btl, =-ii(" for all t. 

Thus the same sequence of P-pivots outside a distinguished row and column in A that produces 
a saddlepoint of type (1) will produce a saddlepoint of type (2) in the corresponding matrix Band 
vice versa. Equivalently, we may observe that the following diagram is "commutative": 

Multiply hth row 
and column by -1. 

A 

B 

P-pivots outside 

hth row and column. 

P-pivots outside 

hth row and column. 

(Same pivot choices as above.) 

Multiply hth row 
and column by -1. 

Combining these observations with the general form of Theorem 2 proves the theorem. 
To obtain an analog of Theorem 1 we need to obtain a type of solution whose existence is 

equivalent to having a type (2) saddlepoint. 

DEFINITION 6: A onenegative solution in a self-dual tableau is a solution (X, Y) to XA = Y having 
precisely one negative component. 

DEFINITION 7: A complementary solution in a self-dual tableau is a solution (X, Y) to XA = Y such 
that XiY; = 0 for each i, 1 ~ i ~ n. 

REMARK: A onenegative complementary solution (X, Y) to XA = Y is of the form: 

Xj + Yj < 0 for one index j. 

Xi+Yi~O fori#j,l~i ~ n. 

XjYi=O for each i, 1 ~ i ~ n. 

Multiplying the hth row and column entries in the matrix of a self-dual tableau by - 1 changes 
the sign of the left-hand sides of the hth row and column equations and of the coefficients of x" 
in the remaining equations. Hence the original system may be preserved by simultaneously changing 
the signs of Y" and x". Thus any nonnegative complementary solution associated with A would 
become onenegati ve when associated with the corresponding B; and conversely a one negative 
complementary solution with x" + Y" < 0 would become nonnegative. With the additional observa
tion that any nonn egative solution of XA = Y must be compl~mentary, we have proved the follow

ing res ult. 2 

2 I am indebted to Dr. A. J. C~,ldrnall for slIl,!:gesling this me thud of prunf. 
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THEOREM 4: (Second Saddlepoint Theorem) Given a skew matrix A of order n and an index h, 
1 ~ h ~ n, there exists a onenegative complementary solution of XA = Y such that Xh + Yh < 0, 
and there exists a skew matrix A which is a P-pivot transform of A and such that ahi ~ 0 for all 
j, 1 ~ j ~ n. 

Theorem 4 can also be proved independently in a fashion similar to a proof of Theorem 1 [2J. 
The First and Second Saddlepoint Theorems are logically equivalent. 

3. A Double Saddlepoint Problem 

One question that naturally arises is whether any skew A has a P-pivot transform A having 
saddlepoints of both types (1) and (2). One may even ask whether every skew A has a P-pivot 
transform with a "double saddlepoint." 

CONJECTURE: If A is a skew matrix of order n, then there exists a P·pivot transform A of A having 
both a nonnegative row and a non positive row. 

A single row of zeros will satisfy the conjecture. It is proved below for arbitrarily large degen
erate cases (Theorem 5) and in general for n ~ 5 (Theorem 6). 

THEOREM 5: If a skew matrix A of order n can be transformed by a finite number ofP-pivots into 
a skew matrix with a saddlepoint of type (1) having more than one zero entry in the nonnegative row, 
then A satisfies the Conjecture. 

PROOF: By Theorem 1, we can always obtain a P-pivot transform with a nonnegative row 
from a given skew matrix A of order n. If the nonnegative row is all zero, there is nothing to prove. 
Hence assume the nonnegative row has at least two zero entries and at least one positive entry. 
By a principal permutation we obtain: 

0 0-- -0 + - . -+ 
0 t • -AI-· • 

~ 0 
-
· 
• 

· -
where A 1 is a nonempty k X k principal skew submatrix of A, 1 ~ k < n. (The inverse permutation 
can always be applied later.) By Theorem 4 we can reach a saddle point of type (2) in A 1 by a finite 
number of P-pivots in A 1 (i.e., P-pivots in A with pivot entries chosen only from A I)' Noting that P
pivots inAI do not affect the first row ot column of A, we obtain: 
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0 0 • • ·0 + • • • + b, • • • bt 

0 • $ 
• • • .. 

• e· ·0 · · • • • e c, . • · c t 
• • • 

0 
. • • 

- • . 
• • • • • • . 
- EB • 

-b, -c, . 
• · • 
• · • · · . 

-bt -Ct • 

where bj , Cj > 0 for 1 :s; i :s; t. If the collection of b's and c's is empty, there is nothing left to do. 
Otherwise P·pivot on bj, -b j where cj/bj = mp (c;/b i ) to reach the desired form. 

L 

To prove the Conjecture for skew matrices of order n :s; 5, two lemmas will be helpful. 

LEMMA 1: If a skew matrix A of order n > 1 can be transformed by a finite number of P-pivots 
into a skew matrix with a nontrivial nonnegative row, and if some positive entry au in that row 
LS distinguished by being the only positive entry in its column, then A satisfies the Conjecture. 

PROOF: P-pivot in the nonnegative row and nonpositive column on the distinguished positive 
and negative entries aij, aji to reach the desired form. 

LEMMA 2: Suppose a skew matrix A of order n > 1 can be transformed by a finite number of P
pivots into a skew matrix with a nontrivial nonnegative ith row containing ajj > O. If there exists 
another entry akj in the jth column which, except for ajj , is the sole positive entry in the kth row 
and jth column, then A satisfies the Conjecture. 

PROOF: P-pivot on ai), aji to reach the desired form. 

THEOREM 6: If A is a skew matrix of order n :s; 5, then A has a P-pivot transform A with both a 
nonnegative row and a nonpositive row. 

PROOF: For n = 1 and n = 2 the theorem is clearly true since the only possibilities are [Q] and 

o o e 
or 

e o o 

By Theorem 1, we need consider only those cases for n = 3 where we already have a nonnegative 
row. The two possibilities are: 
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o o 

e o or e o e 

e e o e o 

wit!t arrows indicating the desired rows. 
For n = 4 we apply Theorems 1 and 5, leaving only the eight cases having a nonnegative row 

with only one zero entry: 

( I) ,...--------. ~ (2) 
o + + + ~ 0 

o G) G) -
e 0 E9 -

e e 0 ~ -

(4) o + 
o 
e 

+ + 
e 

~ (5) 0 

o 

+ + 0 

+ + 
0 EB 

+ 
EB 

~ (3) 0 + 
o 

+ + 
E9 

e 0 e + 0 €a 

e €a 0 e e 0 ~ 

+ + + ~ (6) 0 + 
o ~ 0 

+ 0 G) 

+ e 0 + 

+ + 
+ 
o + 

o 

(7) 0 + 

o 
+ + 

(8) r--------, 

0++ + ~ 
+ o ~ 

+ 0 + 0 

+ 0 + + 0 

The first five cases and case (8) already possess the desired form, and the remaining cases (6) 
and (7) satisfy Lemma 2. 

For n = 5, application of Theorems 1 and 5 again limit the cases to be considered. Lemma 1 
eliminates other possibilities, narrowing the choices to the following nine sign patterns: 
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(I) 
0+*+ 

(2) 
o +*+ 

(3) 
++ ++ 0 + + +1f" + 

_.1.,0 + + -*0 + e - 0 + - e 
0 + 0++ - - 0 + -

+ oe + 0 -* + - 0+ 
+~O e +0 - e + -0 

(4) 
0++ +"*+ 

(5) 
o +*+ 

(6) 
0+ +*+ + ++ 

-0+ e -*0 + + - 0 + 
oe+ o+e -* 0 ++ 

-*+ eo + 0 + oe 
-e - + 0 EB+O + eO 

(7) 
0+ +*+ + 

(8) 
0+ + +*+ 

(9) 0 + + + +* 
- 0 + -0 + - - - 0 + - -
-* 0 + + - - 0 +e - - 0 e+ 

+ 0 -*+ - 0+ - + E9 0 -
+ + 0 - + e -0 -*+ - +0 

By Lemma 2, P-pivots on the starred entries will yield a double saddle point in each case. 

4. Applications 

The First and Second Saddle point Theorems have many appli cations in the theory of dual linear 
systems and related topics. Both theorems are logically equivalent to Tucker's Skew-Symmetric 
Matrix Theorem [1, Theorem 5.1; 2, Corollary 1]. From this result the main theorems of linear pro
gramming can be elegantly derived [1, Chapter 8]. Other applications include the theory of matrix 
games [1, Chapter 6] and classical theorems of Gordan, Stiemke, Farkas and von Neumann on 
linear inequalities [1, Chapter 9]. 

In view of these applications of the First and Second Saddlepoint Theorems, their ge neraliza
tion to the Double Saddlepoint Conjecture can he expected to have interesting consequences. One 
consequence of the proved degenerate case of the Conjecture is presented below. Although the 
Conjecture is still unproved in the general nondegenerate case, a recent undergraduate project at 
Princeton under the direction of Tucker has examined the P-pivot classes of 100 randomly
generated skew matrices of orders 6 to 10 and has yielded no counterexample. 3 

Theorem 5, which shows the existence of a double saddlepoint for skew matrices if one of the 
single saddle points has an off-diagonal zero, will now be shown to have a surprising consequence 
for simple pivots in rectangular matrices. 

:1 Pe rson a l communication from Professor Tuc ker. 
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DEFINITION 8: Let M be an m X n matrix over an ordered field with the tableau 

v 

x M =-u . 

=y 

A simple pivot or S-pivot in (the tableau of) the dual linear systems XM = Y and MV = - U is a 
simultaneous exchange of variables Xi with Yj and Ui with Vj, provided mij OP 0, while leaving the 
remaining variables fixed. 

Schematically, for p = mij OP 0: 

• • Vj • • • V 

x· I . • p . q 

• • 
• • 

X • 0 r s . 

o 0 • • = y • 

o 

Yj 

5- pivot 
E ~ • 

=-u X 

o • Uj 

-=, op 

o V • 

o 0 

• 

-I -, 
~ . -r Po. 0 s -rp q . • 

• 0 =x~ • • = y • o 

o 

o 

=-U 
• 
• • 

THEOREM 7: Given any rectangular matrix M over an ordered field, by a finite number of simple 
pivots in M we can reach a matrix M having either a nonnegative row and a nonpositive row, or a 
nonnegative column and a nonpositive column, or a row and column of the same sign. 

Schematically, Theorem 7 says we can reach one of the following: 

(I)~---"" 

~. ·e 
e . e 

(2),....----e e 
• 

e 

(3) ,....--~--..., 

e . 

- -

Note that the presence of a trivial row or column immediately gives us (1) or (2). 

(4) ,....--~e-.... 
e . . . e 

e 

PROOF: Given M, form an expanded skew tableau with - MT and blocks of zeros: 

-
0 M 

p- pivots 
0 M 

< '> 
(without the 

-MT 0 permutat ions) _MT 0 
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If M has only one row or column, it is already in form (1), (2), (3) or (4), so assume M has at least 
two rows and two columns. 

By Theorem 1, a finite sequence of P-pivots in the expanded tableau yields a type (1) saddle
point. If for each P-pivot we perform the inverse permutation , then M will remain in the upper 
right-hand corn er, as though the P-pivot did not include a permutation. Such modified P-pivots 
correspond to pairs of S-pivots on mij in M and -mji in _MT. Moreover, pivots in M or in _MT 
preserve the blocks of zeros. He nce by Theorem 5 we can repeatedly P-pivot in th e expanded 
tableau (S-pivot in M , _MT) to reach a double saddlepoint. 

If both rows of opposite sign appear in M, then we have form (1) in M. If both rows appear 
in -MT, then we have reached (2) in M. One row in M and the other in _MT yields (3) or (4) in M, 
proving the theorem. 

From its form it appears that Theorem 7 may lead to further results in the theories of positive 
semidefinite quadratic programs and of bimatrix games. 
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