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A finite class of skew matrices can be associated via “principal pivots”™ with a self-dual linear
system. Given a row index h, it is known that there is a skew matrix in the class with nonnegative
hth row. Using this “saddlepoint theorem,” we prove a similar result for nonpositive rows. An open
question is whether such a class of skew matrices contains one with both a nonnegative row and a
nonpositive row. We show that this “double saddlepoint property’ holds for arbitrarily large degenerate
cases and for all skew matrices of small order.
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A finite class of skew matrices can be associated with a self-dual linear system. It is known
[1, 2]' that each such class contains one or more skew matrices with one type of “saddlepoint,”
a sign configuration consisting of a nonnegative row and corresponding nonpositive column. Using
this saddlepoint theorem, we prove a similar result with the reverse sign pattern.

An open question is whether such a class of matrices contains a skew matrix that simulta-
neously exhibits both a nonnegative row and a nonpositive row. We can prove that this “double
saddlepoint” property does hold for skew matrices of small order and for arbitrarily large finite
degenerate cases, but the general problem remains unsolved.

1. P-Pivots and the First Saddlepoint Theorem

Dual systems of linear equations can be represented in the following tableau format of Tucker

Vl ® o o Vn \

Xl (]“ e o o Oln =—U|

. M . . or X M ==\,

X Oml o O C Omn = _Um

:yl o o ° :ym = Y
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(’“”f }vnrk was ('umlnl(.-h"i while !h,‘.. H‘Illllnl was a \a.niunul \x‘.ldl-!m of St'it‘n('("s-\lzllinll&ll Research Council Postdoctoral Research Associate at the National
Bureau of Standards, Washington, D.C. This paper is dedicated to Professor A. W. Tucker on the occasion of his retirement from Princeton | niversity.

! Figures in brackets indicate the literature references at the end of this paper.
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Here X, Y, UT and V" are row vectors. The tableau simultaneously represents the column system
XM=Y and the row system MV =—U. The systems are always dual in the sense of orthogonality,
for

XU+YV=X(—MV)+ (XM)V=0.

Since this paper is concerned with the sign patterns in matrices, we necessarily allow variables
and coeflicients to take values only in an ordered field. The symbols & and S respectively denote

nonnegative and nonpositive elements.

DEFINITION 1:  An n X n matrix 4 is skew when A =—A".
Throughout this paper A denotes a skew matrix of order n. Over an ordered field the diagonal

entries of 4 must be zero. The tableau of 4 is written as follows:

xT

=Y
By negative transposition it is clear that any solution (X, Y) to the column system X4 =Y is also a
row solution (Y, X) to AX"=—Y7 and conversely. Hence each of the linear systems is self-dual

because X and Y must be orthogonal.

DEFINITION 2: A principal pair pivot or P-pivot in (the tableau of) a self-dual linear system is a
simultaneous exchange of variables x; with y; and x; with y;. provided a;;=—a;j; #0, while leaving
the remaining variables fixed.

The P-pivot involves solving the ith column (row) equation for x; and the jth equation for
xi, substituting the resulting expressions into the remaining equations. At the same time there
occurs a (principal) permutation that exchanges row i with row j and column i with column j while
fixing the remaining rows and columns.

We say that we P-pivot on aij, aji in the matrix A. For a;; # 0. this operation yields another
skew matrix 4 with the self-dual solution (X, )7) to XA =Y such that Xi=Yi, Xj=Yj, Vi=Xi, ¥j =X
and for all k # i, j we have %= xx, 7= yi. The new skew matrix 4 is given by the following entries
(recall that i # j):

(I,-j:—a_f’.

ij
- a ..
ain a;'ajn for h # 1, j.
= aiaj;' for k£ #1, j.

Akh = Akh '_a,:}l(ailla/gi_alriajln) for k+#i,jand h#1, j.

ap=0 for all ¢.
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Checking the above formulae requires only straightforward algebraic manipulations.
Schematically, a P-pivot or sequence of P-pivots corresponds to inversion of a nonsingular
principal submatrix of 4 and the appropriate extensions to the rest of A:

A B8 A A|-l 8
P-pivot

—BT D ___BT =l

A' |o+e'4A's

A principal permutation places the nonsingular submatrix A4 in the upper corner.

EXAMPLE: In this 4 X 4 self-dual tableau we show a P-pivot on the starred entries:

Xi Xz X3 Xq Y Y2 X3 X4
x| o r* I ==y y| o —=1* 1 -l |==x
xa| =1* 0 -1 1 |=—y, P-pivot yo| 1* O I 1| ==xg
«—>
x3| —I I O -l |=-y3 xz| —! -1 O -3|=-ys3
xgq| I = I O |=—vyq xq| | — 3 0]=-yq.
Y| Y2 tY3 SV =X Xz TYyz “ya

Sample solution: (X, Y)= (x1, x2, X3, X4, Y1, ¥2, V3, = (1L, @), =1L, @ 1, O Ty 2).
X, Y)= (y1, ¥2, X3, X4 X1, X2, ¥3, ¥a) = (X1, - - « 5 Xas F15 -+ - ¥a).

P-pivots preserve both skewsymmetry and solution sets. The new tableau has the same solu-
tion set as the original one in the sense that values assigned to the variables in one tableau will
hold for the same variables in the other one even though their positions may have changed.

From a given skew matrix of order n, only a finite number of skew matrices can be obtained
by a sequence of P-pivots [1, Theorem 2.2: 2, Theorem 2]. Such matrices are in fact a subset of
Tucker’s “combinatorial equivalence class™ [4] for the given matrix, and they are called P-pivot
transforms.

DEFINITION 3: A nontrivial solution (X,Y) of XA =Y is elementary if the only other nontrivial
solutions having the same zero components as (X,Y) are of the form (kX, £Y') for scalars k£ # 0.

DEFINITION 4: A zero saddlepoint of type (1) in a matrix is a sign configuration consisting of a
nonnegative row and a nonpositive column.

THEOREM 1: (First Saddlepoint Theorem) Given a skew matrix A of order n and an index h,
1 < h < n, there exists a nonnegative elementary solution of XA="Y such that x,+ y, > 0, and there
exists a skew matrix A which is a P-pivot transform of A and such that a,;=0 for all j, 1<) <n.

Theorem 1 says the existence of a type (1) saddlepoint occurs simultaneously with a non-
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negative elementary solution and gives the theorem its name. Since the proof of Theorem 1 is pre-
sented elsewhere in full detail [1, Theorem 4.2; 2, Theorem 3], we omit it here.

2. The Second Saddlepoint Theorem
A result related to Theorem 1 is the following [1, Theorem 3.1}:

THEOREM 2: Let A be a skew matrix of order n. By a finite sequence of P-pivots outside the first
row and column of A we can obtain a skew matrix A with either a nonnegative first row or a non-
negative row whose first column entry is positive. Schematically, we obtain one of the following:

ol - - - O . -
© L=

. or T P S

& o :

Theorem 2 can be generalized to P-pivots outside any given row and the corresponding col-
umn. Hence the first row and column can be considered the “distinguished” ones without loss of
generality.

DEFINITION 5: A zero saddlepoint of type (2) in a matrix is a sign configuration consisting of a
nonpositive row and a nonnegative column.

THEOREM 3: Let A be a skew matrix of order n and let h be an index,1 < h < n. By a finite sequence
of P-pivots outside the hth row and column of A we can obtain a skew matrix A with either a non-
positive hth row or a row in which the hth column entry is negative and every other entry is non-
negative.

Schematically, we obtain one of the following for h=1:

ole - - . +*
® . S)

%) (=) .

A P-pivot on the starred entries in the second alternative yields a saddlepoint of type (2) in the dis-
tinguished row and column.
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ProoF: Given the skew matrix 4, form the skew matrix B by multiplying the distinguished row
and corresponding column of 4 by —1, leaving the rest of 4 unchanged. A P-pivot on a;j, aj; outside
the distinguished row and column of 4 corresponds to a P-pivot on b;j, b;i in B. From the formulae
following Definition 2 we can easily obtain the entries of the P-pivot transform Bin terms of the cor-

responding entries of A. When h is the index for the distinguished row and column, ap=— by, and
am=—by for all t, 1 <t < n. Otherwise ay;= by. Hence B= A except for the distinguished row and
column, where b,,=—ay, and b,,=—ay, for all ¢.

Thus the same sequence of P-pivots outside a distinguished row and column in A4 that produces
a saddlepoint of type (1) will produce a saddlepoint of type (2) in the corresponding matrix B and
vice versa. Equivalently, we may observe that the following diagram is ““‘commutative”:

P-pivots outside

Multiply Ath row
and column by —1.

Multiply Ath row
and column by —1.

P-pivots outside

A
hth row and column. I
B

hth row and column.
(Same pivot choices as above.)

Combining these observations with the general form of Theorem 2 proves the theorem.
To obtain an analog of Theorem 1 we need to obtain a type of solution whose existence is
equivalent to having a type (2) saddlepoint.

DEFINITION 6: A onenegative solution in a self-dual tableau is a solution (X, Y) toXA4 =Y having
precisely one negative component.

DEFINITION 7: A complementary solution in a self-dual tableau is a solution (X,Y) to X4 =Y such
that x;¥;=0 for each i, 1 <i<n.

REMARK: A onenegative complementary solution (X, Y) to X4=Y is of the form:
ey =4 () for one index j.
xi+yi =0 fori#j,1<i<n.
x;yi=0 for eachvi, 1<i<n.

Multiplying the Ath row and column entries in the matrix of a self-dual tableau by — 1 changes
the sign of the left-hand sides of the Ath row and column equations and of the coefficients of x,
in the remaining equations. Hence the original system may be preserved by simultaneously changing
the signs of y, and x,. Thus any nonnegative complementary solution associated with 4 would
become onenegative when associated with the corresponding B; and conversely a onenegative
complementary solution with x, 4y, < 0 would become nonnegative. With the additional observa-
tion that any nonnegative solution of XA=Y must be complementary, we have proved the follow-
ing result.”

2] am indebted to Dr. A. J. Goldman for suggesting this method of proof.
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THEOREM 4: (Second Saddlepoint Theorem) Given a skew matrix A of order n and an index h,
1 < h < n, there exists a onenegative complementary solution of XA=Y such that x,+y, <0,
and there exists a skew matrix A which is a P-pivot transform of A and such that ap; < 0 for all
j,1 <j=<n.

Theorem 4 can also be proved independently in a fashion similar to a proof of Theorem 1 [2].
The First and Second Saddlepoint Theorems are logically equivalent.

3. A Double Saddlepoint Problem

One question that naturally arises is whether any skew A4 has a P-pivot transform A having
saddlepoints of both types (1) and (2). One may even ask whether every skew A has a P-pivot
transform with a ““double saddlepoint.”

CONJECTURE: If 4 is a skew matrix of order n, then there exists a P-pivot transform 4 of 4 having
both a nonnegative row and a nonpositive row.

A single row of zeros will satisfy the conjecture. It is proved below for arbitrarily large degen-
erate cases (Theorem 5) and in general for n < 5 (Theorem 6).

THEOREM 5: If a skew matrix A of order n can be transformed by a finite number of P-pivots into
a skew matrix with a saddlepoint of type (1) having more than one zero entry in the nonnegative row,
then A satisfies the Conjecture.

Proor: By Theorem 1, we can always obtain a P-pivot transform with a nonnegative row
from a given skew matrix 4 of order n. If the nonnegative row is all zero, there is nothing to prove.
Hence assume the nonnegative row has at least two zero entries and at least one positive entry.
By a principal permutation we obtain:

OO...O+..-+
of ¢
o

:

where A, is a nonempty k X k principal skew submatrix of 4, 1 < k£ < n. (The inverse permutation
can always be applied later.) By Theorem 4 we can reach a saddlepoint of type (2) in 4, by a finite
number of P-pivots in A4, (i.e., P-pivots in A with pivot entries chosen only from A4;). Noting that P-
pivots in 4, do not affect the first row ot column of 4, we obtain:
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OO ¢ 0O + e o o + bl e o o bt
ol-. ®

° eo:b.. L] ° ® e C'. ° .Ct
@) ® .o

— ® ’ .

by —¢ .
—bt| —ct

where b;, ¢; > 0 for 1 < ¢ =< t. If the collection of b’s and ¢’s is empty, there is nothing left to do.

Otherwise P-pivot on bj, —b; where c;/b;=max (ci/bi) to reach the desired form.
l
To prove the Conjecture for skew matrices of order n < 5, two lemmas will be helpful.

LEMMA 1: [If a skew matrix A of order n > 1 can be transformed by a finite number of P-pivots
into a skew matrix with a nontrivial nonnegative row, and if some positive entry a;; in that row
is distinguished by being the only positive entry in its column, then A satisfies the Conjecture.

PROOF: P-pivot in the nonnegative row and nonpositive column on the distinguished positive
and negative entries a;j, aj; to reach the desired form.

LEMMA 2: Suppose a skew matrix A of order n > 1 can be transformed by a finite number of P-
pivots into a skew matrix with a nontrivial nonnegative ith row containing a;; = 0. If there exists
another entry ay; in the jth column which, except for a;;, is the sole positive entry in the kth row
and jth column, then A satisfies the Conjecture.

PROOF: P-pivot on a;j, aji to reach the desired form.

THEOREM 6: If A is a skew matrix of order n <5, then A has a P-pivot transform A with both a
nonnegative row and a nonpositive row.

PROOF: For n =1 and n = 2 the theorem is clearly true since the only possibilities are [0] and

o) @ O ©
or

S ®) D O

By Theorem 1, we need consider only those cases for n = 3 where we already have a nonnegative
row. The two possibilities are:
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with arrows indicating the desired rows.

with only one zero entry:

O & & |e o o —
(=) @) ® or = @) e
S e O | « < @

For n =4 we apply Theorems 1 and 5, leaving only the eight cases having a nonnegative row

o+ + +|<@[o + + + <o + + +
O & & - 0O & ©& o - ©
e 0 & - 6 0 6 |« + O &
© 60|l |[-9© @0 © 0
SNE T - =M s s e = s
O & - - 0O - - |« o + -
e 0O - - + O & = @ o=
+ + O - + © O ()
e+ + +] 9o + + +]<
o - + -0 - -|&
+ 0 - - + 0 -
-+ 0 -+ +0

The first five cases and case (8) already possess the desired form, and the remaining cases (6)
and (7) satisfy Lemma 2.

For n =5, application of Theorems 1 and 5 again limit the cases to be considered. Lemma 1
eliminates other possibilities, narrowing the choices to the following nine sign patterns:
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(n (2) (3)

O+ + ++

|
o
+
|
+
I*
O
+
|

+ @+
|
o
+
|
B

|
+0 +
O |
S
o +
+ |
| O
o +

(4) (5) (6)

O
y
+
+
+
@)
+
+*
+
.

|
© O +
O & +

(7) (8)

O+ +*+ + O +
-0 + - - - - - -0
-0+ + - -0 +86 - -
-+ -0 - F+ -0+ -+
-+ -4+ 0 -+® -0 -t

9
T ©®)rs

o+

o + +
® 0 + +
+00 1 +

Ot + 1 +

By Lemma 2, P-pivots on the starred entries will yield a double saddlepoint in each case.

4. Applications

The First and Second Saddlepoint Theorems have many applications in the theory of dual linear
systems and related topics. Both theorems are logically equivalent to Tucker’s Skew-Symmetric
Matrix Theorem [1, Theorem 5.1; 2, Corollary 1]. From this result the main theorems of linear pro-
gramming can be elegantly derived [1, Chapter 8]. Other applications include the theory of matrix
games [1, Chapter 6] and classical theorems of Gordan, Stiemke, Farkas and von Neumann on
linear inequalities [1, Chapter 9].

In view of these applications of the First and Second Saddlepoint Theorems, their generaliza-
tion to the Double Saddlepoint Conjecture can be expected to have interesting consequences. One
consequence of the proved degenerate case of the Conjecture is presented below. Although the
Conjecture is still unproved in the general nondegenerate case, a recent undergraduate project at
Princeton under the direction of Tucker has examined the P-pivot classes of 100 randomly-
generated skew matrices of orders 6 to 10 and has yielded no counterexample. ?

Theorem 5, which shows the existence of a double saddlepoint for skew matrices if one of the
single saddlepoints has an off-diagonal zero, will now be shown to have a surprising consequence
for simple pivots in rectangular matrices.

3 Personal communication from Professor Tucker.
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DEFINITION 8:

\Y

=Y

Let M be an m X n matrix over an ordered field with the tableau

A simple pivot or S-pivot in (the tableau of) the dual linear systems XM =Y and MV =—"U is a
simultaneous exchange of variables x; with y; and u; with v;, provided m;; # 0, while leaving the

remaining variables fixed.

Schematically, for p = m;; # 0:

* o VJ > e v e ¢« Ui e Y o ¢
X « ¢ 5 0 ° - =.— 0 .° . -‘| o . -:‘ e e
. q uj yij|+ +p p'q
) : . S-pivot - . .
X s o [ . . s - =—u X §- o—r—lpg Py 's—rﬁ-'Q¢o
o o .—,yj . . = y e e o =x.| . ¢ e = y P .
THEOREM 7: Given any rectangular matrix M over an ordered field, by a finite number of simple

pivots in M we can reach a matrix M having either a nonnegative row and a nonpositive row, or a
nonnegative column and a nonpositive column, or a row and column of the same sign.
Schematically, Theorem 7 says we can reach one of the following:

(1
® - -
e - .

@
+ 8

(2)

®

®

5] @

o

(4)

Note that the presence of a trivial row or column immediately gives us (1) or (2).
PROOF: Given M, form an expanded skew tableau with — M7 and blocks of zeros:
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If M has only one row or column, it is already in form (1), (2), (3) or (4), so assume M has at least
two rows and two columns.

By Theorem 1, a finite sequence of P-pivots in the expanded tableau yields a type (1) saddle-
point. If for each P-pivot we perform the inverse permutation, then M will remain in the upper
right-hand corner, as though the P-pivot did not include a permutation. Such modified P-pivots
correspond to pairs of S-pivots on m;; in M and —mj; in —M". Moreover, pivots in M or in —M"
preserve the blocks of zeros. Hence by Theorem 5 we can repeatedly P-pivot in the expanded
tableau (S-pivot in M, —M?7) to reach a double saddlepomt

If both rows of opposite sign appear in M., then we have form (1) in M. If both rows appear
in —M7, then we have reached (2) in M. One row in M and the other in —M7 yields (3) or (4) in M,
proving the theorem.

From its form it appears that Theorem 7 may lead to further results in the theories of positive
semidefinite quadratic programs and of bimatrix games.
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