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The convex hull of the n by n transposition matrices is characterized as the set of symmetric
doubly stochastic matrices with trace n — 2. A similar characterization (with trace = n — 2) is given
for the convex hull of the union of transposition matrices and the identity matrix.
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Many combinatorial optimization problems can be expressed as requiring the extremization
of a linear function over some finite set S of points in a real N-dimensional space. To bring the
theoretical and computational resources of linear programming to bear, it is necessary to charac-
terize the convex hull K(S) of S as the solution-set of a “nicely structured” family of linear in-
equalities and equations.

The outstanding example, arising in connection with the assignment problem of operations
research, has S=S,, the set of n by n permutation matrices (regarded as points in n? dimension
space). Here a well-known theorem! (Birkhoff-Hoffman-von Neumann-Wielandt et al.) identifies
K(Sx) as the set of all n by n doubly stochastic matrices X = (x;;), i.e. matrices with nonnegative
entries and with each row and column summing to 1. It is expected that a similar characterization
of K(C,), where C, is the set of all cyclic permutation matrices, would be valuable in connection
with the traveling saleman problem, but no such characterization has been given as yet.

For a given n let II.(1 <c¢=<n) denote the set of n by n permutation matrices for which the
decomposition of the associated permutation into disjoint cycles contains exactly ¢ cycles (including
cycles of length one). Since C,=1I,, the remark ending the last paragraph suggests looking at the
“other end” of the sequence {ll.}*_,. The situations for I, and Il,—; are simple, and form the
subject of this note. Clearly II, consists of the identity matrix /,,, so that K(I1,) = {/,}. We go on
to characterize K(Il,—;) as well as K(IL,—; U II,) = K(Il,-; U {[,,}). Note that Il,_; consists of
the n(n—1)/2 transposition matrices 7},(1 < p < g < n) defined by

(Tpg)iy=1  if (i,j) = (p, q) or (¢, p),
(Tpe)ii=1 fori # p, q,
(Tpq)ij=0 otherwise.

THEOREM 1. K(I1,,_1) consists of all symmetric doubly stochastic matrices with trace n — 2.

THEOREM 2. K(Il,—1) U {I.}) consists of all symmetric doubly stochastic matrices with
trace = n — 2.

To begin the proof, note that each member of I1,_; (of I1,-; U {[,}) is a symmetric doubly
stochastic matrix with trace n — 2 (with trace = n — 2). It readily follows that the same is true for

each member of K(I1,-;) (of K(Il,-y U {I,})).
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Next, let X = (xi;) be any symmetric doubly stochastic matrix. Note that

1 1
> > qu:'z' > quzg [n—tr (X)]. @)
P @>p D, q#p
The matrix
Y:X—E Eququ
P ©p

is readily seen to be diagonal, with (i, i) entry

yii = xii — 2{Xpg:p # 1, ¢ # i, ¢>Pp}

=xii— Y, (2 (qu_xpi)>_ > 2 *ra

p<i “q>p p>i ¢>p

=xi,-+ 2 Xpi— 2 E Xpq

p<i pP#i q>p

=S o= [ T Xoe— T K|

p<i P @>p q>i

:[ Ex,,i+2xqi]—2 Y xpq-

p#FEi q>i P q>p

Since column i of X sums to 1, the last result together with (1) yields
1 1
yii=l—§[n—tr(X)]=§[tr(X)—(n,—Q)]ZS, 2)

where the final equation defines 8.

If tr(X) =n—2, then (2) yields Y=0 and (1) shows that X=3x,,T»q lies in K(II,-1), completing
the proof of Theorem 1. If tr(X) = n—2, then & = 0; since (2) shows that Y= 8/, and since (1) and
(2) yield Zxpg+6=1, it follows that X = 3xpqTpq+ 8I, lies in K(IT,—y U {I,}), completing the proof

of Theorem 2.
(Paper 78B3-409)
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