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The convex huU of the n by n transposition matrices is characterized as the set of sym met ric 
doubly stoc hasti c matri ces with trace n - 2. A similar characte rization (with trace '" 1/ - 2) is given 
for nhe convex huU of the union of transposition matrices and the ide ntity matrix. 
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Many combinatorial optimization proble ms can be expressed as requiring the ex tre mization 
of a linear fun ction over some finite set S of points in a real N-dime nsion al space. To bring the 
theoretical and computational resources of linear programming to bear, it is necessary to cha rac
terize the convex hull K (S) of S as the solutio n-set of a " ni cely structured" family of linear in
equalities and equations. 

The outs tanding example , arising in connec ti on with the assignment prob le m of operations 
research , has S = S", the se t of n by n permutation matrices (regarded as points in n2 dim ension rll 
s pace). Here a we ll-known theore m I (Birkhoff-Hoffman-vo n Ne umann -W ielan dt et al.) identifies 
K (5,,) as the set of all n by n doubly stochasti c matrices X = (Xi), i.e. matrices with nonnegative 
e ntries and with e ach row and column summing to 1. It is expected th at a si milar cl 'aracte r ization 
of K ( Cn ), where Cll is the set of all cyclic permutation matrices, would be va lua ble in connection 
with the travelin g saleman proble m, but no such c harac teri zation has been given as ye t. 

For a given n le t TIc(l ~ c ~ n) de note the se t of n by n permutation matrices for which the 
decomposition of the associated perm utation into di sjoin t cycles conta in s exactly c cycles (i ncl udin g 
cycles of le ngth o ne). Sin ce Cn = TIl , the re mark endi ng the last paragraph suggests lookin g at th e 
"other e nd" of th e seque nce {nc}~= I' The situ ations for TIn and TIn- I are simp le, a nd form the 
s ubject of thi s note. Clearly TIll consists of the identity matrix In, so that K (TI,,) = {JII}' We go on 
to characterize K CTIn - l ) as well as K(TIn- 1 U TI,, ) = K(TIn - 1 U { In}) . Note that llll - I consists of 
the n(n -1)/2 transposition matrices Tpq(l ~ p < q ~ n) defined by 

if (i, j) = (p, q) or (q, p), 

for i ¥= p, q , 

otherwise. 

THEOREM 1. K(TIn - d consists of all symmetric doubly stochastic matrices with trace n - 2. 
THEOREM 2. K(TIn- l ) U {In} ) consists of all symmetric doubly stochastic matrices with 

trace;;': n - 2. 
T o begin the proof, note that each member of IIn - 1 (of IIn - 1 U {In} ) is a symmetric doubly 

stoc has tic matrix with trace n - 2 (with trace;;': n - 2). It readily follows {hat th e same is true for 
each me mber of K(TIn- l ) (of K(TIII _ I U {In})). 
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Next, let X = (Xij) be any symmetric doubly stochastic matrix. Note that 

(1) 

The matrix 
Y=X-L LXpqTpq 

p q>p 

is readily seen to be diagonal, with (i , i) entry 

Yii = Xii - I{xpQ:p 0/= i, q 0/= i, q>p} 

=Xii+ L Xpi- L L XPQ 
p<i p>'i q>p 

=[ L, Xpi+ L XQi] - L L Xpq. 
p>" Q>l P q>p 

Since column i of X sums to 1, the last result together with (1) yields 

1 1 
Yii=I- 2 [n-tr(X)]=2 [t.r(X)-(n-2)]=o, (2) 

where the final equation defines o. 

If tr(X) = n - 2, then (2) yields Y = 0 and (1) shows that X = IXpQTpq lies in K (lln- l) , completing 
the proof of Theorem 1. If tr(X) ~ n - 2, then 0 ~ 0; since (2) shows that Y = OIn and since (1) and 
(2) yield IXpq+ 0 = 1, it follows that X = 'ixpqTpq+ OIn lies in K (IIn- 1 U {In} ), completing the proof 
of Theorem 2. 
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