The Convex Hull of the Transposition Matrices

Lambert S. Joel

Institute for Basic Standards, National Bureau of Standards, Washington, D.C. 20234

(June 26, 1974)

The convex hull of the *n* by *n* transposition matrices is characterized as the set of symmetric doubly stochastic matrices with trace $n-2$. A similar characterization (with trace $\geq n-2$) is given for the convex hull of the union of transposition matrices and the identity matrix.

Key words: Combinatorial analysis; convex set; linear inequalitites; permutations.

Many combinatorial optimization problems can be expressed as requiring the extremization of a linear fun ction over some finite set *S* of points in a real N-dime nsion al space. To bring the theoretical and computational resources of linear programming to bear, it is necessary to characterize the convex hull $K(S)$ of S as the solution-set of a "nicely structured" family of linear inequalities and equations.

The outstanding example, arising in connection with the assignment problem of operations research, has $S = S_n$, the set of *n* by *n* permutation matrices (regarded as points in n^2 dimensional space). Here a well-known theorem¹ (Birkhoff-Hoffman-von Neumann-Wielandt et al.) identifies $K(S_n)$ as the set of all *n* by *n* doubly stochastic matrices $X = (x_{ij})$, i.e. matrices with nonnegative entries and with each row and column summing to 1. It is expected that a similar characterization of $K(C_n)$, where C_n is the set of all cyclic permutation matrices, would be valuable in connection with the traveling saleman problem, but no such characterization has been given as yet.

For a given *n* let Π_c ($1 \leq c \leq n$) denote the set of *n* by *n* permutation matrices for which the decomposition of the associated permutation into disjoint cycles contains exactly c cycles (including cycles of length one). Since $C_n = \prod_1$, the remark ending the last paragraph suggests looking at the "other end" of the sequence $\{\Pi_c\}_{c=1}^n$. The situations for Π_n and Π_{n-1} are simple, and form the subject of this note. Clearly Π_n consists of the identity matrix I_n , so that $K(\Pi_n) = \{I_n\}$. We go on to characterize $K(\Pi_{n-1})$ as well as $K(\Pi_{n-1}\cup \Pi_n)=K(\Pi_{n-1}\cup \{I_n\})$. Note that Π_{n-1} consists of the $n(n-1)/2$ transposition matrices $T_{pq}(1 \leq p \leq q \leq n)$ defined by

> $(T_{pq})_{ij} = 1$ if $(i, j) = (p, q)$ or (q, p) , $(T_{pq})_{ii} = 1$ for $i \neq p, q$, $(T_{pq})_{ij} = 0$ otherwise.

THEOREM 1. $K(\Pi_{n-1})$ consists of all symmetric doubly stochastic matrices with trace $n-2$.

THEOREM 2. $K(\Pi_{n-1}) \cup \{I_n\}$ *consists of all symmetric doubly stochastic matrices with* $trace \geq n - 2$.

To begin the proof, note that each member of Π_{n-1} (of $\Pi_{n-1} \cup \{I_n\}$) is a symmetric doubly stochastic matrix with trace $n-2$ (with trace $\geq n-2$). It readily follows that the same is true for each member of $K(\Pi_{n-1})$ (of $K(\Pi_{n-1} \cup \{I_n\})$).

AMS Subject Classification: 05B20, 15A51.

¹ Cf. Chap. 5: H. J. Ryser, Combinatorial Mathematics, Carus Mathematical Monograph No. 14, MAA, John Wiley & Sons 1963.

Next, let $X = (x_{ij})$ be any symmetric doubly stochastic matrix. Note that

$$
\sum_{p} \sum_{q>p} X_{pq} = \frac{1}{2} \sum_{p, q \neq p} X_{pq} = \frac{1}{2} [n - \text{tr}(X)].
$$
\n
$$
Y = X - \sum_{p} \sum_{q>p} x_{pq} T_{pq}
$$
\n(1)

The matrix

is readily seen to be diagonal, with (i, i) entry

$$
y_{ii} = x_{ii} - \sum \{x_{pq}:p \neq i, q \neq i, q > p\}
$$

\n
$$
= x_{ii} - \sum_{p < i} \left(\sum_{q > p} (x_{pq} - x_{pi})\right) - \sum_{p > i} \sum_{q > p} x_{pq}
$$

\n
$$
= x_{ii} + \sum_{p < i} x_{pi} - \sum_{p \neq i} \sum_{q > p} x_{pq}
$$

\n
$$
= \sum_{p \leq i} x_{pi} - \left[\sum_{p} \sum_{q > p} X_{pq} - \sum_{q > i} X_{iq}\right]
$$

\n
$$
= \left[\sum_{p \neq i} x_{pi} + \sum_{q > i} x_{qi}\right] - \sum_{p} \sum_{q > p} x_{pq}.
$$

Since column i of X sums to 1, the last result together with (1) yields

$$
y_{ii} = 1 - \frac{1}{2} [n - tr(X)] = \frac{1}{2} [tr(X) - (n - 2)] = \delta,
$$
 (2)

where the final equation defines δ .

If $tr(X) = n - 2$, then (2) yields $Y = 0$ and (1) shows that $X = \sum x_{pq} T_{pq}$ lies in $K(\prod_{n=1})$, completing the proof of Theorem 1. If $tr(X) \ge n-2$, then $\delta \ge 0$; since (2) shows that $Y = \delta I_n$ and since (1) and (2) yield $\Sigma x_{pq} + \delta = 1$, it follows that $X = \Sigma x_{pq}T_{pq} + \delta I_n$ lies in $K(\Pi_{n-1} \cup \{I_n\})$, completing the proof of Theorem 2.

(Paper 78B3-409)