The Convex Hull of the Transposition Matrices

Lambert S. Joel

Institute for Basic Standards, National Bureau of Standards, Washington, D.C. 20234

(June 26, 1974)

The convex hull of the *n* by *n* transposition matrices is characterized as the set of symmetric doubly stochastic matrices with trace n - 2. A similar characterization (with trace $\ge n - 2$) is given for the convex hull of the union of transposition matrices and the identity matrix.

Key words: Combinatorial analysis; convex set; linear inequalitites; permutations.

Many combinatorial optimization problems can be expressed as requiring the extremization of a linear function over some finite set S of points in a real N-dimensional space. To bring the theoretical and computational resources of linear programming to bear, it is necessary to characterize the convex hull K(S) of S as the solution-set of a "nicely structured" family of linear inequalities and equations.

The outstanding example, arising in connection with the assignment problem of operations research, has $S=S_n$, the set of n by n permutation matrices (regarded as points in n^2 dimensional space). Here a well-known theorem¹ (Birkhoff-Hoffman-von Neumann-Wielandt et al.) identifies $K(S_n)$ as the set of all n by n doubly stochastic matrices $X=(x_{ij})$, i.e. matrices with nonnegative entries and with each row and column summing to 1. It is expected that a similar characterization of $K(C_n)$, where C_n is the set of all cyclic permutation matrices, would be valuable in connection with the traveling saleman problem, but no such characterization has been given as yet.

For a given *n* let $\Pi_c(1 \le c \le n)$ denote the set of *n* by *n* permutation matrices for which the decomposition of the associated permutation into disjoint cycles contains exactly *c* cycles (including cycles of length one). Since $C_n = \Pi_1$, the remark ending the last paragraph suggests looking at the "other end" of the sequence $\{\Pi_c\}_{c=1}^n$. The situations for Π_n and Π_{n-1} are simple, and form the subject of this note. Clearly Π_n consists of the identity matrix I_n , so that $K(\Pi_n) = \{I_n\}$. We go on to characterize $K(\Pi_{n-1})$ as well as $K(\Pi_{n-1} \cup \Pi_n) = K(\Pi_{n-1} \cup \{I_n\})$. Note that Π_{n-1} consists of the n(n-1)/2 transposition matrices $T_{pq}(1 \le p < q \le n)$ defined by

$$\begin{split} (T_{pq})_{ij} &= 1 \qquad \text{if } (i,j) = (p, q) \text{ or } (q, p), \\ (T_{pq})_{ii} &= 1 \qquad \text{for } i \neq p, q, \\ (T_{pq})_{ij} &= 0 \qquad \text{otherwise.} \end{split}$$

THEOREM 1. $K(\Pi_{n-1})$ consists of all symmetric doubly stochastic matrices with trace n-2.

THEOREM 2. $K(\Pi_{n-1}) \cup \{I_n\}$ consists of all symmetric doubly stochastic matrices with trace $\ge n-2$.

To begin the proof, note that each member of Π_{n-1} (of $\Pi_{n-1} \cup \{I_n\}$) is a symmetric doubly stochastic matrix with trace n-2 (with trace $\ge n-2$). It readily follows that the same is true for each member of $K(\Pi_{n-1})$ (of $K(\Pi_{n-1} \cup \{I_n\})$).

AMS Subject Classification: 05B20, 15A51.

¹ Cf. Chap. 5: H. J. Ryser, Combinatorial Mathematics, Carus Mathematical Monograph No. 14, MAA, John Wiley & Sons 1963.

Next, let $X = (x_{ij})$ be any symmetric doubly stochastic matrix. Note that

$$\sum_{p} \sum_{q > p} X_{pq} = \frac{1}{2} \sum_{p, q \neq p} X_{pq} = \frac{1}{2} [n - \operatorname{tr} (X)].$$

$$Y = X - \sum_{p} \sum_{q > p} x_{pq} T_{pq}$$
(1)

The matrix

is readily seen to be diagonal, with (i, i) entry

$$\begin{aligned} y_{ii} &= x_{ii} - \sum \{ x_{pq} : p \neq i, q \neq i, q > p \} \\ &= x_{ii} - \sum_{p < i} \left(\sum_{q > p} \left(x_{pq} - x_{pi} \right) \right) - \sum_{p > i} \sum_{q > p} x_{pq} \\ &= x_{ii} + \sum_{p < i} x_{pi} - \sum_{p \neq i} \sum_{q > p} x_{pq} \\ &= \sum_{p \leqslant i} x_{pi} - \left[\sum_{p} \sum_{q > p} X_{pq} - \sum_{q > i} X_{iq} \right] \\ &= \left[\sum_{p \neq i} x_{pi} + \sum_{q > i} x_{qi} \right] - \sum_{p} \sum_{q > p} x_{pq}. \end{aligned}$$

Since column i of X sums to 1, the last result together with (1) yields

$$y_{ii} = 1 - \frac{1}{2} \left[n - \operatorname{tr}(X) \right] = \frac{1}{2} \left[\operatorname{tr}(X) - (n-2) \right] = \delta,$$
(2)

where the final equation defines δ .

If $\operatorname{tr}(X) = n-2$, then (2) yields Y=0 and (1) shows that $X = \sum x_{pq}T_{pq}$ lies in $K(\prod_{n-1})$, completing the proof of Theorem 1. If $\operatorname{tr}(X) \ge n-2$, then $\delta \ge 0$; since (2) shows that $Y = \delta I_n$ and since (1) and (2) yield $\sum x_{pq} + \delta = 1$, it follows that $X = \sum x_{pq}T_{pq} + \delta I_n$ lies in $K(\prod_{n-1} \cup \{I_n\})$, completing the proof of Theorem 2.

(Paper 78B3-409)