JOURNAL OF RESEARCH of the Notional Bureau of Standards - B. Mathematical Sciences Vol. 78B, No. 3, July-September 1974

The Factorization of a Matrix as the Commutator of Two Matrices

John M. Smith*

Institute for Computer Sciences and Technology, National Bureau of Standards, Washington, D.C. 20234

(April 4, 1974)

Let $P = I_p + (-I_q)$, the direct sum of the $p \times p$ identity matrix and the negative of the $q \times q$ identity. tity matrix. The following theorem is proved.

THEOREM: *If* $X = c\overline{Z}$ *where* Z *is a* 4×4 *P-orthogonal*, *P-skew-symmetric matrix and* $|c| \leq 2$, *there exist matrices* A *and* B , *both of which are P-orthogonal and P-skew-symmetric, such that* $X = AB - BA$ Methods for obtaining certain matrices which satisfy $X = AB - BA$ are given. Methods are also given for determining pairs of anticommuting P -orthogonal, P -skew-symmetric matrices.

Key words: Anticommuting; commutator; factorization; matrix; orthogonal; skew-symmetric.

1. **Introduction**

Let $P = I_p + (-I_q)$, the direct sum of the $p \times p$ identity matrix and the negative of the $q \times q$ identity matrix. Katz and Olkin $[2]^T$ define a real matrix *A* to be orthogonal with respect to $P(P$ orthogonal) if and only if

$$
APA' = P \tag{1}
$$

where A' is the transpose of A . Furthermore, they define B to be skew-symmetric with respect to $P(P$ -skew-symmetric) if and only if BP is skew-symmetric in the ordinary sense.

The main result of this paper is concerned with matrices which are both P-orthogonal and P-skew-symmetric of order $n=4=p+q$. Smith [7] proved that such matrices exist in only two cases, $p=4$, $q=0$ and $p=q=2$. In the first case P-orthogonal and P-skew-symmetric reduce to orthogonal and skew-symmetric in the ordinary sense.

Pearl [4] and Smith [6] proved the following theorem in the cases $p=4$, $q=0$ and $p=q=2$ respectively.

THEOREM J. *If the* 4 X 4 *matrices* A *and* B *are both P-orthogonal and P-skew-symmetric then their commutater,* $[A, B] = AB - BA$, *is a scaler multiple of a 4* \times 4 *P-orthogonal, P-skew-symmetric matrix.*

The purpose of this paper is to prove a converse to Theorem 1. Shoda [5] proved that if X is a square matrix with zero trace having elements in an algebraically closed field then there exist matrices *A* and *B* such that $X = AB - BA$. Albert and Muckenhoupt [1] removed the restriction that the field be algebraically closed. However, both the method of Shoda and the method of Albert and Muckenhoupt give a singular matrix B . The main result of this paper is:

THEOREM 2: If $X = cZ$ where Z is a 4×4 *P-orthogonal, P-skew-symmetric matrix and* $|c| \leq 2$, *there exist matrices* A *and* B, *both of which are P-orthogo nal and P-skew-symmetric, such that* $X = AB - BA$.

*AMS Subject Classification: P*rimary 15A21, Secondary 15A27.
*Also with George Mason University, Fairfax, Virginia :22030.

¹ Figures in brackets indicate the literature references at the end of this paper.

Methods for obtaining certain matrices which satisfy $X = AB - BA$ are given. Methods are also given for determining pairs of anticommuting P·orthogonal, P-skew-symmetric matrices.

2. Anticommuting Matrices

In examining the structure of P-orthogonal, P-skew-symmetric matrices in the case $p = 4$, $q=0$, Pearl [4] shows that any such matrix has exactly one of the following forms:

(i)
$$
\alpha_1 R_1 + \alpha_2 R_2 + \alpha_3 R_3
$$
, $\alpha_1^2 + \alpha_2^2 + \alpha_3^2 = 1$
\n(ii) $\alpha_1 S_1 + \alpha_2 S_2 + \alpha_3 S_3$, $\alpha_1^2 + \alpha_2^2 + \alpha_3^2 = 1$

where the α_i are real scalers and the R_i and S_i are the first and second regular representations respectively of the real quaternions [3].

Similarly, in the case $p = q = 2$, Smith [6] shows that any such matrix has exactly one of the following forms:

(iii)
$$
\alpha_1 R_1 P + \alpha_2 S_2 P + \alpha_3 S_3 P
$$
, $\alpha_2^2 + \alpha_3^2 - \alpha_1^2 = 1$
iv) $\alpha_1 S_1 P + \alpha_2 R_2 P + \alpha_3 R_3 P$, $\alpha_1^2 - \alpha_2^2 - \alpha_3^2 = -1$

where $P = I_2 + (-I_2)$.

A further examination of these papers leads to

THEOREM 3: If Z is a 4×4 P-orthogonal, P-skew-symmetric matrix there exists a 4×4 P-or*thogonal, P-skew-symmetric matrix B such that* $ZB = - BZ$.

PROOF: There are four cases to consider.

Case 1, $Z = \alpha_1 R_1 + \alpha_2 R_2 + \alpha_3 R_3$ *. If* $\alpha_3 \neq 0$, choose arbitrary β'_1 , β'_2 and set

$$
\beta_3' = -\frac{1}{\alpha_3} \left(\alpha_1 \beta_1' + \alpha_2 \beta_2' \right).
$$

Let $x = \beta_1'^2 + \beta_2'^2 + \beta_3'^2$ and set $\beta_i = \frac{\beta_i'}{\sqrt{x}}$, $i = 1, 2, 3$. If $\alpha_3 = 0$, let $\beta_1 = \beta_2 = 0$ and $\beta_3 = 1$. Clearly, in either situation

and

$$
\alpha_1 \beta_1 + \alpha_2 \beta_2 + \alpha_3 \beta_3 = 0
$$
\n
$$
\beta_1^2 + \beta_2^2 + \beta_3^2 = 1.
$$
\n(3)

Letting $B = \beta_1 R_1 + \beta_2 R_2 + \beta_3 R_3$, by (3) B is P-orthogonal, P-skew-symmetric and by (2)

 $ZB = -BZ$.

 $Case 2, Z = \alpha_1 S_1 + \alpha_2 S_2 + \alpha_3 S_3$. Choose $\beta_i, i = 1, 2, 3$ as in Case 1 and let

$$
B = \beta_1 S_1 + \beta_2 S_2 + \beta_3 S_3.
$$

Case 3, Z = $\alpha_1 R_1 P + \alpha_2 S_2 P + \alpha_3 S_3 P$. The matrix $B = \beta_1 R_1 P + \beta_2 S_2 P + \beta_3 S_3 P$ will be *P* -orthogonal, *P* -skew-symmetric if

$$
\beta_2^2 + \beta_3^2 - \beta_3^2 = 1 \tag{4}
$$

and $ZB = -BZ$ if

$$
\alpha_2 \beta_2 + \alpha_3 \beta_3 - \alpha_1 \beta_1 = 0. \tag{5}
$$

If $\alpha_1 + \alpha_2 \neq 0$, set $\beta_1 = \frac{\alpha_3}{\alpha_1 + \alpha_2}$, $\beta_2 = \frac{-\alpha_3}{\alpha_1 + \alpha_2}$, and $\beta_3 = 1$. Clearly, (4) and (5) are satisfied. If $\alpha_1 = \alpha_2 = 0$, set $\beta_1 = \beta_3 = 0$, $\beta_2 = 1$. Again (4) and (5) are satisfied. If $\alpha_1 = -\alpha_2 \neq 0$, since clearly $\alpha_3 = \pm 1$, set $x = \frac{1}{1 + \alpha_1^2}$ and let $\beta_1 = 0$, $\beta_3 = \alpha_3 \alpha_1 \sqrt{x}$, $\beta_2 = \sqrt{x}$. Again (4) and (5) are satisfied.

Case 4, $Z = \alpha_1 S_1 P + \alpha_2 R_2 P + \alpha_3 R_3 P$ *. Let* $B = \beta_1 S_1 P + \beta_2 R_2 P + \beta_3 R_3 P$ *where the* β_i are chosen as in case 3.

3. **Proof of Theorem 2**

In order to prove Theorem 2 it is convenient to first prove the following lemmas.

LEMMA 1: (i) If B is P-skew-symmetric then $B' = -PBP$.

(ii) If B is P-skew-symmetric and P-orthogonal than $B^2 = -I$.

LEMMA 2: If Z is a P-orthogonal, P-skew-symmetric matrix and $|c| \leq 2$ then

$$
Y = \frac{\sqrt{4 - c^2}}{2} I + \frac{c}{2} Z \text{ is P-orthogonal.}
$$

PROOF: By direct computation,

$$
YPY' = \left(\frac{\sqrt{4-c^2}}{2}I + \frac{c}{2}Z\right)P\left(\frac{\sqrt{4-c^2}}{2}I + \frac{c}{2}Z'\right)
$$

= $\frac{4-c^2}{4}P + \frac{c^2}{4}ZPZ' + \frac{\sqrt{4-c^2}}{2}(ZP + PZ').$

However, $ZPZ' = P$ by (1) and by Lemma 1

$$
ZP + PZ' = ZP + P(-PZP) = ZP - ZP = 0.
$$

Thus $YPY' = \frac{4-c^2}{4}P + \frac{c^2}{4}P + O = P$ and by (1) *Y* is *P*-orthogonal.

LEMMA 3: If Z is P-orthogonal, P-skew-symmetric and $|c| \le 2$, and if B is P-orthogonal, P*skew-symmetric such that* $ZB = -BZ$, *then* $A = \left(\frac{\sqrt{4-c^2}}{2}I + \frac{c}{2}Z\right)PB'P$ *satisfies* $[A,B] = cZ$.

PROOF: $AB = (YPB'P)$ $B = (YP)$ $(B'PB) = (YP)$ $P = Y$

$$
=\frac{\sqrt{4-c^2}}{2}I+\frac{c}{2}Z
$$

$$
BA = B (YPB'P) = \frac{\sqrt{4 - c^2}}{2} BPB'P + \frac{c}{2} BZPB'P
$$

$$
= \frac{\sqrt{4 - c^2}}{2} I + \frac{c}{2} BZPB'P
$$

$$
=\frac{\sqrt{4-c^2}}{2}I-\frac{c}{2}ZBPB'P
$$

$$
=\frac{\sqrt{4-c^2}}{2}I-\frac{c}{2}Z.
$$

Thus $[A,B]=AB-BA=cZ$.

COROLLARY: *The matrix* A *defined in Lemma* 3 *is P-orthogonal, P-skew-symmetric.*

PROOF: By Lemmas 1 and 2 A is the product of two P-orthogonal matrices. Hence A is PorthogonaL Also

$$
A = \left(\frac{\sqrt{4-c^2}}{2}I + \frac{c}{2}Z\right)PB'P
$$

$$
= \frac{\sqrt{4-c^2}}{2}PB'P + \frac{c}{2}ZPB'P.
$$

By Lemma 1, $\frac{\sqrt{4-c^2}}{2}$ *PB' P* = $-\frac{\sqrt{4-c^2}}{2}$ *B* which is *P*-skew-symmetric. Furthermore

$$
\left(\frac{c}{2} ZPB'P\right)' = \frac{c}{2} PBPZ'
$$

= $-\frac{c}{2} B'Z'$ by Lemma 1
= $\frac{c}{2} Z'B'$ since $ZB = -BZ$
= $-\frac{c}{2} PZPB'$ by Lemma 1
= $-\frac{c}{2} P(ZPB'P)P$.

Thus Λ is the sum of two P-skew-symmetric matrices and hence Λ is P-skew-symmetric.

In the 4×4 case, the existence of the matrix B is given by Theorem 3. Thus Theorem 3, Lemma 3, and the Corollary complete the proof of Theorem 2.

4. Conclusion

Theorem 2 provides a converse to the theorems of Pearl [4] and Smith [6]. While Theorem 2 is restricted to the 4×4 case, the results of section 3 refer to the general $n \times n$ case. Smith [8] has generalized Theorem 1 to the $n \times n$ case. Perhaps the results of section 3 can be applied to find a converse of that result.

5. References

- [1] Albert, A. A., and Muckenhoupt, B., On matrices of trace zero, Michigan Math. J. Vol. 4,1-3, (1957).
- [2] Katz, L., and Olkin, I., Properties and factorizations of matrices defined by the operation of pseudo-transposition, Duke Math. J. Vol. 20,331-337, (1953). [3] MacDuffee, C. c., Orthogonal matrices in four-space, Canadian J. Math. Vol. 1, 69-72, (1949).
-
- [4] Pearl, M., On a Theorem of M. Riesz, J. Res. Nat. Bur. Stand. (U.s.), 62, No.3, 69-72 (Mar. 1959).
- [5] Shoda, K., Einige Satz tiber Matrizen, Japanese J. Math. Vol. 13, 361-365, (1936).
- [6] Smith, J: M., Additional Remarks on a Theorem of M. Riesz, J. Res. Nat. Bur. Stand. (U.S.), 718, No.1 , 43-46 (Jan.- Mar. 1967).
- [7] Smith,]. M., On the Existence of Certain Matrices, Portugaliae Mathematica, Vol. 30,93-95, (1971).
- [8] Smith, J. M., A Theorem on Matrix Commutators, J. Res. Nat. Bur. Stand. (U.S.), 758, No.1, 17-21 (Jan.-Mar. 1971).

(Paper 78B3-407)