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Let P = f" + (- I ,,) , the direct sum of the p x p identity matrix and the negative of the q x q iden­
t ity matrix. The fo llowing theorem is proved. 

TH EOHEM: If X = cZ where Z is a 4 x 4 P-orthogonal , P-skew-symmetric matrix and Ie I .;;; 2, there 
exist matrices A an.d B, both of which are P-orthogollal and P-skew-symmetric, sach that X = AB - BA. 
Methods for o btaining certain matrices which sati sfy X = AB - BA are given. Methods are a lso given 
fo r de terminin g pairs of anti co mmuting P -orth"gona l, P -skew-symmetric matrices. 
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1. Introduction 

Let P = Ip -i- (- Iq) , the direct sum of the p X P identity matrix and the negative of the q X q 

identity matrix_ Katz and Olkin [2J I define a real matrix A to be orthogonal with r espect to P(P­
orthogonal) if and only if 

APA'=P (1) 

where A' is the transpose of A_ Furthermore, they defin e B to be skew-symmetri c with respect to 
P(P-skew-symm etri c) if and only if BP is skew-symmetri c in the ordinary sense_ 

The main result of this paper is concerned with matrices which are both P-orthogonal and 
P-skew-symmetric of order n = 4 = p + q. Smith [7] proved that such matrices exist in only two 
cases, p=4, q = O and p=q=2_ In the first case P-orthogonal and P-skew-symmetric redu ce to 
orthogonal and skew-symmetric in the ordinary sense. 

Pearl [4] and Smith [6] proved the following theorem in the cases p = 4, q = 0 and p = q = 2 
res pectively. 

THEOREM J. If the 4 X 4 matrices A and B are both P-orthogonal and P-skew-symmetric then 
their commutat . . , [A, B] == AB - BA, is a scaler multiple of a 4 X 4 P-orthogonal, P-skew-symmetric 
matrix. 

The purpose of this paper is to prove a converse to Theorem 1. Shoda [5] proved that if X is 
a square matrix with zero trace having elements in an algebraically closed field then there exist 
matrices A and B such that X = AB - BA. Albert and Muckenhoupt [1] removed the restriction that 
the field be algebraically closed. However, both the method of Shoda and the method of Albert 
and Muckenhoupt give a singular matrix B. The main result of this paper is: 

THEOREM 2: If X = cZ where Z is a 4 X 4 P-orthogonal, P-skew-symmetric matrix and Ic l ,s; 2 , 
there exist matrices A and B, both of which are P-orthogonal and P-skew-symmetric, such that 
X=AB-BA. 
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Methods for obtaining certain matrices which satisfy X = AB - BA are given. Methods are also 
given for determining pairs of anticommuting P·orthogonal, P-skew-symmetric matrices. 

2. Anticommuting Matrices 

In exammmg the structure of P-orthogonal, P-skew-symmetric matrices in the case p = 4, 
q = 0, Pearl [4] shows that any such matrix has exactly one of the following forms: 

where the ai are real scalers and the Ri and 5 i are the first and second regular representations 
respectively of the real quaternions [3]. 

Similarly, in the case p = q = 2, Smith [6] shows that any such matrix has exactly one of the 
following forms: 

whereP=I2+ (-12)' 
A further examination of these papers leads to 
THEOREM 3: If Z is a 4 X 4 P-orthogonal, P-skew-symmetric matrix there exists a 4 X 4 P-or­

thogonal, P-skew-symmetric matrix B such that ZB = - BZ. 
PROOF: There are four cases to consider. 
Case 1, Z = al R 1 + a2 R2 + a3 R3. If a3 0/= 0, choose arbitrary /3; , f3; and set 

Let x = f3;' + f3~' + f3~ ' and set f3i = ~, i = 1, 2,3. If a3 = 0, let f31 = f32 = ° and f33 = 1. Clearly, 

in either situation 

(2) 
and 

f3i + f3~ + f3~ = 1. (3) 

Letting B = f31 R\ + f32 R2 + f33 R3, by (3) B is P-orthogonal, P-skew-symmetric and by (2) 

ZB=-BZ. 

Case 2, Z = al 51 + a2 52 + a3 53. Choose f3i' i = 1, 2,3 as in Case 1 and le t 

Case 3, Z = al RI P + a2 52 P + a3 53 P. The matrix B = f31 RI P + f32 52 P + f33 53 P will 
be P -orthogonal, P -skew-symmetric if 

f3~ + f3~ - f3~ = 1 (4) 
and ZB = - BZ if 
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(5) 

a3 - a 3 
If a I + a 2 "'" 0, set /31 = , /32 = , and /3 3 = 1. Clearly, (4) and (5) are satisfied. If 

al+a2 <X1+<X2 

<XI = <X2 = 0, set /31 = /3 :1 = 0 , /3 2 = 1. Again (4) and (5) are satisfied. If <XI = - <X2 "'" 0, since clearly 

<X3 = ± 1, set x = -1 1 2 and le t /31 = 0, /33 = <X3 al Yx, /32 = Yx. Again (4) and (5) are satisfied. 
+<X I 

Case 4 , Z = <XI 51 P + <Xz R2 P + <X 3 R3 P. Let B = /315 1 P + /3 2 R 2 P + /33 R 3 P where the 
/3 i are chosen as in case 3. 

3. Proof of Theorem 2 

In order to prove Theorem 2 it is convenient to first prove the following lemmas. 
LEMMA 1: (i) IfB is P-skew-symmetric then B' =- PBP. 

(ii) IfB is P-skew-symmetric and P-orthogonal than B2 = - 1. 

LEMMA 2: If Z is a P-orthogonaL, P-skew-symmetric matrix and lei ~ 2 then 

Y4 - e 2 e 
y = 2 I + 2" Z is P -orthogonal. 

PROOF: By direct computation , 

YPY' = (7 I +~Z) P (7 I+~Z') 

4 - c2 c2 Y 4 - c2 
= --P+-ZPZ'+ (ZP+PZ') . 

4 4 2 

However, Z PZ ' = P by (1) and by Lemma 1 

ZP + PZ ' = ZP + P (-PZP) = ZP - ZP = O. 

4 - c2 c 2 

Thus YPY' = -4- P +4 P + 0 = P and by (1) Y is P-orthogonal. 

LEMMA 3: If Z is P-orthogo nal , P·skew-symmetric and lei ~ 2, and if B is P-orthogonal, P­

skew-symmetric such that ZB = - BZ , then A = ( 7 I + ~ Z) PB'P satisfies [A ,BJ = cZ. 

PROOF: AB = (YPB' P) B = (YP) (B'PB) = (YP) P = Y 

= v'4=C2 I + £. Z 
2 2 

BA =B (YPB'P) = ~ BPB'P+ £' BZPB'P 
2 2 

= v'4=C2 I- ~ ZBPB'P 
2 2 
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~ c 
= 2 1- 2Z. 

Thus [A,B]=AB-BA=cZ. 'I 
COROLLARY: The matrix A defined in Lemma 3 is P-orthogonal, P-skew-symmetric. 
PROOF: By Lemmas 1 and 2 A is the product of two P -orthogonal matrices. Hence A is P­

orthogonaL Also 

V4-c2 \f'4=C2 
By Lemma 1, 2 PB' P=- 2- B which is P-skew-symmetric. Furthermore 

(~ZPB' p)' =~ PBPZ' 

=-I2B'Z' 
2 

by Lemma 1 

since ZB = - BZ 

by Lemma 1 

Thus A is the sum of two P-skew-symmetric matrices and hence A is P-skew-symmetric. 
In the 4 X 4 case, the existence of the matrix B is given by Theorem 3. Thus Theorem 3, Lemma 

3, and the Corollary complete the proof of Theorem 2. 

4. Conclusion 

Theorem 2 provides a converse to the theorems of Pearl [4] and Smith [6]. While Theorem 2 
is restricted to the 4X 4 case, the results of section 3 refer to the general n X n case. Smith [8] has 
generalized Theorem 1 to the n X n case. Perhaps the results of section 3 can be applied to find a 
converse of that result. 
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