JOURNAL OF RESEARCH of the National Bureau of Standards – B. Mathematical Sciences Vol. 78B, No. 4, October–December 1974

The Field of Values and Spectra of Positive Definite Multiples*

Charles R. Johnson**

Institute for Basic Standards, National Bureau of Standards, Washington, D.C. 20234

(September 11, 1974)

Suppose $0 \neq \lambda \epsilon C$ and $A \epsilon M_n(C)$. We show constructively that λ is an eigenvalue of HA for some $H^* = H > 0$ if and only if $\lambda = x^*Ax$ for some $x \epsilon C^n$. The characterization of H-stable matrices is then an easy corollary.

Key words: Eigenvalues; field of values; H-stable; positive definite matrix; spectrum.

Let $\sigma(A)$ denote the set of all eigenvalues of $A \in M_n(C)$, the *n* by *n* complex matrices, and let

$$F(A) \equiv \{x^*Ax : x \in C^n, x^*x = 1\},\$$

the "field of values" of A.

In [1, 2, 4] ¹ the *H*-stable matrices were characterized. (*A* matrix $A \in M_n(C)$ is called *H*-stable if $\lambda \in \sigma(HA)$ implies $\operatorname{Re}(\lambda) > 0$ for all $H^* = H > 0$.) The simplest version of the characterization is that *A* is *H*-stable if and only if *A* is nonsingular and $\lambda \in F(A)$ implies $\operatorname{Re}(\lambda) > 0$ or $\lambda = 0$. In this note we give a simple characterization of those $\lambda \in \sigma(HA)$ for some $H^* = H > 0$ and the theorem on *H*-stability, for example, is an easy corollary. The characterization is constructive in that a specific class of positive definite matrices *H* for which $\lambda \in \sigma(HA)$ is produced. Let $\Sigma \equiv \{H \in M_n(C): H^* = H > 0\}$.

We first make two observations:

(1) $0\epsilon\sigma(HA)$ for some $H\epsilon\Sigma$ if and only if $0\epsilon\sigma(KA)$ for all $K\epsilon\Sigma$ if and only if $0\epsilon\sigma(A)$;

(2) if $H = BB^*$, B nonsingular, then $\sigma(HA) = \sigma(B^*AB)$. THEOREM 1: Suppose $0 \neq \lambda \epsilon C$. Then the following are equivalent for $A \epsilon M_n(C)$:

- (i) $\lambda = \mathbf{x}^* \mathbf{A} \mathbf{x}, \mathbf{x} \boldsymbol{\epsilon} \mathbf{C}^n$;
- (ii) $\lambda \epsilon \sigma$ (HA) for some H $\epsilon \Sigma$; and
- (iii) $\lambda \epsilon \sigma(B^*AB)$ for some nonsingular $B \epsilon M_n(C)$.

PROOF: Since $H \epsilon \Sigma$ if and only if $H = BB^*$ for some nonsingular $B \epsilon M_n(C)$, it is clear from observation (2) that (ii) and (iii) are equivalent. To show that (iii) implies (i) suppose $\lambda \epsilon \sigma (B^*AB)$ with associated eigenvector y of length 1. Then $\lambda = y^*(B^*AB)y = (By)^*A(By) = x^*Ax$ for x = By. Conversely suppose $x^*Ax = \lambda$. Then $x \neq 0$ since $\lambda \neq 0$ and we let B_1 be any nonsingular matrix

AMS Subject Classification: 15A18, 15A57, 15A63, 93D05.

^{*}A portion of this work was done while the author was a National Academy of Sciences-National Research Council Postdoctoral Research Associate at the National Bureau of Standards. Washington, D.C. 20234. **An invited paper. Present address: Institute for Fluid Dynamics and Applied Mathematics. University of Maryland, College Park, Md. 20742.

¹Figures in brackets indicate the literature references at the end of this paper.

in $M_n(C)$ whose first column is x. Then the 1, 1 entry of $B_1^* A B_1$ is λ . Let v be the vector formed by the remaining n-1 entries of the first row of $B_1^* A B_1$ and, in turn, $-z = \frac{1}{\lambda} v$. Then

$$B_2 = \begin{bmatrix} 1 & z \\ 0 & I \end{bmatrix}$$

is nonsingular and $B_2^*(B_1^*AB_1)B_2$

so that $\lambda \epsilon \sigma(B^*AB)$, where $B = B_1B_2$ is nonsingular which completes the proof.

Let *R* denote the real field. In the same manner as theorem 1 we may also prove: THEOREM 1': Suppose $0 \neq \lambda \epsilon R$. Then the following are equivalent for $A \epsilon M_n(R)$:

- (i') $\lambda = \mathbf{x}^{\mathrm{T}} \mathbf{A} \mathbf{x}, \mathbf{x} \boldsymbol{\epsilon} \mathbf{R}^{\mathrm{n}}$.
- (ii') $\lambda \epsilon \sigma(HA)$ for some $H \epsilon \Sigma \cap M_n(R)$; and
- (iii') $\lambda \epsilon \sigma (B^{T}AB)$ for some nonsingular $B \epsilon M_{n}(R)$.

We may exploit the above construction to give an explicit $H\epsilon\Sigma$ such that $0 \neq \lambda\epsilon\sigma(HA)$ assuming that $A = (a_{ij})$ and $x = (x_1, \ldots, x_n)$ such that $x^*Ax = \lambda$ are given. We assume without loss of generality that $x_1 \neq 0$ and define

$$B_{1} \equiv \begin{bmatrix} x_{1} & 0 \\ x_{2} \\ \vdots \\ x_{n} \end{bmatrix} , B_{2} \equiv \begin{bmatrix} 1 & -\frac{1}{\lambda} \sum_{i} \bar{x}_{i} a_{i2}, \dots, \frac{1}{\lambda} \sum_{i} \bar{x}_{i} a_{in} \\ 0 & I \end{bmatrix}$$

Then $B = B_1 B_2$ is nonsingular and $H = B_1 B_2 B_2^* B_1^* \epsilon \Sigma$ with $\lambda \epsilon \sigma$ (*HA*).

Let \mathcal{P} denote the open right half-plane and we have:

COROLLARY: $A \in M_n(C)$ is H-stable if and only if A is nonsingular and $F(A) \subset \mathcal{P} \cup \{0\}$.

PROOF: Suppose A is H-stable. Then A is nonsingular and, since (ii) implies (i) in theorem 1, it follows that $F(A) \subset \mathcal{P} \cup \{0\}$. Suppose, alternatively, that $\lambda \epsilon F(A)$ and $\lambda \epsilon \mathcal{P} \cup \{0\}$. Then $Re(\lambda) \ge 0$ and $\lambda \epsilon \sigma(HA)$ for some $H \epsilon \Sigma$. Thus A is not H-stable which completes the proof.

We close by mentioning a result parallel to theorem 1 which is proved elsewhere [3]. Let Γ denote an arbitrary open unbounded angular sector of the complex plane comprising less than 180 degrees. We then have

THEOREM 2: The matrix $A \in M_n(C)$ may be written as A = HB where $H \in \Sigma$ and $F(B) \subset \Gamma$ if and only if $\sigma(A) \subset \Gamma$.

References

- [1] Carlson, D., A new criterion for H-stability of complex matrices, Lin. Alg. and Appl. 1, 59-64 (1968).
- [2] Carlson, D., and Schneider, H., Inertia theorems for matrices: the semidefinite case, J. Math. Anal. Appl. 6, 430-446 (1963).
- [3] Johnson, C., A Lyapunov Theorem for Angular Cones, J. Res. Nat. Bur. Stand. (U.S.), 78B (Math. Sci.), No. 1, 7-10 (Jan.-Mar. 1974).
- [4] Ostrowski, A., and Schneider, H., Some theorems on the inertia of general matrices, J. Math. Anal. Appl. 4, 72-84 (1962).

(Paper 78B4-414)