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The Hadamard bound for the determinant of an n by n matrix is a good one in that equality may be
attained in a rich class of cases. However, the bound generally gives up a good deal, and we answer the
title question “on the average.” Assuming the entries of 4= (a;;) are uniformly distributed over some
interval symmetric about the origin, the expected value of the ratio of (det 4)? to the square of the

1
. n! . . 5 .
Hadamard bound is found to be —. The expectations of the square of the Hadamard bound and of
n

!
(det 4)? are also computed individually, and their ratio turns out also to be —.
n
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The Hadamard bound is often used as an upper estimate for the determinant of an n by n
matrix in computational algorithms as well as other numerical estimates. It states that for an n

by n matrix 4= (ay),
n

n 1/2
det 4| <] (2 (miirz) —H(A).

i=1 ‘j=1

Since equality may be attained (either when the rows of 4 are orthogonal or when one row is zero),
the bound is both simple and theoretically sound. However, computational experience suggests
that the bound generally exaggerates the determinant rather heavily. This is unfortunate when
the computation time of an algorithm is proportional to a determinantal estimate. One might well
ask what would be a good estimate ““on the average.”

In order to provide a partial answer, we assume that 4= (a;;) is a real n by n matrix whose
entries are chosen indeperdently from a uniform distribution on[—1, 1]. Then d = det A, H = H(A4)
and d/H may be considered as random variables. If f/=f(A4) is any scalar-valued function of the
entries of the matrix 4. we denote the expected value (if it exists) of the random variable f by

1
() =2 fil fdaj;

where the notation means that each of the n? variables of integration a;; runs over the interval
[—1,1]. We shall prove:
THEOREM 1: We have

E(d?) = n!/3", (1)

E(H? =n"/3", (i1)
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E(d?/H?) = E(d?)/E(H2) = n!/n™. (iii)

Proor: We have
det (A4) :2 X (o) aion) - - - Aoty

a

where o runs over all elements of the symmetric group Sy, and x(o) is the alternating character.
Thus

(det (A))2 = E X(O')X(T)ala(l)al‘r(l) <« « Quo(n)Qnr(n)-

Now let /= f(A) be any scalar-valued function of the variables a;; which is even in each variable.

Then
1
Bdar =2t 2 X(O')X(T) Jl]f' Ao(1)A1r(1) - - - (lno-(n)an'r(n)d(lij-

Consider the contribution of the term
f' A10(1)Q17(1) - - - Qno(n)@nr(n)
to the integral. If o (k) # 7(k) for some k such that 1 < £ < n. then this term is an odd function of

akok)» and so the integral of this term vanishes, since the range of each variable of integration
ajj is —1 < ai; < 1. It follows that

1
E(d*f)=2—" E fl fa.q - . . dondai.
We first make the choice f=1. Then

1
E(dZ)zz—mz [ aloqy + - - Cagm@aij

1

o ¥

=n!/3"
Hence (i) is proved.
We now choose f=H=2 Then
1 n
E(d?/H?) =2 Zf aiﬂl) R a%ur(n) H (a3, + . . . +a2)day.
o o7t i=1

A moment’s reflection shows that the value of the integral is the same for each o, so that

1 n
E(dZ/H2)=2-"2n!f [1 % /(a+ . . . +a)da;

—1i=1

1 n
=9-n2pl {f x2[(x2+ . . . +x2)dxy . . . dxn}

=i
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1 1 n
:2—"27;!{;[ (GHaF o o o PEENE T o o o FERNEER o o o dxn}
1

= 2—712n!n—n2n2
= n!/nn.

Hence (iii) is proved.

The proof of (ii) is similar and we omit it.

REMARK 1: An interpretation may be given to part (iii) of theorem 1 by the observation that the
quotient d(A4)*/H(A)? is just the ratio of det 44" to the product of the diagonal entries of AAT.
(That this ratio is less than or equal to 1 is another version of Hadamard’s inequality.)

REMARK 2: If alternatively the a;; are independently and uniformly distributed over |[—M, M],
we have:

!
E(d2)=M2"% (i)
and
E(H2)=M2"§7. (i)

The fact that
E(d*/H?*)=E(d?)/E(H?)

could certainly not have been predicted beforehand, and strikes us as a rather remarkable occur-
rence. Unfortunately, it seems quite difficult to derive similar formulae for

E(|d]), E(H),  E(|d|/H).

The previous discussion may be generalized directly to any generalized matrix function.

Thus if

d(X, G): 2 X(O')alvr(l) o« Qpo(n)s

ogeC
where G is any subgroup of S, and x any irreducible character on G, then we have
THEOREM 2: The expected value of |d(x, G)|? is given by
E(ld(x, G)[?) =o(G)/3",

where o(G) is the order of G.
The proof is just as before, except that the character relationship

> Ix(a)[2=0(6)

TelG

comes into play.
(Paper 78B3—-411)
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