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A particular computer implementation of the Double-Sweep method for calculating the & shortest
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1. Introduction

A common task which arises in analyzing a system of interconnected elements or network is
that of calculating shortest paths —i.e., routes through the system whose total length or cost is as
small as possible. Such calculations occur quite naturally in the context of transportation and com-
munication networks. In applications such as these, it is sometimes desirable to have knowledge
of the k shortest paths in contrast to simply a shortest path. For example, the knowledge of good
alternative routes (as opposed to just the shortest one) can be used by transportation planners
to model more realistically the flow of vehicular traffic on a road network. Or, as a second example,
the routing of messages through a communications network when some routes are temporarily
obstructed can be based on the best alternative routes which are available.

Several algorithms have been traditionally employed in order to determine the k£ shortest
paths between specified nodes of a network (such paths may in fact contain repeated nodes). An
excellent survey of these algorithms is provided by the review article of Dreyfus [1]!. More re-
cently, several new methods for performing such calculations have been proposed [2, 4]. These
methods are based on a fairly strong analogy which exists between the solution of network path
problems and traditional techniques for solving ordinary linear equations. On the basis of pre-
liminary theoretical and computational evidence, one of these (the Double-Sweep method) emerged
[4] as a reasonably effective procedure for calculating & shortest paths between a given node and
all other nodes in a network.2 The purpose of this report is to describe a particular implementation
of the Double-Sweep method in FORTRAN V 3 and to present a body of computational results for
a practically important class of networks (namely, those with a rectangular grid topology).

2. The Double-Sweep Method

Suppose that G = (A4, &) is a finite directed network in which the real number /;; denotes
the length of arc (i, j) € &/ joining nodes i, je /. Node i of the arc (i, j) is said to be incident to
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*This work was done while the author was a National Academy of Sciences— National Research Council Postdoctoral Research Associate at the National
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! Figures in brackets indicate the literature references at the end of this paper.

2 The algorithms presented in [2] are appropriate for calculating & shortest paths between all pairs of nodes; because of storage limitations, the application of
these algorithms is limited to networks having at most a few hundred nodes.

3FORTRAN V is UNIVAC’s augmented version of standard FORTRAN IV.
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node j, while node j is said to be incident from node i. A path from node i to node j is an ordered
sequence of arcs [(i, i1), (i1, i2), . . .. (im—1, j)] in the network; a path is termed elementary
if all nodes appearing along the path are distinct. A circuit is a path whose starting node i and
ending node j coincide. The length of a path is defined to be the arithmetic sum of the arc lengths
l;; along the path.

The problem under investigation here is that of determining, among all paths extending be-
tween two specified nodes, those paths having the smallest, the second smallest, . . . and the kth
smallest length. It is emphasized that these k shortest paths (that is, paths whose lengths are
shortest, second shortest, . . . or kth shortest) are not required to be elementary. The method to be
discussed here will allow the calculation of the k& shortest paths from a given source node to all
other nodes in the network. It is assumed that

(1) All circuits in the network have positive length, and
(2) The network contains no self-loops: that is, circuits of the form [ (7, i)].

The Double-Sweep method calculates the £ shortest path lengths from a particular source node
to all n nodes of the given network by means of alternating forward and backward passes. A precise
statement of the method, together with a proof of its validity, can be found in [4]. Basically, the
method begins with an initial guess as to the & shortest path lengths and successively improves the
current guess to obtain an even better guess. During the forward pass, the current path lengths
to each node j =1, . . ., n are modified by using those nodes i < j which are incident to node j.
If the sum of a current path length to some node i and the arc length /;; provides a shorter path
length to node j than any which is currently known, then the corresponding path lengths to node j
are updated to give an improved estimate of the %k shortest path lengths. A similar procedure is
followed during the backward pass, except that now only nodes i > are considered with
j=n,..., L

The alternating forward and backward passes are continued until no improvement in the
path lengths to any node can be made. Convergence in this sense will always be achieved in a
finite number of steps—in fact, in at most nk+1 forward and nk+1 backward passes. When
convergence does obtain, the £ shortest path lengths to each node j in the network will have been
found. From such path length information, the actual paths corresponding to any of the £ shortest
path lengths can be determined by a backward path tracing procedure.

In essence, this path tracing procedure is based on the following fact. Namely, if a zth shortest
path 7 of length / from node i to node j passes through node r, then the subpath of 7 extending
from node i to node r is a gth shortest path for some ¢, 1 < g < ¢. This fact can be used to deter-
mine the penultimate node r on a tth shortest path of known length / from node i to node j. Indeed,
any such node r can be found by forming the quantity [ —/,; for all nodes r incident to node j and
determining if this quantity appears as a gth shortest path length (¢ <) for node r. If so, then
there is a tth shortest path of length [ whose final arc is (r, j); otherwise, no such path exists. This
idea is repeatedly used, in the manner of a backtrack program, to produce all paths from i to j
with the length [, and ultimately all the £ shortest paths from node i to node j.

It should be pointed out that, while the Double-Sweep method will work perfectly well if cir-
cuits of zero length are present, the preceding path tracing procedure may encounter some diffi-
culties if such zero length circuits exist. The essential difficulty is that there can then be an infinite
number of paths having the same length, so the generation of all of these paths is clearly impossible.
Accordingly, the simple backtracking system described above could possibly cycle indefinitely
unless certain precautions are taken. For the sake of retaining simplicity, then, the (quite reason-
able) assumption has been made that all circuits have strictly positive length.

3. Program Implementation

The calculation of k& shortest paths from a particular source node can be accomplished through
the use of the four subprograms listed in section 5. The subroutine INPUT allows the description
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of the given network to be entered, the subroutines DSWP and XMULT are used to calculate the k&
shortest path lengths, and the subroutine TRACE enables the actual tracing out of the k& shortest
paths. Certain details of the specific implementation used will be discussed in this section.

The first issue concerns the choice of the starting guess with which to initiate the Double-
Sweep method, as several choices are possible. It has proved convenient to assign, as the initial
approximation, £ ‘‘infinite”” path lengths to each node (the value used for infinity was INF =
99999999), save for the source node NS which receives the k-vector of path lengths (0, INF, . . .,
INF). At any step of the process, the k-vector associated with each node will contain the & shortest
path lengths found so far from node NS to that node. Moreover, these £ path lengths are always
distinct (apart from infinite values) and are always arranged in strictly increasing order. Such an
ordering allows the following two computationally important observations to be made.

(1) If the value INF is encountered in some component of a k-vector, then all subsequent
components of the k-vector also contain INF values. Therefore, when updating the k-vector for
node j during a forward or backward pass, the k-vector for a node i incident to j need only be
scanned as far as the first occurrence of an INF value since an infinite value cannot possibly yield
an improved path length for node j.

(2) If IXV, the sum of some current path length in the k-vector for node i and the arc length /;;,
is greater than or equal to the maximum element of the k-vector for node j, then no improvement in
the latter k-vector by use of the former can possibly be made. Therefore, it is appropriate to keep
track of the current maximum element MAX of the k-vector for node j. If IXV is less than MAX
then it is possible for an improvement to be made, as long as the value IXV does not already occur
in the k£-vector for node j (only distinct path lengths are retained).

The use of these two observations allows for a substantial reduction in the amount of compu-
tational effort required to update the current path lengths, as compared to the use of some general
sorting routine to find the k£ smallest elements in a list. Since such updating comprises the major
computational requirement of the Double-Sweep method, it has proved advantageous to keep the
components of each k-vector in strictly increasing order. These updating steps, corresponding to
appropriate “‘matrix multiplications” as defined in [4], are performed by the subroutine XMULT,
called as required by the subroutine DSWP.

Together, the subprograms DSWP and XMULT enable the calculation of the K shortest path
lengths from any given source node NS. In some applications, these path lengths may be all the
information that is required by the user. In others, the actual paths joining various pairs of nodes
are also needed. To accomplish this latter task, the subroutine TRACE is used to produce all paths
from node NS to node NF having any of the K shortest path lengths from NS to NF. As presently
implemented, paths containing up to 5000 arcs will be generated; an error message will indicate
when this condition is not fulfilled.

The subroutine INPUT allows a description of the given network to be read in from external
unit number 5 together with values for relevant parameters. The network description is achieved
by specifying for each arc of the network a record containing its starting node, its ending node and
its length. The records are assumed to be sorted in incredsing order by arc ending node; more-
over, the nodes are assumed to be numbered consecutively from 1 to N. The totality of such net-
work description records is followed by a blank record and then a sequence of parameter specifica-
tion records. Each block of parameter specification records consists of a path calculation record
followed by any number, possibly zero, of path tracing records. The path calculation record gives
values for K, NS and IMAX. The parameter IMAX is the maximum number of Double-Sweep
iterations ¢ allowed before a mandatory termination of DSWP is imposed; for most cases, a value
of IMAX =100 should suffice. Each path tracing record gives values for NF and PMAX, which
allow the user to trace out actual paths from node NS to node NF if required; at most PMAX such
paths will be determined. Several (but at least one) parameter specification blocks can be accom-
modated so that various values for K, NS and NF can be explored in the given network. The final
record of the input stream is required to be blank.

4Each forward or backward pass constitutes an iteration.
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The form of input acceptable to the program can be concisely specified by the following

BNF formula system [3].

(input) ::= (network part) (blank record) (parameter part) (blank record)

(network part) :: = (arc record) |({network part) (arc record)
(parameter part) :: = (parameter block)|(parameter part) (parameter block)
(parameter block) : : = (path calcn record)|(parameter block) (path trace record)

Definitions for the various records mentioned above are provided below; the columns of a record
which are not explicitly mentioned are assumed to be blank.

(blank record):

(arc record): Cols. 1-10=Arc Starting Node
Cols. 11-20= Arc Ending Node
Cols. 21-30=Arc Length

(path calen record): Cols. 1-5 =K
Cols.
Cols
(path trace record): Cols.
Cols.

6—-10=NS

. 11-15=IMAX
1-5 =NF
6—10=PMAX

The values given to K, NS, IMAX, NF, and PMAX are all specified by the user. In addition, the

following ranges are assumed for the indicated variables.

N =number of nodes in the network:
MU =number of arcs (I, J) with I < J:
ML =number of arcs (I, J) with I > J:

K=number of distinct path lengths required:>

2 <N < 1000.

0 <MU < 5000.
0 < ML < 5000.

2<K <20.

Thus, at most K =20 shortest path lengths from a given node in a network with up to 1000 nodes and
10,000 arcs can be handled by the currently programmed version of the algorithm. The approximate
storage requirements for the four subroutines comprising the package are given in table 1; the
storage requirements appropriate for arbitrary values of N, K, and M= MU + ML are given in table
2. If there is insufficient storage available on a particular computer system to retain all the sub-
routines in core simultaneously, it is possible to break up the execution sequence by performing
first the path length calculation (DSWP/XMULT) and next the path tracing calculation (TRACE).
This is a feasible strategy because essentially two different network representations are used in
these two distinct calculation phases.

TABLE 1. Approximate number of storage locations required by various subprograms

Storage for common blocks used Program Total

Subprogram instruction | required

BLK1 BLK2 BLK3 BLK4 storage storage?®
LINTPAURT concasanasnonsesnecnnosed 22003 2 21001 268 43274
D) S/ Seanssaa— 22003 2 20000 267 42272
XMULT....coeoveenneans 2 20000 214 20216
TRACE ....ooiiiiiicieand 2 20000 21001 15310 56313
AT —. 22003 2 20000 21001 16059 79065

aExclusive of system routines (requiring approximately 5700 locations for the UNIVAC

1108, EXEC 8 operating system used).

5 Only minor program changes are necessary to allow the case K=1.
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TABLE 2. Approximate number of storage locations required by common blocks and subprograms
in terms of N, K and M= MU+ ML

Total storage

Storage for common blocks for subprograms®
2N+2M +3 3N+4M +274
2 NK+2N+2M + 272
NK NK+216
N+2M+1 NK+N+2M + 15313

ALL....... NK+ 3N+ 4M + 16065

4 Exclusive of system routines (requiring approximately 5700 locations for the UNIVAC 1108,
EXEC 8 operating system used).

TABLE 3. Listing of sample card input TABLE 4. Listing of sample printed output

2 1 65 K=5 shortest path lengths from node 12

5 1 38

1 2 78 To node

3 2 82 1 164 205 211 220 221
6 2 78 2 195 | 232 236 241 242
2 3 79 & 150 159 191 200 206
4 3 96 4 63 104 128 145 154
7 3 55 5 126 167 173 182 183
3 4 87 6 117 158 164 173 174
8 4 12 7 95 136 151 158 160
1 5 24 8 51 92 116 133 142
6 5 9 9 200 229 241 247 256
9 5 18 10 141 175 186 206 216
2 6 45 1 | 93 127 158 168 176
5 6 48 12 0 65 106 123 130
7 6 22

10 6 23 Number of iterations required for convergence =6
& 7 8

6 7 41 The K shortest paths from node 12 to node 1
8 7 44

11 7 58 Path | Length Node sequence

4 8 29

7 8 47 1 164 |12 8| 76| 5| 1

12 8 51 2 205 | 12| 8| 48| 76| 5|1
5 9 74 3 211 12|11 (10| 6 | 5| 1

10 9 88 4 220 (12|11 | 7|6 | 5| 1

6 10 69 5 221 [ 12| 8| 76| 5| 6| 5|1
9 10 40

11 10 48

7 11 32
10 11 35

12 11 93

8 12 14

11 12 30

(blank)
5 12 30
1 20
(blank)

The output produced from execution of the subroutine DSWP takes the form of a tabular listing
of the K shortest path lengths from node NS to all nodes in the network. In addition, the number
of Double-Sweep iterations required for convergence of the algorithm is printed. Each time the
subroutine TRACE is called, the required K shortest paths (together with their respective lengths)
are printed out as the appropriate sequences of nodes leading from NS to NF. All printing is as-
sumed to be done through external unit number 6.

Documented listings of the four subprograms INPUT, DSWP, XMULT and TRACE are given
in section 5. Further details about this implementation of the Double-Sweep method, with a path
tracing facility, can be obtained by referring to these listings.

Finally, we describe some sample input for the k shortest path package as well as the resulting
output. The particular network chosen for illustrative purposes is shown in figure 1. For this net-
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work of 12 nodes and 34 arcs, it is required to find the five shortest path lengths from node 12 to
all nodes and the actual paths between node 12 and node 1. Accordingly, K = 5, NS = 12, and
NF = 1; the values chosen for the other two input parameters are IMAX = 30, PMAX = 20. Table 3
displays the form of card input required for this particular problem. Note that the network descrip-
tion cards are listed in order of increasing arc ending node number. Table 4 displays the resulting
output from the computer program.

78 19 87

FIGURE 1. An illustrative network.

4. Computational Results

The Double-Sweep method has been previously shown [4] to possess certain theoretical and
computational advantages over other algorithms for finding the & shortest paths from a given node.
The current implementation of this method, embodied in the four subroutines discussed earlier,
has undergone testing for a variety of different sample networks. This section will present in
particular the results of a number of computational experiments performed on rectangular grid
networks. Such networks were chosen for detailed investigation since grid-like networks arise
quite frequently in representing, for example, a city street system.

A general P X Q grid network consists of N=P(Q nodes (which are assumed to be numbered
consecutively from left to right and top to bottom) and 4PQ —2(P + Q) arcs. The integral lengths
of each arc are generated from a uniform distribution over the interval 1 to RANGE. (See fig. 1
for an illustrative 3 X 4 grid network.) The currently implemented version of the Double-Sweep
method was used to obtain the K shortest path lengths from node NS to all nodes of various grid
networks; no tracing of paths was considered in these computational experiments. The response
characteristics of elapsed computation time on a UNIVAC 1108 were studied as different param-
eters of the problem were varied.
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First, a series of four 24X 24 grid networks G, — G4 were created by drawing four different
random samples of arc lengths from the uniform distribution on 1 to 100. Figures 2—4 show how
for three distinct source nodes the variation of computation time with K is affected by the par-
ticular arc length sample G; chosen. Since the arc length sample chosen does have a noticeable
effect on computation time, it was decided that subsequently all results would be averaged over
four arc length samples. Figure 5 shows how the average computation time varies, quite nearly
quadratically, with K for three distinct source nodes. In fact, table 5 displays the second-degree
polynomials which give the best (least squares) fit to the curves of figure 5 over the range 2 < K < 20.
From the values obtained for the residual standard deviations, these second-degree polynomials
produce an excellent fit to the observations; essentially, then, the average computation time varies
quadratically with K. Such behavior is not unexpected since the doubling of K, for instance, not
only increases the computation per iteration (potentially twice as many sums IX? must now be
formed for each node) but also tends to increase the number of iterations required for convergence
(the equality of 2k-vectors automatically ensures the equality of their first £ components).

TABLE 5. Best fit second-degree polynomials to figure 5 curves

NS Second-degree fitted Residual standard
polynomial deviation®(s)
1 0.8457 +0.1616 K + 0.0260 K2 0.1369
300 1.6111 +0.0761 K+ 0.0425 K2 0.2151
576 0.7747 4 0.1603 K + 0.0249 K2 0.1121

2 (yi —i’i)z
=S

2 Residual standard deviation= \/
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In addition, figure 5 shows that the average computation time for a centrally located source
node (NS = 300) is consistently higher than for the boundary nodes NS =1 and NS = 576 (located
at the upper left and lower right corners of the grid network). One possible explanation for this
observed difference between central and corner nodes is based on the concept of a nonretrograde
path in a grid network: that is, a path whose tracing only involves two orthogonal directions (e.g.,
north and east). A nonretrograde path from node 1 only involves the south and east directions, while
a nonretrograde path from node N only involves the north and west directions. On the other hand,
a nonretrograde path from a centrally located node can use any pair of orthogonal directions. It
has been observed in practice that for grid networks with randomly generated arc lengths a large
percentage of the calculated £ shortest paths are nonretrograde paths, while the remaining such
paths tend to be quite nearly nonretrograde paths. Because the nodes are numbered from left
to right and top to bottom, a nonretrograde path from node 1 will have its length correctly assigned
in a single forward pass of the Double-Sweep method. Similarly, a nonretrograde path from node N
will have its length correctly assigned in a single backward pass. However, a nonretrograde north/
east or south/west path from a centrally located node will generally require several forward and
backward passes in order for its length to be correctly determined. For example, in a north/east
path each horizontal segment will require a separate forward pass and each vertical segment will
require a separate backward pass. Since the processing of nonretrograde (as well as nearly non-
retrograde) paths from a centrally located node requires more effort than that for a corner node, it
seems reasonable that the calculation of k£ shortest path lengths for the former should involve
more computational effort as compared to the latter type of node.

Another series of grid networks all containing 576 nodes but of differing “shapes” (different
ratios of P to Q) were created for test purposes. With NS=1 and RANGE = 100, the dependence
of average computation time was explored as a function of network shape for different values of
K. Figure 6 displays the relation between average computation time and log (P/Q) for 24 X 24,
32X 18, 64 X9, and 144 X 4 grid networks. It is apparent that a “square-like” network requires
less computation than an “elongated” network, despite the fact that for a given number of nodes
a square-like network contains more arcs than an elongated one. A similar relationship between
computation time and shape has been observed in 24 X 24, 18 X 32, 9 X 64, and 4 X 144 grid
networks.

In another sequence of test networks with N=576, NS=1 and K=35, the effect of RANGE
on average computation time was investigated. Four different values of RANGE (1, 10, 100, 1000)
were chosen and the average computation time has been plotted as a function of range for 24 X 24
and 144 X 4 grid networks (see fig. 7). It is clear that the greater the variability of the arc lengths,
the greater the computation time required. As seems reasonable, for larger values of RANGE, the
effect is not as radical as for smaller values of RANGE.

Finally, a sequence of square P X P grid networks was studied with ¥NS=1, K=5 and
RANGE = 100 in order to assess the effect of the number of nodes on average computation time.
The parameter P was allowed to assume the values P =10, 15, 20, 24 and 30 (producing networks
with between 100 and 900 nodes). The influence of this variation in P is seen in figure 8. Quite
surprisingly, in the range P = 15 to P = 30 the increase with P is demonstrably linear, with an
R?2 value of 0.988 when a linear regression is performed. Recall that, by contrast, average computa-
tion time appears to be quadratically dependent on the parameter K.

In sum, then, several series of computational experiments have been performed in order to
evaluate the effect of various parameters on computation time, averaged over four different samples
from the distribution of arc lengths. The results obtained by varying these parameters can be helpful
guidelines when planning computations to investigate changes to a particular network.

In all of the above experiments, the numbering of nodes was taken to be the usual left-to-right,
top-to-bottom numbering described earlier. Since each pass of the Double-Sweep method processes
the nodes in the fixed order 1,. . ., N (for a forward pass) or the fixed order V, . . ., 1 (for a back-
ward pass), the actual numbering of nodes used can potentially affect the convergence charac-
teristics of this method. Accordingly, a 20 X 20 grid network with specific randomly generated arc
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lengths in the range 1 to 100 was investigated for various node numbering schemes. To begin, 10
different randomly generated permutations were used to renumber the nodes of this 20 X 20 grid
network. The K=35 shortest path lengths were calculated from the source node located at the
upper left corner of each of the 10 randomly renumbered networks, yielding a mean computation
time of 2.488 s with a standard deviation of 0.220 s. By contrast, when the usual left-to-right, top-
to-bottom numbering scheme was used, the same K=5 shortest path lengths were produced in
only 1.213 s, approximately half the average time for randomly numbered networks.

Furthermore, when the nodes were renumbered consecutively from left to right along odd-
numbered rows and right to left along even-numbered rows, the required computing time was
1.683 s. On the other hand, when the nodes were renumbered consecutively from top to bottom
along odd-numbered columns and bottom to top along even-numbered columns, the required com-
puting time was 1.504 s. The main conclusion to be drawn from such times is that the ordering of
nodes can have a pronounced effect on the efficiency of the Double-Sweep method. In particular,
a systematic numbering scheme is to be preferred to a random numbering of the nodes. This result
accords well with our intuition, since in a systematic numbering scheme the effect of changing
the k-vector associated with a given node will be passed on rather quickly to some neighboring
nodes; there is certainly no guarantee that such will be the case for randomly assigned numbering

schemes.
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In concluding, some indication will be given of the actual number of iterations required for the
Double-Sweep algorithm to converge; recall that each forward or backward pass constitutes an
iteration. While the algorithm is guaranteed to converge in at most 2(NK+1) iterations [4], this
theoretical upper bound usually exceeds the actual number of iterations required by a few orders
of magnitude in our sample grid networks. For example, in all of the 24 X 24 grid networks generated
with RANGE =100 and NS=1, 300, 576 (see figs.2—4), the number of iterations varied from a
minimum of 9 (for K= 2) to a maximum of 25 (for K= 20). By contrast, the theoretical upper bounds
for these two situations are 2306 and 23,042 iterations, respectively. In the case of P X (Q grid
networks with V=576, NS=1 and RANGE =100 (see fig. 6), the number of iterations varied from a
minimum of 9 (for a 32X 18 grid with K=2) to a maximum of 37 (for a 144 X 4 grid with K= 10);
the theoretical upper bounds are 2306 and 11,522, respectively. For the 24 X 24 and 144 X 4 grid
networks with NS=1 and K=5 (see fig. 7), the number of iterations varied from a minimum of
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5 (for all 24 X 24 and 144 X 4 grids with RANGE = 1) to a maximum of 39 iterations (for a 144 X 4 grid
with RANGE = 1000); the theoretical upper bound for this situation is 5762 iterations. Finally, even
for the 900 node square grids with NS=1, K=5 and RANGE =100 (see fig. 8), the number of itera-
tions was at most 19, compared to the theoretical upper bound of 9002. In all these cases, then, the
number of iterations required for convergence is really quite modest; in addition, the theoretical
upper bounds are seen to give very little qualitative or quantitative information about the actual

number of iterations needed.
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FIGURE 8. Average computation time for five P X P grids (NS = 1,RANGE =100, K=5).
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5. Appendix: Program Listings

SUBROUT INE INPUT

THIS SUBROUTINE INVOLVES THE FOLLOWING INPUT SEQUENCE.

(1) A DESCRIPTION OF THE NETWORK IS READ IN FROM UNIT 5 - THE
STARTING NODE, ENDING NODE AND LENGTH FOR EACH ARC. THE
ARRAYS AND VARIABLES NEEDED BY SUBROUTINES DSWP, XMULT AND
TRACE ARE THEN CREATED.

(2) THE NEXT RECORD READ IN FROM UNIT 5 GIVES VALUES FOR K, NS
AND IMAX. THE K SHORTEST (DISTINCT) PATH LENGTHS FROM NGDE NS
TO ALL NODES OF THE NETWORK ARE THEN CALCULATED AND PRINTED
THROUGH A CALL OF DSWP.

(3) THE SUCCEEDING INPUT RECORDS READ IN FROM UNIT S INDICATE
VALUES FOR NF AND PMAX. FOR EACH SUCH RECORD (THERE MAY BE
NONE) THE APPROPRIATE PATHS FROM NS TO NF ARE PRINTED THROUGH
A CALL OF TRACE.

SEVERAL SUCCESSIVE INPUT DATA SETS, CONSISTING OF A (2) RECORD
POSSIBLY FOLLOWED BY (3) RECORDS, CAN BE ACCOMMODATED. A BLANK
RECORD SHOULD PRECEDE AND FOLLOW THE TOTALITY OF ALL SUCH (2), (3)
COMB INATIONS. THE NETWORK MUST BE SORTED IN INCREASING ORDER BY
ARC ENDING NODE NUMBER. MOREOVER IT IS ASSUMED THAT THE NODES

ARE NUMBERED SEQUENTIALLY FROM 1 TO N. ALSO THE NETWORK SHOULD
CONTAIN NO SELF-LOOPS AND ALL CIRCUITS IN THE NETWORK ARE REQUIRED
TO HAVE POSITIVE LENGTHe.

THE VARIABLES AND ARRAYS IN COMMON ARE

N = THE NUMBER OF NODES IN THE NETWORK.

MU = THE NUMBER OF ARCS (I,J) WITH I LESS THAN J.

ML = THE NUMBER OF ARCS (I,J) WITH J LESS THAN I.

LLEN = AN ARRAY WHOSE J-TH ENTRY IS THE NUMBER OF ARCS (1,J)
WITH J LESS THAN I.

LINC = AN ARRAY CONTAINING THE NODES I INCIDENY TO NODE J WITH
I GREATER THAN J, LISTED IN ORDER OF INCREASING Je

LVAL = AN ARRAY CONTAINING THE ARC LENGTH VALUES CORRESPONDING
TO ARCS IN LINC.

ULEN = AN ARRAY WHOSE J-TH ENTRY IS THE NUMBER OF ARCS (I,J)

WITH I LESS THAN J.
UINC = AN ARRAY CONTAINING THE NODES I INCIDENT TO NODE J WITH
I LESS THAN J, LISTED IN ORDER OF INCREASING J.

UVAL = AN ARRAY CONTAINING THE ARC LENGTH VALUES CORRE SPONDING
TO ARCS IN UINC.
INF = A NUMBER LARGER THAN ANY PATH LENGTH. A NONEXI STENT

PATH IS ASSIGNED THE LENGTH INF. =

START = AN ARRAY WHOSE J-TH ELEMENT INDICATES THE FIRST POSITION
ON INC WHERE NODES INCIDENT TO NODE J ARE LISTED.

INC = AN ARRAY CONTAINING NODES 1 WHICH ARE INCIDENT TO NODE J,
LISTED IN ORDER OF INCREASING J.

VAL = AN ARRAY CONTAINING THE ARC LENGTH VALUES CORRESPONDING

TO ARCS IN INC.

ADDITIONAL VARIABLES WHOSE VALUES MUST BE SPECIFIED BY THE USER ARE
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K = THE NUMBER OF DISTINCT PATH LENGTHS REQUIRED.

IMAX = THE MAXIMUM NUMBER OF DOUBLE-SWEEP ITERATIONS ALLOWED.
FOR MOST CASES IMAX = 100 SHOULD SUFFICE.

NS,NF = THE INITIAL AND FINAL NODES OF ALL K SHORTEST PATHS TO
BE GENERATED. ©

PMAX = THE MAXIMUM NUMBER OF PATHS TO BE GENERATED BETWEEN

NODES NS AND NF.
THE FOLLOWING VARIABLES MUST LIE WITHIN THE (INCLUSIVE) RANGES.

VARI ABLE LOWER BOUND UPPER BOUND

N 2 1000
MU 0 5000
ML 0 5000

K 2 20

THE FORMAT FOR THE INPUT NETWOFK IS AS FOLLOWS.

COoLS . CONTENTS

1-10 ARC STARTING NODE
11-20 ARC ENDING NODE
21530 ARC LENGTH

THE NETWORK DESCRIPTION IS FOLLOWED BY A BLANK RECORD. SUCCEEDING
RECORDS GIVE VALUES FOR K, NS AND IMAX ACCORDING TO

COLS. CONTENTS
=5 K

6-10 NS

11-15 IMAX

EACH (K,NS,IMAX) RECORD CAN BE FOLLOWED BY ANY NUMBER OF RECORDS
(POSSIBLY NONE) GIVING VALUES FOR NF AND PMAX ACCORDING TO

COLS. CONTENTS
15 NF
6-10 PMAX

THIS PATTERN OF (K,NS, IMAX) AND (NF,PMAX) RECORDS CAN BE REPEATED
AS OFTEN AS IS REQUIRED. THE FINAL DATA RECORD OF THE INPUT DECK
IS BLANK.

DIMENSION LLEN(1000),LINC(5000),LVAL(5000)

INTEGER ULEN(1000),UINC(5000),UVAL (5000) ,START,VAL
COMMON /BLK1/ NyMUsMLyLLEN,LINC,LVAL,ULEN,UINC,UVA_
COMMON /BLK2/ INF,K

COMMON /BLK4/ START(1001),INC(10000),VAL(10000)

INF IS DEFINED.

INF=99999999
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C AS THE INPUT NETWORK IS READ IN, THE VARIABLES AND ARRAYS NEEDED
C BY DSWP AND TRACE ARE CREATED.

J=0
MU=0
ML=0
NPREV=0
N=0
1 READ (5,800) NB,NA,LEN
800 FORMAT(3110)
IFCNA.GT.N) N=NA
IF(NB.GT.N) N=NB
IF(NA.EQ.NPREV) GO TO 10
IF(NA.EQ.NPREV+1) GO TO 3
IF(NA.EQ.0) GO TO 30
L1=NPREV+1
L2=NA-1
DO 2 L=L1,L2
START(L)=0
ULEN(L) =0
2 LLEN(L)=0
3 IF(J.EQ.0) GO TO 5
ULEN(NPREV)=JU
LLEN(NPREV)=JL
5 START(NA)=J+1
JU=0
JL=0
NPREV=NA
10 J=J+1
INC(J)=NB
VAL (J) =LEN
IF(NB.GT.NA) GO TO 20
MU=MU+1
UINC(MU)=NB
UVAL(MU)=LEN
JU=JuU+1
GO TO0 1
20 ML=ML+1
LINC(ML )=NB
LVAL (ML )=LEN
JL=JL+1
GO T0 1
30 START(NPREV+1)=J+1
ULEN(NPREV)=JU
LLENINPREV)=JL

c
C THE (KyNS; IMAX) AND (NF,PMAX) DATA RECORDS ARE SUCCESSIVELY READ.
c
40 READ (5,801) I1,12,13
801 FORMATI(3I5)
IF(I1.EQ.0) GO TO 100
IF(I3.EQ.0) GO TO 50
K=11
NS=12
C
C THE K SHORTEST DISTINCT PATH LENGTHS FROM NODE NS TO ALL NODES OF
C THE NETWORK ARE CALCULATED.
C
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up
NS

50

100

CALL DSWP(NS,13)
GO TO 40

TO PMAX OF THE PATHS HAVING THE K SHORTEST PATH LENGTHS FROM NODE
TO NODE NF ARE DETERMINED.

CALL TRACE(NS,I1,12)
GO TO 40

RETURN

END
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SUBROUTINE DSWP (NS ,IMAX)

THIS SUBROUT INE IMPLEMENTS THE DOUBLE-SWEEP METHOD IN ORDER TO
CALCULATE THE K SHORTEST (DISTINCT) PATH LENGTHS FROM NODE NS TO
ALL NODES OF A NETWORK. THE NETWORK IS ASSUMED TO CONTAIN NO
SELF-LOOPS AND ALL CIRCUITS IN THE NETWORK ARE REQUIRED TO HAVE
POSITIVE LENGTHe THE REQUIRED K SHORTEST PATH INFORMATION IS
PRINTED OUT ON UNIT 6.

THE VARIABLES IN THE CALLING SEQUENCE ARE

NS

IMAX

THE NODE FROM WHICH K SHORTEST PATH LENGTHS TO ALL NODES
ARE REQUIRED.
THE MAXIMUM NUMBER OF DOUBLE-SWEEP ITERATIONS ALLOWED.

THE VARIABLES AND ARRAYS IN COMMON ARE

N

MU
ML
LLEN
LINC
LVAL
ULEN
UINC
UVAL

INF

THE NUMBER OF NODES IN THE NETWORK. (NODES ARE ASSUMED
NUMBERED SEQUENTIALLY FROM 1 TO N.)

THE NUMBER OF ARCS (IsJ) WITH I LESS THAN J.

THE NUMBER OF ARCS (I,J) WITH J LESS THAN I.

AN APRAY WHOSE J-TH ENTRY IS THE NUMBER OF ARCS (I,J)
WITH J LESS THAN 1.

AN ARRAY CONTAINING THE NODES I INCIDENT TO NODE J WITH
I GREATER THAN J, LISTED IN ORDER OF INCREASING J.

AN ARRAY CONTAINING THE ARC LENGTH VALUES CORRESPONDING
TO ARCS IN LINC.

AN ARRAY WHOSE J-TH ENTRY IS THE NUMBER OF ARCS (I,J)
WITH I LESS THAN J.

AN ARRAY CONTAINING THE NODES I INCIDENT TO NODE J WITH
I LESS THAN J, LISTED IN ORDER OF INCREASING J.

AN ARRAY CONTAINING THE ARC LENGTH VALUES CORRESPONDING
TO ARCS IN UINC.

A NUMBER LARGER THAN ANY PATH LENGTH. A NONEXISTENT
PATH IS ASSIGNED THE LENGTH INF.

THE NUMBER OF DISTINCT PATH LENGTHS REQUIRED.

AN ARRAY WHOSE (I,J)-TH ENTRY WILL EVENTUALLY CONTAIN
THE J-TH SHORTEST (DISTINCT) PATH LENGTH FROM NODE NS
TO NOOE 1I.

ADDITIONAL VARIABLES ARE

ITNS
INDX

THE NUMBER OF ITERATIONS PERFORMED.
A VARIABLE RETURNED FROM XMULT WHICH = 1 IF {ONVERGENCE
HAS OBTAINED AND = 0 OTHERWISE. -

THE FOLLOWING VARIABLES MUST LIE WITHIN THE (INCLUSIVE) RANGES

VART ABLE LOWER BCUND JPPER BOUND

N 2 1000
MU 0 5000
ML 0 5000
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K 2 20

DIMENSION LLEN(1000),LINC(5000),LVAL(5000)

INTEGER ULEN(1000),UINC(5000),UVAL(5000) X

COMMON /BLK1/ NyMU,MLyLLEN,LINC,LVAL,ULEN,UINC,UVAL
COMMON /BLK2/ INF,K

COMMON /BLK3/ X(1000,20)

N1=N-1

THE INITIAL APPROXIMATION MATRIX X IS FORMED.

DO 20 I=1,N
DO 20 J=1,K
20 X(I4J)=INF
X(NS,1)=0
ITNS=1

THE CURRENT X IS MODIFIED THROUGH MATRIX MULTIPLICATION WITH THE
LOWER TRIANGULAR PORTION OF THE ARC LENGTH MATRIX.

30 IFIN=ML
INDX=1
DO 40 I=Nl,1,-1
IF(LLEN(I).EQ.0) GO TO 40
IS=TFIN-LLEN(I)+1
CALL XMULT(I,IS,IFINsLINC,LVAL,INDX)
IFIN=1S-1
40 CONTINUE
IFCITNS.EQ.1) GO TO S0

TEST FOR CONVERGENCE.
IF(INDX.EQ.1) GO TO 100

THE CURRENT X IS MODIFIED THROUGH MATRIX MULTIPLICATION WITH THE
UPPER TRIANGULAR PORTION OF THE ARC LENGTH MATRIX.

50 ITNS=ITNS+1
IS=1
INDX=1
DO 60 I=2,N
IF(ULEN(I).EQ.0Q0) GO TO 60
IFIN=IS+ULEN(I)-1
CALL XMULT(I IS IFINSUINCyUVAL,INDX)
IS=IFIN+1
60 CONTINUE

TEST FOR CONVERGENCE.

IF(INDX.EQ.1) GO TO 100
ITNS=ITNS+1

A TEST IS MADE TO SEE IF TOO MANY ITERATIONS HAVE BEEN PERFORMED.
IFCITNS .LT.IMAX) GO TO 30

WRITE (6,900) IMAX
900 FORMAT(* NUMBER OF ITERATIONS EXCEEDS*,15)
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GO TO 200

C THE SOLUTION MATRIX X IS PRINTED OUT ON UNIT 64 TOGETHER WITH THE
C VALUES FOR Ky NS AND ITNS.

100 WRITE (6,901) K,4NS
901 FORMAT(1H1+10Xs*K='4513,' SHORTEST PATH LENGTHS FROM NODE®,14//2X,
1°*TO'/1X,*NODE"'//)
DO 130 I=1,4N
130 WRITE (64902) I,(X(I4J)49J=1,K)
902 FORMAT(®* *,13,6X,(1019))
WRITE (6,903) ITNS
903 FORMAT(//1HO, *NUMBER OF ITERATIONS REQUIRED FOR CONVERGENCE =9,15)
200 RETURN
END
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SUBROUTINE XMULT(I IS,IFIN,INC,VAL, INDX)

THIS SUBROUTINE WILL PERFORM THE APPROPRIATE MATRIX MULTIPLICATION
OF X BY THE I-TH COLUMN OF THE LOWER (0OR UPPER) PORTION OF THE ARC
LENGTH MATRIX. IN EFFECT, THE CURRENT K SHORTEST PATH LENGTHS
ASSOCIATED WITH NODE I ARE ADJUSTED BY CONSIDERING NODES WHICH

ARE INCIDENT TO NODE I. IF AN IMPROVEMENT CAN BE MADE, THE VARIABLE
INDX WILL RETURN WITH THE VALUE O.

THE VARTIABLES AND ARRAYS IN THE CALLING SEQUENCE ARE

I = THE COLUMN OF THE ARC LENGTH MATRIX TO BE MULTIPLIED ON
THE LEFT BY X. THE CURRENT K SHORTEST PATH LENGTHS TO
NODE I WILL BE IMPROVED IF POSSIBLE.

IS = THE STARTING POSITION IN LISTS INC AND VAL WHERE ARC
INFORMATION FOR NODE I CAN BE FOUND.

IFIN = THE FINAL POSITION IN LISTS INC AND VAL WHERE ARC
INFORMATION FOR NODE I CAN B8E FOUND.

INC = AN ARRAY CONTAINING NODE INCIDENCE INFORMATION, EITHER
LINC OR UINC.

VAL = AN ARRAY CONTAINING ARC LENGTH INFORMATION, EITHER
LVAL OR UVAL.

INDX = A VARIABLE WHICH IS SET EQUAL TO O IF AN IMPROVEMENT CAN

BE MADE IN THE K SHORTEST PATH LENGTHS TO NODE I.

THE VARIABLES AND ARRAYS IN COMMON ARE

INF = A NUMBER LARGER THAN ANY PATH LENGTH. A NONEXISTENT PATH
IS ASSIGNED THE LENGTH INF.

K = THE NUMBER OF DISTINCT PATH LENGTHS REQUIRED.

X = THE CURRENT APPROXIMATION MATRIX FOR K SHORTEST PATH

LENGTHS FROM A GIVEN NODE TO ALL NODES OF THE NE TWORK.

ADDIT IONAL VARIABLES AND ARRAYS ARE

A = AN AUXILIARY APRAY USED IN FINDING THE K SMALLEST DISTINCT
ELEMENTS OF A SET.

MAX = THE CURRENT MAXIMUM ELEMENT OF ARRAY A.

IXV = A FEASIBLE PATH LENGTH TO NODE I FROM THE GIVEN NODE.

DIMENSION INC(5000)
INTEGER VAL(5000),A(20),X
COMMON /BLK2/ INF,K
COMMON /BLK3/ X(1000,20)

INITIALIZE A TO THE CURRENT K SHORTEST PATH LENGTHS FOR NODE I, IN
STRICTLY INCREASING ORDER.

DO 10 J=1,K

10 A(J)=X(I,J)
MAX=A(K)
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EACH NODE OF INC INCIDENT TO NODE I IS EXAMINED.

DO 100 L=IS,IFIN
IT=INC(L)
IV=VAL(L)

TEST TO SEE WHETHER IXV IS TOO LARGE TO BE INSERTED INTO A.

DO 90 M=1,K

IX=X(II,M)

IF(IX.GE.INF) GO TO 100
IXV=IX+1V

IF( IXV.GE.MAX) GO TO 100

IDENTIFY THE POSITION INTO WHICH IXV CAN BE INSERTED.

DO 30 J=Ky2,-1
IF(IXV-A(J-1)) 30,90,50
30 CONTINUE
J=1
50 JJ=K
70 IF(JJ.LE.J) GO TO 80
A(JJ)=AWJJ-1)
JI=JJ-1
GO TO 70
80 A(J)=IXV

IF AN INSERTION HAS BEEN MADE IN A, SET INDX = 0.

INDX=0
MAX=A(K)
90 CONTINUE
100 CONTINUE
IF( INDX.EQ.1) GO TO 120

UPDATE THE K SHORTEST PATH LENGTHS TO NODE I.
DO 110 J=1,K
110 X(I,J)=A(J)

120 RETURN
END
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SUBROUTINE TRACE(NS,NF, PMAX)

THIS SUBROUTINE WILL TRACE OUT THE PATHS CORRESPONDING TO THE K
DISTINCT SHORTEST PATH LENGTHS FROM NODE NS TO NODE NF. AT MOST
PMAX SUCH PATHS WILL BE GENERATED. IT IS ASSUMED THAT ALL CIRCUITS
IN THE NETWORK HAVE POSITIVE LENGTH. MOREOVER ONLY PATHS HAVING

AT MOST 5000 ARCS WILL BE PRODUCED. AN ERROR MESSAGE WILL INDICATE
WHEN THIS CONDITION IS NOT FULFILLED. THE REQUIRED PATHS BETWEEN
NODES NS AND NF ARE PRINTED OUT ON UNIT 6.

THE VARIABLES IN THE CALLING SEQUENCE ARE

NSsNF = THE INITIAL AND FINAL NODES OF ALL K SHORTEST PATHS
BEING GENERATED.
PMAX = THE MAXIMUM NUMBER OF PATHS TO BE GENERATED BETWEEN

NODES NS AND NF.

THE VARIABLES AND ARRAYS IN COMMON ARE

INF = A NUMBER LARGER THAN ANY PATH LENGTH. A NONEXI STENT PATH
IS ASSIGNED THE LENGTH INF.

K = THE NUMBER OF DISTINCT PATH LENGTHS REQUIRED. K SHOULD
LIE IN THE RANGE 2 TO 20 INCLUSIVE.

X = AN ARRAY WHOSE (1,J)-TH ENTRY IS THE J-TH SHORTEST
(DISTINCT) PATH LENGTH FRTM NODE NS TO NODE I.

START = AN ARRAY WHOSE J-TH ELEMENT INDICATES THE FIRST POSITION
ON INC WHERE NODES INCIDENT TO NODE J ARE LISTEDe.

INC = AN ARRAY CONTAINING NODES I WHICH ARE INCIDENT TO NODE J,
LISTED IN ORDER OF INCREASING J.

VAL = AN ARRAY CONTAINING THE ARC LENGTH VALUES CORRESPONDING

TO ARCS IN INC.

ADDITIONAL VARIABLES AND ARRAYS ARE

JJ = INDEX OF THE PATH LENGTH FROM NS TO NF BEING EXPLORED.
JJ CAN TAKE ON VALUES FROM 1 TO K.
NP = THE NUMBER OF PATHS FROM NS TO NF FOUND.
KK = CURRENT POSITION OF LIST P.
P = AN ARRAY CONTAINING NODES ON A POSSIBLE PATH FROM NS TO NF.
Q = AN ARRAY WHOSE I-TH ELEMENT GIVES THE POSITION, RELATIVE
TO START, OF NGDE P(I) ON THE INC LIST FOR P(I-1).
PV = AN ARRAY WHOSE I-TH ELEMENT IS THE ARC LENGTH EXTENDING

FROM NODE P(I) TO NODE P(I-1).

INTEGER P (5000),Q(5000),PV(5000),START,VALyX,PMAX

COMMON /BLK2/ INF,K

COMMON /BLK3/ X(1000,20)

COMMON /BLK4/ START(1001),INC(10000),VAL(10000)
INITIALIZATION PHASE.

DO 10 I=1,5000
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IF(NS.EQ.NF) JJ=2

NP=0

IF(X(NF3JJ).LT.INF) GO TO 15
WRITE (6,909) NS,NF

909 FORMAT(1Hl,°*THERE ARE NO PATHS FROM NODE®,I4,' TO NODE®,I4)

GO TO 200
15 WRITE(6+501) NS,NF
901 FORMAT(1H1,*THE K SHORTEST PATHS FROM NODE®,I4,°
1'PATH LENGTH NODE SEQUENCE'//)

THE JJ-TH DISTINCT PATH LENGTH IS BEING EXPLORED.

20 KK=1
LAB=X(NF,JJ)
IF(LAB.EQ.INF) GO TO 200
LL=LAB
P(1)=NF

30 LAST=0

NODES INCIDENT TO NODE P(KK) ARE SCANNED.

40 NT=P(KK)
IS=START(NT)
DO 45 ND=NT,1000
IF(START(ND+1).NE.O) GO TO 48
45 CONTINUE
48 IF=START(ND+1)-1
IT1=TS+LAST
50 IF(IT.GT.IF) GO TO 90
NI=INC(IT)
NV=VAL(IT)
LT=LAB-NV

TO NODE'",14//1HO,

A TEST IS MADE TQ SEE IF THE CURRENT PATH CAN BE EXTENDED BACK TO

NODE NI.

DO 60 J=1,K
IF(X(NI4J)-LT) 60,80,70
60 CONTINUE
70 II=11+1
GO TO 50
80 KK=KK+1
IF(KK.GT.5000) GO TO 190
P(KK)=NI1
Q(KK)=II-1S+1
PV (KK )=NV
LAB=LT

TESTS ARE MADE TO SEE IF THE CURRENT PATH CAN BE EXTENDED FURTHER.

IF(LAB.NE.O) GO T3 30
IF(NI.NE.NS}) GO TO 30

A COMPLETE PATH FROM NS TO NF HAS BEEN GENERATED AND IS PRINTED
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C OUT ON UNIT 6.

G
NP=NP+1
WRITE (654902) NPLLLy(P(J) 3J=KK,y1,-1)
902 FORMAT(1X, I4,18,5X,(2015))
IF(NP.GE.PMAX) GO TO 200
90 LAST=Q(KK)
P(KK)=0
LAB=LAB+PV (KK)
KK=KK-1
IF(KK.GT.0) GO TO 40
(=

C THE EXPLORATION OF THE CURRENT JJ-TH DISTINCT PATH LENGTH IS ENDED.
c
JI=JJ+1
IF(JJ.GT.K) GO TO 200
GO 10 20
190 WRITE(6,4903)
903 FORMAT(140,*NUMBER OF ARCS IN PATH EXCEEDS 5000°')
200 RETURN
END
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