
JOURNAL OF RESEARCH af the Notianal Bureau af Standards - B. Mathematical Sciences
Va l. 78B, Na. 3, July- September 1974

Computational Experience With an Algorithm for
Finding the k Shortest Paths in a Network *

Douglas R. Shier

Institute for Basic Standards, National Bureau of Standards, Washington, D.C. 20234

(July 12,1974)

A particular co mputer implementation of the Double-Sweep method for calcu lating t.h e k shortes t
paths in a network is described . Res ults are presented for a series of computational expe riment.s per­
form ed on rectangular grid networks.

Key words : Double-S weep method ; graph ; k s hortes t pa ths; network ; ne twork algorithms; short es t
path.

1. Introduction

A common task which arises In analyzing a system of interconnec ted elements or network is
that of calculating shortest paths - i. e., routes through the sys tem whose total le ngth or cos t is as
small as possible_ Such calc ulations occur quite naturally in the context of trans portation and com­
munication networks_ In applications s uch as these, it is so metimes desirable to have knowledge
of the k shortest paths in contrast to simply a shortest path_ For example, the knowledge of good
alternative routes (as opposed to just the shortest one) can be used by transportation planne rs
to model more realistically the Aow of vehi cular traffi c on a road ne twork. Or, as a second example,
the routing of messages through a communi cation s network when some routes are temporarily
obstructed can be based on th e best alternative routes which are available.

Several algorithms have been traditionally employed in order to determine the k shortest
paths between specified nodes of a ne twork (such paths may in fac t con tain repeated nodes). An
excellent survey of these algorithms is provided by the review article of Dreyfu s [1] 1. More re­
cently, several new methods for performing s uch calculation s have been proposed [2 , 4]. These
methods are based on a fairly strong analogy which exists be tween the solution of ne twork path
problems and traditional techniques for solving ordinary linear equations. On the basi s of pre­
liminary theoretical and computational evidence, one of these (the Double-Sweep method) emerged
[4] as a reasonably effective procedure for calculating k shortest paths between a given node and
all other nodes in a network.2 The purpose of this report is to describe a particular implementation
of the Double-Sweep method in FORTRAN V 3 and to present a body of computational results for
a practically important class of networks (namely, those with a rectangular grid topology).

2. The Double-Sweep Method

Suppose that G = (.#', d) is a finite directed network in which the real number iij denotes
the le ngth of arc (i, j) Ed joining nodes i , j E.#': Node i of the arc (i, j) is said to be incident to

AMS Subject Cla.ssificalion: 05035.
*This work was done while the aut hor was a Na tional Academy of Sciences-National Research Council Pos tdoctoral Research Associat e at the Nationa l

Bureau of Standards. Washin gton, D.C. 20234.

1 Figures in brac ke ts indicate the lit e rature refe rences a t the end of thi s paper.
2 The algorithms presented in f21 are appropriate for calcula tin g k shortes t paths be tween all pairs of nod es; beca use of storage limit a tions, the applicat ion of

these algoyithm s is limit ed to ne tworks having at most a fe w hundred no~ es.
3 FOR' fRAN V is UNIVAC's augmented ve rsion of standard fORTRAN IV .

139

node}, while node} is said to be incident from node i. A path from node i to node} is an ordered
sequence of arcs [(i, i1), (iI, i2), ••• , (im - l,})] in the network; a path is termed elementary
if all nodes appearing along the path are distinct. A circuit i .~ a path whose starting node i and
ending node} coincide. The length of a path is defined to be the arithmetic sum of the arc lengths
lij along the path.

The problem under investigation here is that of determining, among aLL paths extending be·
tween two specified nodes, those paths having the smallest, the second smallest, ... and the kth
smallest length. It is emphasized that these k shortest paths (that is, paths whose lengths are
shortest, second shortest, ... or kth shortest) are not required to be elementary. The method to be
discussed here will allow the calculation of the k shortest paths from a given source node to all
other nodes in the network. It is assumed that

(1) All circuits in the network have positive length, and
(2) The network contains no self·loops: that is, circuits of the form [(i , i)].

The Double·Sweep method calculates the k shortest path lengths from a particular source node
to all n nodes of the given network by means of alternating forward and backward passes_ A precise
statement of the method, together with a proof of its validity, can be found in [4]. Basically, the
method begins with an initial guess as to the k shortest path lengths and successively improves the
current guess to obtain an even better guess. During the forward pass, the current path lengths
to each node} = 1, ... , n are modified by using those nodes i < } which are incident to node}.
If the sum of a current path length to some node i and the arc length lij provides a shorter path
length to node} than any which is currently known, then the corresponding path lengths to node}
are updated to give an improved estimate of the k shortest path lengths. A similar procedure is
followed during the backward pass, except that now only nodes i >} are considered with
} = n, ... , 1.

The alternating forward and backward passes are continued until no improvement in the
path lengths to any node can be made. Convergence in this sense will always be achieved in a
finite number of steps - in fact, in at most nk + 1 forward and nk + 1 backward passes. When
convergence does obtain , the k shortest path lengths to each node} in the network will have been
found. From such path length information, the actual paths corresponding to any of the k shortest
path lengths can be determined by a backward path tracing procedure.

In essence, this path tracing procedure is based on the following fact. Namely, if a tth shortest
path 1T of length I from node i to node} passes through node r, then the subpath of 1T extending
from node i to node r is a qth shortest path for some q, 1 ~ q ~ t. This fact can be used to deter­
mine the penultimate node r on a tth shortest path of known length I from node i to node}. Indeed,
any such node r can be found by forming the quantity l-lrj for all nodes r incident to node} and
determining if this quantity appears as a qth shortest path length (q ~ t) for node r. If so, then
there is a tth shortest path of length I whose final arc is (r,}); otherwise, no such path exists. This
idea is repeatedly used, in the manner of a backtrack program, to produce all paths from i to}
with the length I, and ultimately all the k shortest paths from node i to node}.

It should be pointed out that, while the Double-Sweep method will work perfectly well if cir­
cuits of zero length are present, the preceding path tracing procedure may encounter some diffi­
culties if such zero length circuits exist. The essential difficulty is that there can then be an infinite
number of paths having the same length, so the generation of aLL of these paths is clearly impossible.
Accordingly, the simple backtracking system described above could possibly cycle indefinitely
unless certain precautions are taken. For the sake of retaining simplicity, then, the (quite reason-·
able) assumption has been made that all circuits have strictly positive length.

3. Program Implementation

The calculation of k shortest paths from a particular source node can be accomplished through
the use of the four subprograms listed in section 5. The subroutine INPUT allows the description

140

of the given network to be entered , the subroutines DSWP and XMULT are used to calculate the k
shortes t path le ngths , and the subroutine TRACE enables the actual tracing out of the k shortest
paths. Certain details of the specific implementation used will be discussed in this section.

The first issue concerns the choice of the starting guess with which to initiate th e Double­
Sweep method, as several choices are possible. It has proved convenient to assign, as the initial
approximation, k "infinite" path le ngths to each node (the value used for infinity was INF =
99999999), save for the source node NS which receives the k-vector of path le ngths (O,INF, ... ,
INF)_ At any step of the process, the k-vector associated with each node will contain the k shortest
path lengths found so far from node NS to that node. Moreover, these k path lengths are always
distinct (apart from infinite values) and are always arranged in s tri c tly in creas ing order. Such an
ordering allows the following two computationally important observations to be made.

(1) If the value INF is encountered in some component of a k -vector, then all subsequent
components of the k-vector also contain INF values_ Therefore, when updating the k-vector for
node j during a forward or backward pass, the k-vector for a node i incident to} need only be
scanned as far as the first occurrence of an INF value since an infinite value cannot possibly yield
an improved path length for node j.

(2) If lXV, the sum of some current path length in the k-vector for node i and the arc length tij,
is greater than or equal to the maximum element of the k-vector for node}, then no improvement in
the latter k-vector by use of the former can possibly be made. Therefore, it is appropriate to keep
track of the current maximum element MAX of the k-vector for node}. If IXV is less than MAX
then it is possible for an improve me nt to be made, as long as the value IXV does not already occur
in the k-vector for node j (only distinct path lengths are re tained).

The use of these two observations allows for a substantial reduction in the amount of compu­
tational effort required to update the current path lengths , as compared to the use of some general
sorting routine to find the k smallest elements in a list. Since such updating comprises the major
computational requirement of the Double-Sweep method, it has proved advantageous to keep the
components of each k-vector in strictly increasing order. These updating steps, corresponding to
appropriate "matrix multiplications" as defined in [4], are performed by the subroutine XMULT,
called as required by the subroutine DSWP.

Together, the subprograms DSWP and XMULT e nable the calculation of the K shortest path
lengths from any given source node NS. In some applications, these path lengths may be all the
information that is required by the user. In others, the actual paths joining various pairs of nodes
are also needed. To accomplish this latter task, the subroutine TRACE is used to produce all paths
from node NS to node NF having any of the K shortest path lengths from NS to NF . As presently
implemented, paths containing up to 5000 arcs will be generated; an error message will indicate
when this condition is not fulfilled.

The subroutine INPUT allows a description of the given network to be read in from external
unit number 5 together with values for relevant parameters. The network description is achieved
by specifying for each arc of the network a record containing its starting node, its ending node and
its length. The records are assumed to be sorted in increasing order by arc ending node; more~
over, the nodes are assumed to be numbered consecutively from 1 to N. The totality of such net­
work description records is followed by a blank record and then a sequence of parameter specifica­
tion records. Each block of parameter specification records consists of a path calculation record
followed by any number, possibly zero, of path tracing records. The path calculation record gives
values for K, NS and IMAX. The parameter IMAX is the maximum number of Double-Sweep
iterations 4 allowed before a mandatory termination of DSWP is imposed; for most cases, a value
of IMAX = 100 should suffice. Each path tracing record gives values for NF and PMAX, which
allow the user to trace out actual paths from node NS to node NF if required; at most PMAX such
paths will be determined. Several (but at least one) parameter specification blocks can be accom­
modated so that various values for K, NS and NF can be explored in the given network. The final
record of the input stream is required to be blank.

4 Each forward or backwa rd pass constitutes an iteration.

141

The form of input acceptable to the program can be concisely specified by the following
BNF formula system [3].

(input) : : = (network part) (blank record) (parameter part) (blank record)
(network part) : : = (arc record) I (network part) (arc record)

(parameter part) :: = (parameter block) I (parameter part) (parameter block)
(parameter block) :: = (path calen record) I (parameter block) (path trace record)

Definitions for the various records mentioned above are provided below; the columns of a record
which are not explicitly mentioned are assumed to be blank.

(blank record) :
(arc record): Cols. l-lO=Arc Starting Node

Cols. 11-20=Arc Ending Node
Cols. 21-30=Arc Length

(path calcn record) : Cols. 1-5 = K
Cols. 6-1O=NS
Cols. 11- 15 = [MAX

(path trace record): Cols. 1-5 =NF
Cols. 6-1O=PMAX

The values given to K, NS, [MAX, NF, and PMAX are all specified by the user. In addition, the
following ranges are assumed for the indicated variables.

N = number of nodes in the network:
MU=number of arcs (I, J) with [< J:
ML=number of arcs (I, J) with [> J:

K = number of distinct path lengths required :5

2 ~ N~ 1000.
o ~ MU~5000.
o ~ ML ~ 5000.
2 ~ K~20.

Thus, at most K = 20 shortest path lengths from a given node in a network with up to 1000 nodes and
10,000 arcs can be handled by the currently programmed version of the algorithm. The approximate
storage requirements for the four subroutines comprising the package are given in table 1; the
storage requirements appropriate for arbitrary values of N, K, and M = MU + ML are given in table
2. If there is insufficient storage available on a particular computer system to retain all the sub­
routines in core simultaneously , it is possible to break up the execution sequence by performing
first the path length calculation (DSWP/XMULT) and next the path tracing calculation (TRACE).
This is a feasible strategy because essentially two different network representations are used in
these two distinct calculation phases.

TABLE 1. Approximate number of storage locations required by various subprograms

Storage for common blocks used Program Total
Subprogram instruction re quired

BLKI BLK2 BLK3 BLK4 storage storagea

INPUT 22003 2 21001 268 43274
DSWP 22003 2 20000 267 42272
XMULT 2 20000 214 20216
TRACE 2 20000 21001 15310 56313

ALL. 22003 2 20000 21001 16059 79065

a Exclusive of system routines (requiring approximately 5700 locations for the UNIVAC
1108, EXEC 8 operating system used).

:; Only minor program changes are necessary to allow the case K = 1.

142

(blank)
5
1

(blank)

TABLE 2. Approximate number of storage locations required by common blocks and subprograms
in terms of N, K and M = MU + ML

Storage for common bloc ks
Total storage

for subprogramsa

BLK1 2N + 2M + 3 INPUT 3N + 4M + 274
BLK2 2 DSWP NK + 2N + 2M + 272
BLK3 NK XMULT NK + 216
BLK4 N+ 2M + J TRACE NK +N+ 2M + 15313

ALL NK +3N + 4M + 16065

a Exclusive of syste m routines (requiring approximately 5700 locations for the UNIVAC 1108,
EXEC 8 operating system used).

TABLE 3. Listing of sample card input TAB LE 4. Listing of sample printed output

2 1 65
5 1 38

K = 5 shortest path lengths from nod e 12

1 2 78 To node
3 2 82 1 164 205 211 220 221
6 2 78 2 195 232 236 241 242
2 3 79 3 150 159 191 200 206
4 3 96 4 63 104 128 145 154
7 3 55 5 126 167 173 182 183
3 4 87 6 117 158 164 173 174
8 4 12 7 95 136 151 158 160
1 5 24 8 51 92 116 133 142
6 5 9 9 200 229 241 247 256
9 5 18 10 141 175 186 206 216
2 6 45 11 93 127 158 168 176
5 6 48 12 0 65 106 123 130
7 6 22

10 6 23
3

Number of iterations required for convergence = 6
7 8

6 7 41
8 7 44

The K shortest paths from node 12 to node 1

11 7 58
4 8 29

Path Length Node sequence

7 8 47 1 164 12 8 7 6 5 1
12 8 51 2 205 12 8 4 8 7 6 5 1
5 9 74 3 211 12 11 10 6 5 1

10 9 88 4 220 12 11 7 6 5 1
6 10 69 5 221 12 8 7 6 5 6 5 1
9 10 40

11 10 48
7 11 32

10 11 35
12 11 93
8 12 14

11 12 30

12 30
20

The output produced from execution of the subroutine DSWP takes the form of a tabular listing
of the K shortest path lengths from node NS to all nodes in the network. In addition, the number
of Double-Sweep iterations required for convergence of the algorithm is printed. Eac h time the
subroutine TRACE is called, the required K shortest paths (together with their respective lengths)
are printed out as the appropriate sequences of nodes leading from NS to NF. All printing is as­
sumed to be done through external unit number 6.

Documented listings of the four subprograms INPUT, DSWP, XMULT and TRACE are given
in section 5. Further details about this implementation of the Double-Sweep method, with a path
tracing facility, can be obtained by referring to these listings.

Finally, we describe some sample input for the k shortest path package as well as the resulting
output. The particular network chosen for illustrative purposes is shown in figure 1. For this net-

143

work of 12 nodes and 34 arcs, it is required to find the five shortest path lengths from node 12 to
all nodes and the actual paths between node 12 and node 1. Accordingly, K = 5, NS = 12, and
NF = 1; the values chosen for the other two input parameters are [MAX = 30, PMAX = 20. Table 3
displays the form of card input required for this particular problem. Note that the network descrip­
tion cards are listed in order of increasing arc ending node number. Table 4 displays the resulting
output from the computer program.

78 79 87

38 29

18 14

FI GURE 1. An illustrative network.

4_ Computational Results

The Double-Sweep method has been previously shown [4] to possess certain theoretical and
computational advantages over other algorithms for finding the k shortest paths from a given node.
The current implementation of this method, embodied in the four subroutines discussed earlier,
has undergone testing for a variety of different sample networks. This section will present in
particular the results of a number of computational experiments performed on rectangular grid
networks. Such networks were chosen for detailed investigation since grid-like networks arise
quite frequently in representing, for example, a city street system.

A general P X Q grid networ k consists of N = PQ nodes (which are assumed to be numbered
consecutively from left to right and top to bottom) and 4PQ - 2 (P + Q) arcs. The integral lengths

of each arc are generated from a uniform distribution over the interval 1 to RANGE. (See fig. I
for an illustrative 3 X 4 grid network.) The currently implemented version of the Double-Sweep
method was used to obtain the K shortest path lengths from node NS to all nodes of various grid
networks; no tracing of paths was considered in these computational experiments. The response
characteristics of elapsed computation time on a UNIVAC lIOS were studied as different param­
eters of the problem were varied.

144

Firs t , a se ri es of four 24 X 24 grid networks C, - C4 were created by drawing four diffe re nt
random samples of arc lengths from the uniform di s tributi on on 1 to 100. Figures 2-4 show how
for three distinct source nodes the variation of computation tim e with K is affected by the par·
ti cular arc length sample G; chosen. Since the arc le ngth sample chose n does have a noti ceable
e ffect on co mputation time, it was dec ided that subsequent ly a ll res ults would be averaged over
four arc length samples. Figure 5 shows how the average co mputa tion time vari es, quite near ly
quadratically , with K for three di stinct source nodes. In fac t , tab le 5 di s pl ays the second·degree
polynomials which give the bes t (l east squares) fit to the c urves of fi gure 5 over the range 2 ~ K ~ 20.
From the values obtained for the res idual standard de viations, these second-degree polynomi als
produce an excelle nt fit to the observations; essentially , the n, the average co mputa ti on time varies
quadratically with K. Su ch behavior is not unexpected since the doubling of K , for in stance, not
only increases the computation per ite ration (potentially twi ce as many sum s IXV mu st now be
formed for each node) but al so tends to increase the number of iterations required for convergence
(the equality of 2k-vectors automaticall y ens ures the equality of their firs t k compone nts).

T AB LE 5. Best fit second·degree polynornials to figure 5 curves

NS

I
300
576

Second·degree fitt ed
polynomia l

0.8457 + 0. 1616 K + 0.0260 K2
1.6111 + 0.0761 K + 0.0425 K2
0.7747 + 0. 1603 K + 0.0249 K'

Residu al s tandard
dev iation" (s)

0.1 369
0.2 151
0. 11 21

~~ (y - y)2
a Res idu al s tandard devia tion = I 3 I .

11 -

145

CI)

u.J

~
f-

Z
0
f-
c::x::
f-
::>
a....
~
0
u

18.0

16 .0

14.0

12.0

10.0

8.0

6.0

4.0

2.0

o
2 5 10 15

K

20 25

FIGURE 2. Computation times for four 24 X 24 grids ("corner" source node 1, RANGE = 100).

146

26.0

! G3
24.0

I
22.0

, ,
I

/
20 .0 I /1 ,

I

/ G2
18 .0 : I/G4

en I p/ u.J I ~ 16.0
f- / ,

I z I

0
,

I

~ 14.0 1/ f-
::::>
Cl...

~
0 12.0 u

10.0

8.0

6.0

4.0

2.0

a ~~--~----~------~----~----~ ______ ~.
2 5 10 15

K
20 25

FIGURE 3. Computation times for four 24 X 24 grids ("centraL" source node 300, RANGE = 1 00).

147

-en

LoU

~
~

z
a -
~
c:::(
~
:::>
c...
~
a
u

18.0

16.0
/ G3

G4
14.0

62
12.0

10.0

8.0

6.0

4.0

2.0

o ~~ __ -L ______ L-____ ~ ______ ~ ____ ~ ____ ~

2 5 10 15
K

20 25

FIGURE 4. Computation times for four 24 X 24 grids ("corner" source node 576, RANGE = 100) .

148

-en

LU

~
~

z
0

~ «
~
=>
a....
~
0
u
LU
(,!)

«
a::
LU

> «

20 .0 1300
I ,

I

18.0 /
I , ,

16.0 / , ,
1 I

14.0 / , , ,
12.0 /

I
I

I
10.0 /

I
I

8.0
,

/
I ,

6.0 I

/
4.0

2.0

o ~ ____ ~ ______ ~ ____ ~ ______ ~ ____ ~ ______ ~
2 5 10 15

K
20 25

F IGURE 5. Average computation time for source nodes J, 300, 576 (RANGE = 100).

149

In addition, figure 5 shows that the average computation time for a centrally located source
node (NS = 300) is consistently higher than for the boundary nodes NS = 1 and NS = 576 (located
at the upper left and lower right corners of the grid network). One possible explanation for this
observed difference between central and corner nodes is based on the concept of a nonretrograde
path in a grid network: that is, a path whose tracing only involves two orthogonal directions (e.g.,
north and east). A nonretrograde path from node 1 only involves the south and east directions, while
a nonretrograde path from node N only involves the north and west directions. On the other hand,
a nonretrograde path from a centrally located node can use any pair of orthogonal directions. It
has been observed in practice that for grid networks with randomly generated arc lengths a large
percentage of the calculated k shortest paths are nonretrograde paths, while the remaining such
paths tend to be quite nearly nonretrograde paths. Because the nodes are numbered from left
to right and top to bottom, a nonretrograde path from node 1 will have its length correctly assigned
in a single forward pass of the Double·Sweep method. Similarly, a nonretrograde path from node N
will have its length correctly assigned in a single backward pass. However, a nonretrograde north/
east or south/west path from a centrally located node will generally require several forward and
backward passes in order for its length to be correctly determined. For example, in a north/east
path each horizontal segment will require a separate forward pass and each vertical segment will
require a separate backward pass. Since the processing of nonretrograde (as well as nearly non·
retrograde) paths from a centrally located node requires more effort than that for a corner node, it
seems reasonable that the calculation of k shortest path lengths for the former should involve
more computational effort as compared to the latter type of node.

Another series of grid networks all containing 576 nodes but of differing "shapes" (different
ratios of P to Q) were created for test purposes. With NS = 1 and RANGE = 100, the dependence
of average computation time was explored as a function of network shape for different values of
K. Figure 6 displays the relation between average computation time and log (P/Q) for 24 X 24,
32 X 18, 64 X 9, and 144 X 4 grid networks. It is apparent that a "square·like" network requires
less computation than an "elongated" network, despite the fact that for a given number of nodes
a square-like network contains more arcs than an elongated one. A similar relationship between
computation time and shape has been observed in 24 X 24, 18 X 32, 9 X 64, and 4 X 144 grid
networks.

In another sequence of test networks with N = 576, NS = 1 and K = 5, the effect of RANGE
on average computation time was investigated. Four different values of RANGE (l, 10, 100, 1000)
were chosen and the average computation time has been plotted as a function of range for 24 X 24
and 144 X 4 grid networks (see fig. 7). It is clear that the greater the variability of the arc lengths,
the greater the computation time required. As seems reasonable , for larger values of RANGE, the
effect is not as radical as for smaller values of RANGE.

Finally, a sequence of square P X P grid networks was studied with NS = 1, K = 5 and
RANGE = 100 in order to assess the effect of the number of nodes on average computation time.
The parameter P was allowed to assume the values P = 10, 15,20,24 and 30 (producing networks
with between 100 and 900 nodes). The influence of this variation in P is seen in figure 8. Quite
surprisingly, in the range P = 15 to P = 30 the increase with P is demonstrably linear, with an
R2 value of 0.988 when a linear regression is performed. Recall that, by contrast, average computa­
tion time appears to be quadratically dependent on the parameter K.

In sum, then, several series of computational experiments have been performed in order to
evaluate the effect of various parameters on computation time, averaged over four different samples
from the distribution of arc lengths. The results obtained by varying these parameters can be helpful
guidelines when planning computations to investigate changes to a particular network.

In all of the above experiments, the numbering of nodes was taken to be the usualleft-to-right,
top-to-bottom numbering described earlier. Since each pass of the Double-Sweep method processes
the nodes in the fixed order 1, ... , N (for a forward pass) or the fixed order N, . .. , 1 (for a back­
ward pass), the actual numbering of nodes used can potentially affect the convergence charac­
teristics of this method. Accordingly, a 20 X 20 grid network with specific randomly generated arc

150

lengths in the range 1 to 100 was investi gated for various node numbering sche mes. To begin , 10
different randomly generated permutations were used to renumber the nodes of this 20 X 20 grid
network. The K = 5 shortest path lengths were calculated from the source node located at the
upper left corner of each of the 10 randomly renumbered networks , yielding a mean computa tion
time of 2.488 s with a standard deviation of 0.220 s. By contras t , when the us ualleft·to·right , top·
to·bottom numbering sche me was used , the same K =5 shortest path le ngths were produced in
only 1.213 s, approxima tely half the average time for randomly numbered networks.

Furthermore, when the nodes were renumbered consecutively from left to right along odd·
numbered rows and right to left along e ven·numbered rows , the required computing time was
1.683 s. On the other hand , when the nodes we re renumbered consecuti vely from top to bottom
along odd-numbered columns a nd bottom to top along e ven-numbered column s, the required com­
puting time was 1.504 s. The main conclusion to be drawn f rom s uch times is that the ordering of
nodes can have a pronounced effect on the effi ciency of the Double-Sweep method. In particular ,
a systematic numbering scheme is to be preferred to a random numbering of the nodes. This result
accords well with our intuition , since in a systematic numbering sche me the effect of changi ng
the k-vec tor associated with a given node will be passed on rather quickly to so me neighboring
nodes ; there is certainly no guarantee that such will be the case for randomly assigned numbering
schemes.

12.0

~ 10.0
~

z
a
~
<l:
~
=>
~

~
a
u
u.J
t!J
<l:
c::::
u.J

>
<l:

8.0

6.0

4.0

2.0

o
o

/
.",

" .,. .,.
" "

- ---. ... -­--
0.5

/
/

/
/

/
/

/
/

/ K=10
/

K=5

K=2

1.0 1.5
log (P/O)

2.0

FIGU RE 6. Average computation time Jor 24 X 24 , 32 X 18, 64 X 9 and 144 X 4 grids (NS = I , RANGE = 100, K = 2, 5, 10) .

151
554 - 917 OL - 74 - 4

CI)

u.J

:E
~

z
0
~ «
~
~
~

:E
0
u
u.J
to
«
cc
u.J
> «

6.0

4.0
/

/
I

I
I

I
I

I
I

I 2.0 I
I

V
o

1 10

/
/

,"" .."

/
/

100
RANGE

",,'" 144 x 4
."..

24 x 24

1000

FIGURE 7. Average computation time related to RANGE for 24 X 24 and 144 X 4 grids (NS = 1, K = 5).

In concluding, some indication will be given of the actual number of iterations required for the
Double-Sweep algorithm to converge; recall that each forward or backward pass constitutes an
iteration. While the algorithm is guaranteed to converge in at most 2 (NK + 1) iterations [4], this
theoretical upper bound usually exceeds the actual number of iterations required by a few orders
of magnitiIde in our sample grid networks. For example, in all of the 24 X 24 grid networks generated
with RANGE = 100 and NS = 1, 300, 576 (see figs.2-4), the number of iterations varied from a
minimum of 9 (for K = 2) to a maximum of 25 (for K = 20). By contrast, the theoretical upper bounds
for these two situations are 2306 and 23,042 iterations, respectively. In the case of P X Q grid
networks with N = 576, NS = 1 and RANGE = 100 (see fig. 6), the number of iterations varied from a
minimum of 9 (for a 32 X 18 grid with K = 2) to a maximum of 37 (for a 144 X 4 grid with K = 10);
the theoretical upper bounds are 2306 and 11,522, respectively. For the 24 X 24 and 144 X 4 grid
networks with NS = 1 and K = 5 (see fig. 7), the number of iterations varied from a minimum of

152

5 (for all 24 X 24 and 144 X 4 grids with RANGE = 1) to a maximum of 39 iterations (for a 144 X 4 grid
with RANGE = 1000); the theoretical upper bound for this situation is 5762 iterations. Finally, even
for the 900 node square grids with NS = 1, K = 5 and RANGE = 100 (see fig. 8), the number of itera­
tions was at most 19, compared to the th eore tical upper bound of 9002. In all these cases, then, the
number of iterations required for co nvergence is really quite modest; in addition, the theoretical
upper bounds are seen to give ve ry little qualitative or quantitative information about the actual

number of iterations needed.

4.0

en 3.0

LJ.J

~
I-

Z
CJ

I-«
I-
:::::>
c....

2.0 ~
CJ
U

LJ.J
C!)

«
c::
LJ.J

> «

1.0

o~----~----~------~ ____ ~ ______ ~ ______ ~
5 10 15 20 25 30

p

F IGU RE 8. Average computation time for five P X P grids (NS = 1 ,RANGE = 100, K = 5).

153

5. Appendix: Program Listings

C
C

SUBROUTINE INPUT

C THIS SUBROUTINE INVOLVES THE FOLLOWING INPUT SEQUENCE.
C
C (1) A DESCRIPTION OF THE NETWORK IS READ IN FROM UNIT 5 - THE
C STARTING NODE, ENDING NODE AND LE~GTH FOR EACH ARC. THE
C ARRAYS AND VARIABLES NEEDED BY SUBROUTINES DSWP, XMULT AND
C TRACE ARE THEN CREATED.
C (2) THE NEXT RECORD READ IN FROM UNIT 5 GIVES VALUES FOR K, NS
C AND IMAX. THE K SHORTEST (DISTINCT) PATH LENGTHS FROM NuDE NS
C TO ALL NODES OF THE NETWORK ARE THEN CALCULATED AND PRINTED
C THROUGH A CALL OF DSWP.
C (3) THE SUCCEEDING INPUT RECORDS READ IN FROM UNIT 5 INDICATE
C VALUES FOR NF AND PMAX. FOR EACH SUCH RECORD (THERE MAY BE
C NONE) THE APPROPRIATE PATHS FROM NS TO NF ARE PRINTED THROUGH
C A CALL OF TRACE.
C
C SEVERAL SUCCESSIVE INPUT DATA SETS, CONSISTING OF A (2) RECORD
C POSSIBLY FOLLOWED BY (3) RECORDS, CAN BE ACCO~MODATED. A BLANK
C RECORD SHOULD PRECEDE AND FOLLOW THE TOTALITY OF ALL SUCH (2), (3)
C COMBINATIONS. THE NETWORK MUST BE SORTED IN INCREASING ORDER BY
C ARC ENDING NODE NUMBER. MOREOVER IT IS ASSUMED THAT THE NODES
C ARE NUMBERED SEQUENTIALLY FROM 1 TO N. ALSO THE NETWORK SHOULD
C CONTAIN NO SELF-LOOPS AND ALL CIRCUITS IN THE NETWORK ARE REQUIRED
e TO HAVE POSITIVE LENGTH.
e
C THE VARIABLES AND ARRAYS IN COMMON ARE
e

N C THE NUMBER OF NODES IN THE NETWORK.
C THE NU~BER OF ARCS (I,J) WITH I LESS THAN J. MU =
e THE NUMBER OF ARCS (I,JI WITH J LESS THAN I. ML =
e AN ARRAY WHOSE J-TH ENTRY IS THE NUMBER OF ARCS (I,JI LLEN =
C WITH J LESS THAN I.
C AN ARRAY CONTAINING THE NODES I INCIDENT TO NODE J WITH LINC =
C I GREATER THAN J, LISTED IN ORDER OF INCREASING J.

LVAL e AN ARRAY CONTAINING THE ARC LENGTH VALUES CORRESPONDING
C TO ARCS IN LINC.
C AN ARRAY WHOSE J-TH ENTRY IS THE NUMBER OF ARCS (I,J) ULEN =
e WITH I LESS THAN J.

UINC C AN ARRAY CONTAINING THE NODES I INCIDENT TO NODE J WITH
C I LESS THAN J, LISTED IN ORDER OF INCREASING J.
e AN ARRAY CONTAINING THE ARC LENGTH VALUES CORRESPONDING UVAL =
e TO AReS IN UINC.

INF e A NUMBER LARGER THAN ANY PATH LENGTH. A NONEXISTENT
e PATH IS ASSIGNED THE LENGTH INF.

START C AN ARRAY WHOSE J-TH ELEMENT INDICATES THE FIRST POSITION
C ON INC WHERE NODES INCIDENT TO NODE J ARE LISTED.
C AN ARRAY CONTAINING NODES I WHICH ARE INCIDENT TO NODE J, INC =
C LISTED IN ORDER OF INCREASING J.
e AN ARPAY CONTAINING THE ARC LENGTH VALUES CORRESPO~DING VAL =
C TO ARCS IN INC.
C
C ADDITIONAL VARIABLES WHOSE VALUES MUST BE SPECIFIED BY THE USER ARE

154

~----

C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C

C

THE

THE

K THE NUMBER OF DISTINCT PATH LENGTHS REQUIRED.
IMAX = THE MAXIMUM NUMBER OF DOUBLE-SWEEP ITERATIONS ALLOWED.

FOR MOST CASES IMAX = 100 SHOULD SUFFICE.
NS,NF THE INITIAL AND FINAL NODES OF ALL K SHORTEST PATHS TO

BE GEN ERA TED.
PMAX THE MAXIMUM NUMBER OF PATHS TO BE GENERATED BETWEEN

NODES NS AND NF.

FOLLOWING VARIABLES MUST LIE WITHI N THE (I NC L U S I VE I

VARIABLE

N
MU
ML

K

FORMAT FOR

COLS.

1-10
11-20
21-30

LOWER BOUND UPPER BOUND

2
0
0
2

THE INPUT NETWOFK

CONTENTS

ARC STARTING NODE
ARC ENDING NODE
ARC LENGTH

1000
5000
5000

20

IS AS FOLLOWS.

RANGES.

THE NETWORK DESCRIPTION IS FOLLOWED BY A BLANK RECORD. SUCCEEDING
RECORDS GIVE VALUES FOR K, NS AND IMAX ACCORDING TO

COLS.

1-5
6-10

11-15

CONTENTS

K
NS
IMAX

EACH (K,NS,IMAXI RECORD CAN BE FOLLOWED BY ANY NUMBER OF RECORDS
(POSSIBLY NONE) GIVING VALUES FOR NF AND PMAX ACCORDING TO

CoLS.

1-5
6-10

CONTENTS

NF
PMAX

THIS PATTERN OF (K,NS,IMAXI AND (NF,PMAX) RECORDS CAN BE REPEATED
AS OFTEN AS IS REQUIRED. THE FINAL DATA RECORD OF THE INPUT DECK
IS BLANK.

D!MENSION LLEN(10001,LINC(5000),LVAL(5000)
INTEGER Ul EN (1000 I ,U INC (50001, UVAL (5000) ,S TART, VAL
COMMON !BlKl! N,MU,ML,LLEN,LINC,LVAL,ULEN,UINC,UV~ ~

COMMON !BLK2! INF,K
COMMON !BLK4! START(1001),INC(100001,VAL(10000)

C INF IS DEFINED.
C

I NF =999 99999
C

155

C AS THE INPUT NETWORK IS READ IN, THE VARIABLES AND ARRAYS NEEDED
C BY OSWP AND TRACE ARE CREATED.
C

e

J=O
MU=O
ML=O
NPREV=O
N=O

1 READ 15,800) NB,NA,LEN
800 f'ORMA TI 31 10)

IF(NA.GT.N) N=NA
IFINS.GT.N) N=NB
IF(NA.EQ.NPPEVI GO TO 10
IF(NA.EQ.NPREV+1) GO TO 3
IF(NA.EQ.O) GO TO 30
ll=NPREV+l
l2=NA-l
DO 2 l=1l,L2
START(L)=O
ULE NI Ll =0

2 LLENIL)=O
3 IF(J.EO.OI GO TO 5

ULEN(NPREV) =JU
llEN(NPREV)=Jl

5 STARTlNA) =J+1
JU=O
JL=O
NPR EV=NA

10 J=J+l
INC (J)= NS
VAL(J)=LEN
IF(NB.GT.NA) GO TO 20
MU=MU+l
UINCIMU)=NB
UVAL(MU)=LEN
JU=JU+l
GO TO 1

20 Ml=ML+l
LINC(MLl=NB
lVAL{ML J=LEN
Jl=Jl+1
GO TO 1

30 START(NPREV+l)=J+1
Ute NI NPREVI =JU
LLEN(NPREV)=Jl

e THE (K,NS,IMAX) AND (NF,PMAXJ DATA RECORDS ARE SUCCESSIVELY READ.
e

c

40 READ (5,801) 11,12,13
801 FORMATl3151

IF(ll.EQ.OJ GO TO 100
IF(13.EQ.01 GO TO 50
K= 11
NS=12

C THE K SHORTEST DISTINCT PATH LENGTHS FROM NODE NS TO ALL NODES OF
C THE NETWORK ARE CALCULATED.
C

156

c

C

CALL DSWP l NS, I3)
GO TO 40

C UP TO PMAX OF THE PATHS HAVING THE K SHORTEST PATH LENGTHS FROM NODE
C NS TO NODE NF ARE DETERMINED.
C

50 CALL TRACElNS,Il,I2)
GO TO 40

100 RETURN
END

157

c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C

SUBROUTINE DSWP(NS,IMAXJ

THIS SUBROUTINE IMPLEMENTS THE DOUBLE-SWEEP METHOD IN ORDER TO
CALCULATE THE K SHORTEST (DISTINCT) PATH LENGTHS FROM NODE NS TO
ALL NODES OF A NETWORK. THE NETWORK IS ASSUMED TO CONTAIN NO
SELF-LOOPS AND ALL CIRCUITS IN THE NETWORK ARE REQUIRED TO HAVE
POSITIVE LENGTH. THE REQUIRED K SHORTEST PATH INFORMATIO~ IS
PRINTED OUT ON UNIT 6.

THE VARIABLES IN THE CALLING SEQUENCE ARE

NS = THE NODE FROM WHICH K SHORTEST PATH LENGTHS TO ALL NODES
ARE REQUIRED.

IMAX THE MAXIMUM NUMBER OF DOUBLE-SWEEP ITERATIONS ALLOWED.

THE VARIABLES AND ARRAYS IN COMMON ARE

N

MU
ML
LlEN

lINC

LVAL

ULEN

UINC

UVAL

INF

K
X

=

=
=

=

=

=

=
=

THE NUMBER OF NODES IN THE NETWORK. (NODES ARE ASSUMED
NUMBERED SEQUENTIALLY FROM 1 TO N.'
THE NUMBER OF ARCS (I,J) WITH I LESS THAN J.
THE NUMBER OF ARCS (I,JJ WITH J LESS THAN I.
AN APRAY WHOSE J-TH ENTRY I S THE NUMBER OF ARCS (I,J,
WITH J LESS THAN I.
AN ARRAY CONTAINING THE NODES I INCIDENT TO NODE J WITH
I GREATER THAN J, LISTED IN ORDER OF INCREASING J.
AN ARRAY CONTAINING THE ARC LENGTH VALUES CORRESPONDING
TO ARCS IN L INC.
AN ARRAY WHOSE J-TH ENTRY IS THE NUMBER OF ARCS (I,JJ
WITH I LESS THAN J.
AN ARRAY CONTAINING THE NODES I INCIDENT TO NODE J WITH
I LESS THAN J, LISTED IN O~DER OF INCREASING J.
AN ARRAY CONTAINING THE ARC LENGTH VALUES CORRESPONDING
TO ARC SIN U I NC •
A NUMBER LARGER THAN ANY PATH LENGTH. A NONEXISTENT
PATH IS ASSIGNED THE LENGTH INF.
THE NUMBER OF DISTINCT PATH LENGTHS REQUIRED.
AN ARRAY WHOSE (I,J)-TH ENTRY WILL EVENTUALLY CONTAIN
THE J-TH SHORTEST (DISTINCT) PATH LENGTH FROM NODE NS
TO NODE I.

ADDITIONAL VARIABLES ARE

ITNS = THE NUMBER OF ITERATIONS PERFORMED.
INDX = A VARIABLE RETURNED FROM XMULT WHICH = 1 IF CONVERGENCE

HAS OBTAINED AND = 0 OTHERWISE.

THE FOLLOWING VARIABLES MUST LIE WITHIN THE (INCLUSIVE) RANGES

VARI ABLE

N
MU
ML

LOWER BOUND

z
o
o

lJPPER BOUND

158

1000
5000
5000

(
(

(

(

K 2 20

DIMENSION LLEN(10001,LIN(5000J,LVAL(5000)
INTEGER ULEN(10001,UINC(5000),UVAL(50001,X
(OMMON IBLK11 N,MU,ML,LLEN,LINC,lVAl,UlEN,UINC,UVAl
COMMON IBLK21 INF,K
COMMON IBLK31 X(1000,201
N1=N-l

C THE INITIAL APPROXIMATION MATRIX X IS FORMED.
(

C

DO 20 1=1, N
DO 20 J=l,K

20 X II ,J I = INF
X(N S, 1) =0
ITNS=l

C THE CURRENT X IS MODIFIED THROUGH MATRIX MULTIPLICATION WITH THE
C LOWER TRIANGULAR PORTION OF THE ARC LENGTH MATRIX.
C

(

30 IFI N=ML
I NOX=l
DO 40 I =N 1 , 1 ,-1
IF(LLEN(I).EQ.OI GO TO 40
I S= I F I N-LLE N (I) + 1
CALL XMLlLT(I,IS,IFIN,LINC,LVAl,INDX)
IFIN=IS-1

40 CONTI NUE
IF(ITNS.EQ.U GO TO 50

C TEST FOR CONVERGENCE.
(

IF(INDX.EQ.U GO TO 100
(

(THE CURRENT X IS MODIFIED THROUGH MATRIX MULTIPLICATION WITH THE
C UPPER TRIAN;ULAR PORTION OF THE ARC LENGTH MATRIX.
C

c

50 ITNS=ITNS+1
I S= 1
INDX=l
DO 60 1=2, N
IF(ULEN(Il.EQ.OI GO TO 60
I F I N= I S +U LEN (I I - 1
CALL XMULT(I,IS,IFIN,UINC,UVAL,INDX)
IS= IF IN+1

60 CONTI NU E

C TEST FOR CONVERGENCE.
C

(

IF(INDX.EQ.U GO TO 100
ITNS=ITNS+l

C A TEST IS MADE TO SEE IF TOO MANY ITERATIONS HAVE BEEN PERFORMED.
C

IF(ITNS.lT.IMAXI GO TO 30
WRITE (6,900) IMAX

900 FORMAT(' NUMBER OF ITERATIONS EXCEEDS',151

159

I
~---

GO TO 200
c
C THE SOLUTION MATRIX X IS PRINTED OUT ON UNIT 6, TOGETHER WITH THE
C VALUES FOR K, NS AND ITNS.
C

100 WRITE (6,901' K,NS
901 FORMAHIH1,10X,'K=',I3,' SHORTEST PATH LENGTHS FROM NODE',I4112X,

1I TOI/1X,'NODE'//'
DO 130 I=l,N

130 WRITE (6,902' I,(X(I,J',J=1,K)
902 FORMAT(' ',13,6X'(10I9))

WRITE (6,903' ITNS
903 FoRMAT(111HO,'NUMBER OF ITERATIONS REQUIRED FOR CONVERGENCE =',15'
200 RETURN

END

160

r
\

SUBROUTINE XMULT(I,IS,IFIN,INC,VAL,INDXl
e
e
e THIS SUBROUTINE WILL PERFORM THE APPROPRIATE MATRIX MULTIPLICATION
e OF X BY THE I-TH COLUMN OF THE LOWER (OR UPPER) PORTION OF THE ARC
C LENGTH MATRIX. IN EFFECT, THE CURRENT K SHORTEST PATH LENGTHS
C ASSOCIATED WITH NODE I ~RE ADJUSTED BY CONSIDERING NODES WHICH
C ARE INCIDENT TO NODE I. IF AN IMPROVEMENT CAN BE MADE, THE VARIABLE
C INDX WILL RETURN WITH THE VALUE o.
C
e THE VARIABLES AND ARRAYS IN THE CALLING SEQUENCE ARE
C
C I = THE COLUMN OF THE ARC LENGTH MATRIX TO BE MULTIPLIED ON
C THE LEFT BY X. THE CURRENT K SHORTEST PATH LENGTHS TO
C NODE I WILL BE IMPROVED IF POSSIBLE.
e IS THE STARTING POSITION IN LISTS INC AND VAL WHERE ARC
C INFORMATION FOR NODE I CAN BE FOUND.
elFIN THE FINAL POSITION IN LISTS INC AND VAL WHERE ARC
C INFORMATION FOR NODE I CAN BE FOUND.
e INC AN ARRAY CONTAINING NODE INCIDENCE INFORMATION, EITHER
e LINC OR UINC.
C VAL AN ARRAY CONTAINING ARC LENGTH INFORMATION, EITHER
C LVAL OR UVAL.
C INDX A VARIABLE WHICH IS SET EQUAL TO 0 IF AN IMPROVEMENT CAN
C BE MADE IN THE K SHORTEST PATH LENGTHS TO NODE I.
C
C THE VARIABLES AND ARRAYS IN COMMON ARE
C
C INF A NUMBER LARGER THAN ANY PATH LENGTH. A NONEXISTENT PATH
C IS ASSIGNED THE LENGTH INF.
e K THE NUMBER OF DISTINCT PATH LENGTHS REQUIRED.
C X = THE CURRENT APPROXI MATI ON ~ATRI X FOR K SHORTEST PATH
C LENGTHS FROM A GIVEN NODE TO ALL NODES OF THE NETWORK.
e
e ADDITIONAL VARIABLES AND ARRAYS ARE
C
C A = AN AUXILIARY APRAY USED IN FINDING THE K SMALLEST DISTINCT
C ELEMENTS OF A SET.
e MAX THE CURRENT MAXIMUM ELEMENT OF ARRAY A.
e IXV A FEASIBLE PATH LENGTH TO NODE I FROM THE GIVEN NODE.
C
C

C

DIMENSION INC(5000)
INTEGER VAL(5000),AI20),X

COMMON IBLK21 INF,K
COMMON IBLK31 XII000,20)

e INITIALIZE A TO THE CURRENT K SHORTEST PATH LENGTHS FOR NODE I, IN
C STRICTLY INCREASING ORDER.
e

C

DO 10 J=I,K
10 AIJ)=X(I,J)

MAX=A(K)

161

L_

C EACH NODE OF INC INCIDENT TO NOOE I IS EXAMINEO.
C

C

DO 100 l=IS,IFIN
II =1 NC (LJ
IV=VAU U

C TEST TO SEE WHETHER IXV IS TOO LARGE TO BE INSERTED INTO A.
C

C

DO 90 M=1,K
IX=X(II ,M)
IF(IX.GE.tNF) GO TO 100
IXV=IX+IV
IF(IXV.GE.MAX) GO TO 100

C IDENTIFY THE POSITION INTO WHICH IXV CAN BE INSERTED.
C

C

DO 30 J=K, 2,-1
IF(IXV-A(J-lI) 30,90,50

30 CONTINUE
J=l

50 JJ=K
70 IF(JJ.LE.J) GO TO 80

A(JJ }=A (JJ-1)
JJ=JJ-1
GO TO 70

80 A(J)=IXV

C IF AN INSERTION HAS BEEN MADE IN A, SET INDX O.
C

C

t NDX=O
MAX=A(K}

90 CONT INU E
100 CONTINUE

IF(INDX .EQ.l) GO TO 120

e UPDATE THE K SHORTEST PATH LENGTHS TO NODE I.
e

DO 110 J=1, K
110 X(I,J}=A(J)
120 RETURN

END

162

i
~

c
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C

c

SUBROUTINE TRACE(NS,NF,PMAX)

THIS SUBROUTINE WILL TRACE OUT THE PATHS CORRESPONDING TO THE K
DISTINCT SHORTEST PATH LENGTHS FROM NODE NS TO NODE NF. AT MOST
PMAX SUCH PATHS WILL BE GENERATED. IT IS ASSUMED THAT ALL CIRCUITS
IN THE NETWORK HAVE POSITIVE LENGTH. MOREOVER ONLY PATHS HAVING
AT MOST 5000 ARCS WILL BE PRODUCED. AN ERROR MESSAGE WILL INDICATE
WHEN THIS CONDITION IS NOT FULFILLED. THE REQUIRED PATHS BETWEEN
NODES NS AND NF ARE PRINTED OUT ON UNIT 6.

THE VARIABLES IN THE CALLING SEQUENCE ARE

NS,NF THE INITIAL AND FINAL NODES OF ALL K SHORTEST PATHS
BEING GENERATED.

PMAX = THE MAXIMUM NUMBER OF PATHS TO BE GENERATED BETWEEN
NODES NS AND NF.

THE VARIABLES AND ARRAYS IN COMMON ARE

INF

K

x

START

INC

VAL

A NUMBER LARGER THAN ANY PATH LENGTH. A NONEXISTENT PATH
IS ASSIGNED THE LENGTH INF.
THE NUMBER OF DISTINCT PATH LENGTHS REQUIRED. K SHOULD
LIE IN THE RANGE 2 TO 20 INCLUSIVE.
AN ARRAY WHOSE (I,J)-TH ENTRY IS THE J-TH SHORTEST
(DISTINCT) PATH LENGTH FR ~M NODE NS TO NODE I.
AN ARRAY WHOSE J-TH ELEMENT INDICATES THE FIRST POSITION
ON INC WHERE NODES INCIDENT TO NODE J ARE LISTED.
AN ARRAY CONTAINING NODES I WHICH ARE INCIDENT TO NODE J,
LISTED IN ORDER OF INCREASING J.
AN ARRAY CONTAINING THE ARC LENGTH VALUES CORRESPONDING
TO ARCS IN INC.

ADDITIONAL VARIABLES AND ARRAYS ARE

JJ = INDEX OF THE PATH LENGTH FROM NS TO NF BEING EXPLORED.
JJ CAN TAKE ON VALUES FROM 1 TO K.

NP THE NUMBER OF PATHS FROM NS TO NF FOUND.
KK = CURRENT POSITION OF LIST P.
P AN ARRAY CONTAINING NODES ON A POSSIBLE PATH FROM NS TO NF.
Q AN ARRAY WHOSE I-TH ELEMENT GIVES THE POSITION, RELATIVE

TO START, OF NODE P(!) ON THE INC LIST FOR p(I-l).

PV = AN ARRAY WHOSE I-TH ELEMENT IS THE ARC LENGTH EXTENDING
FROM NODE P(I) TO NODE P(I-I).

INTEGER P(SOOO),Q(5000J,PV(5000),START,VAL,X,PMAX
COMMON IBLK21 INF,K
COMMON IBLK31 X(1000,20)
COMMON IBLK41 START(100II,INC(10000),VAL(10000)

C INITIALIZATION PHASE.
C

DO 10 1=1,5000

163

- - -- I

C

P (I) =0
Q(1)=O <}

10 PV(1)=0
JJ=1
IF(NS.EQ.NF) JJ=2
NP=O
IF(X(NF,JJ).lT.INF) GO TO 15
WRITE (6,909) NS,NF

909 FORMAT{IHl,'THERE ARE NO PATHS FROM NODE',14,' TO NODE',14)
GO TO 200

15 WRITE{6,9011 NS,NF
901 FORMAT{IHI,'THE K SHORTEST PATHS FROM NODE',14,' TO NODE',14111HO,

I'PATH LENGTH NODE SEQUENCE'II)

C THE JJ-TH DISTINCT PATH LENGTH IS BEING EXPLORED.
C

C

20 KK= 1
lAB=X{NF,JJ)
IF{LAB.EQ.INF) GO TO 200
ll=LAB
P(U =NF

30 LAST=O

C NODES INCIDENT TO NODE P{KK) ARE SCANNED.
C

C

40 NT= P (KK)
IS=START(NT)
DO 45 ND=NT, 1000
IF{START{ND+11.NE.0) GO TO 48

45 CONTINUE
48 IF=START(ND+II-l

II=lS+lAST
50 IF(II.GT.IFI GO TO 90

NI=INC(III
NV=VAU II)
L T=LAB-NV

C A TEST IS MADE TO SEE IF THE CURRENT PATH CAN BE EXTENDED BACK TO
C NODE NI.
C

C

00 60 J=I,K
IF(X{NI,J)-LTI 60,80,70

60 CONTINUE
70 II=II+1

GO TO 50
80 KK=KK+ 1

IF(KK.GT.50001 GO TO 190
P(KK)=NI
Q(KKI=II-IS+I
PV(KK)=NV
LAB=lT

C TESTS ARE MADE TO SEE IF THE CURRENT PATH CAN BE EXTENDED FURTHER.
C

C

IF{LAB.NE.OI GO TO 30
IF{NI.NE.NS) GO TO 30

C A COMPLETE PATH FROM NS TO NF HAS BEEN GENERATED AND IS PRINTED

164

e OUT ON UNIT 6.
e

c

NP=NP+l
WRITE 16,902) NP,LL,(P(JI ,J=KK,l,-lI

902 FORMAT(lX, I4,I8,5X,(20I5IJ
IF(NP.GE.PMAXI GO TO 200

90 LAST=QIKKI
P(KK1=0
LAB = LAB +P V 1 K K I
KK=KK-l
IF(KK.GT.O) GO TO 40

C THE EXPLORATION OF THE CURRENT JJ-TH DISTINCT PATH LENGTH IS ENDED.
C

JJ=JJ+l
IF(JJ.GT.Kl GO TO 200
GO TO 20

190 WRITE 16 ,903.
903 FORMATI1YO,'NUMBER OF ARCS IN PATH EXCEEDS 5000')
200 RETURN

END

6. References

[1] Dreyfu s, S ., An Appraisa l of So me S hortes t-Path Algo rithm s, Operations Res. 17, 395-412 (1969).
[2] Minieka, E., and Shier, D., A Note on an Algebra for the k Best Routes in a Network, J. Ins!. Maths App Li es 11,145-149

(1973) .
[3] Rosen, S . (editor) , Programming Systems and Languages, Ch. 2B (McC raw-Hili Book Co., New York , 1967).
[4] Shier, D., Ite rative Methods for De te rminin g the k S hortest Paths in a Network, s ubmitted for publication.

(Paper 78B3-410)

165

	jresv78Bn3p_139
	jresv78Bn3p_140
	jresv78Bn3p_141
	jresv78Bn3p_142
	jresv78Bn3p_143
	jresv78Bn3p_144
	jresv78Bn3p_145
	jresv78Bn3p_146
	jresv78Bn3p_147
	jresv78Bn3p_148
	jresv78Bn3p_149
	jresv78Bn3p_150
	jresv78Bn3p_151
	jresv78Bn3p_152
	jresv78Bn3p_153
	jresv78Bn3p_154
	jresv78Bn3p_155
	jresv78Bn3p_156
	jresv78Bn3p_157
	jresv78Bn3p_158
	jresv78Bn3p_159
	jresv78Bn3p_160
	jresv78Bn3p_161
	jresv78Bn3p_162
	jresv78Bn3p_163
	jresv78Bn3p_164
	jresv78Bn3p_165
	jresv78Bn3p_166

