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Let P=1,+(—1,), the direct sum of the p X p identity matrix and the negative of the ¢ X ¢ iden-
tity matrix. The following theorem is proved.

THEOREM: If X=cZ where Z is a 4 X4 P-orthogonal, P-skew-symmetric matrix and |c| < 2, there
exist matrices A and B, both of which are P-orthogonal and P-skew-symmetric, such that X = AB —BA.
Methods for obtaining certain matrices which satisfy X=A4B —BA are given. Methods are also given
for determining pairs of anticommuting P-orthogonal, P-skew-symmetric matrices.
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1. Introduction

Let P=1,+ (—1,), the direct sum of the p X p identity matrix and the negative of the ¢ X ¢
identity matrix. Katz and Olkin [2] ! define a real matrix 4 to be orthogonal with respect to P (P-
orthogonal) if and only if

APA' =P (1)

where A’ is the transpose of A. Furthermore, they define B to be skew-symmetric with respect to
P (P-skew-symmetric) if and only if BP is skew-symmetric in the ordinary sense.

The main result of this paper is concerned with matrices which are both P-orthogonal and
P-skew-symmetric of order n=4=p+q. Smith [7] proved that such matrices exist in only two
cases, p=4, ¢q=0 and p=¢=2. In the first case P-orthogonal and P-skew-symmetric reduce to
orthogonal and skew-symmetric in the ordinary sense.

Pearl [4] and Smith [6] proved the following theorem in the cases p=4, ¢=0 and p=q¢=2
respectively.

THEOREM 1 If the 4 X4 matrices A and B are both P-orthogonal and P-skew-symmetric then
their commutat. ., |[A, B] = AB —BA, is a scaler multiple of a 4 X 4 P-orthogonal, P-skew-symmetric
matrix.

The purpose of this paper is to prove a converse to Theorem 1. Shoda [5] proved that if X is
a square matrix with zero trace having elements in an algebraically closed field then there exist
matrices 4 and B such that X=A4B — BA. Albert and Muckenhoupt [1] removed the restriction that
the field be algebraically closed. However, both the method of Shoda and the method of Albert
and Muckenhoupt give a singular matrix B. The main result of this paper is:

THEOREM 2: If X=cZ where Z is a 4 X4 P-orthogonal, P-skew-symmetric matrix and |c| < 2,
there exist matrices A and B, both of which are P-orthogonal and P-skew-symmetric, such that

X=AB—BA.
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Methods for obtaining certain matrices which satisfy X=4B —BA are given. Methods are also
given for determining pairs of anticommuting P-orthogonal, P-skew-symmetric matrices.

2. Anticommuting Matrices

In examining the structure of P-orthogonal, P-skew-symmetric matrices in the case p = 4,
q = 0, Pearl [4] shows that any such matrix has exactly one of the following forms:

(l) a1R1+azR2+a3R3, a%+a§+a23=1
(i) a1 S;+ a2 Se + a3 Ss, aijtaitaz=1

where the «; are real scalers and the R; and S; are the first and second regular representations
respectively of the real quaternions [3].

Similarly, in the case p = ¢ = 2, Smith [6] shows that any such matrix has exactly one of the
following forms:

(lll) a1R1P+azSgP+a353P, aﬁ—}-a%‘—af:l
(iv) 1 S1P+as Ry P+a3R;3 P, oi—ai—aj=—1

where P=1,+ (—1,).

A further examination of these papers leads to

THEOREM 3: If Z is a 4 X 4 P-orthogonal, P-skew-symmetric matrix there exists a 4 X 4 P-or-
thogonal, P-skew-symmetric matrix B such that ZB = — BZ.

PRrROOF: There are four cases to consider.

Case1,Z = o1 R, + as Ry + a3 R3. If a3 # 0, choose arbitrary B/, 8, and set

Bi=— (@ i +az B)).

’

Letx = B+ B,° + B;" and setBi=%, i=1,2,3. lfa; =0, let 31 = B> =0 and B3 = 1. Clearly,
x

in either situation
o1 B1+axBe+azB3=0 (2)
and
B+ B+ B3=1. (3)
Letting B= 1 R + 82 R> + 33 R3, by (3) B is P-orthogonal, P-skew-symmetric and by (2)
ZB=—BZ.
Case2,Z= 0,81+ a»S> + a3 S3. Choose Bi,i = 1,2, 3 as in Case 1 and let

B=pB1S1+B28:+ B3 S;.

C(l863,Z:a1 R1P+a252P+a353P. The matrix B:Bl R] P+,8252P+B‘;S3P will
be P-orthogonal, P-skew-symmetric if

Bi+B5—Bi=1 (4)
and ZB =—BZ if
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a ,32"’(1:;,3:;_6’1131:0- (5)

X3 Bs = — Qa3
a; + asy’ : o+ Qs
ar=ay,=0,set B;=B3=0, B2 = 1. Again (4) and (5) are satisfied. If ; = — a» # 0, since clearly

If ay+as # 0, set B, = , and B3 = 1. Clearly, (4) and (5) are satisfied. If

sandlet B, =0,8; = az Vi, B2 = V. Again (4) and (5) are satisfied.

az==x1,setx=—"— .
' ’ 1+ «
Case 4,7 = a, S, P-{-aleP-i-a,;R_ P.let B=B3,S, P+ B2 R, P+ B3 Ry P where the

Bi are chosen as in case 3.

3. Proof of Theorem 2

In order to prove Theorem 2 it is convenient to first prove the following lemmas.
LEMMA 1: (i) If B is P-skew-symmetric then B’ =—PBP.
(i) If B is P-skew-symmetric and P-orthogonal than B* = — 1.

LEMMA 2: If Z is a P-orthogonal, P-skew-symmetric matrix and |c| <2 then

VA — o2
Y = 4'—2& I+ g Z is P-orthogonal.

Proor: By direct computation,
YPY' = (—”41+ Z) ( e Fitee

¢ .,
- 2 1+z>

2 2

4—c \/—
1 7

(ZP+PZ').

However, ZPZ' = P by (1) and by Lemma 1

ZP + PZ' = ZP + P(—PZP) = ZP — ZP =0.

Thus YPY' =2

(1) Y is P-orthogonal.

LEMMA 3: If Z is P-orthogonal, P-skew-symmetric and |c| < 2. and if B is P-orthogonal, P-

— 7
E [ =L g Z) PB'P satisfies [A.B|= cZ.

skew-symmetric such that ZB = — BZ, then A = ( 2

Proor: AB = (YPB'P) B= (YP) (B'PB)= (YP) P=Y

= 42_ Cr+iz
BA=B (YPB'P) :@ BPB'P + % BZPB'P
VA= pappp
2 2
=@ I—%ZBPB’P
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V4 — c? G
== I3
Thus [4,B]=AB—BA=cZ.
COROLLARY: The matrix A defined in Lemma 3 is P-orthogonal, P-skew-symmetric.
PRroOF: By Lemmas 1 and 2 4 is the product of two P-orthogonal matrices. Hence A4 is P-

orthogonal. Also
— 2
A—(=—C1:+tz|pPBP

— 74
— VA=< ppp S zPR'P.
2 2
V4 — 2 AV == A
By Lemma 1, % PB'P=— % B which is P-skew-symmetric. Furthermore

C ’ n __E ’
(2 ZPB P)  PBPZ

=—§B'Z’ by Lemma 1
=%Z’B’ since ZB = — BZ
=—%PZPB’ by Lemma 1

—-¢ P(ZPB’P)P.

Thus A4 is the sum of two P-skew-symmetric matrices and hence 4 is P-skew-symmetric.
In the 4 X 4 case, the existence of the matrix B is given by Theorem 3. Thus Theorem 3, Lemma
3, and the Corollary complete the proof of Theorem 2.

4. Conclusion

Theorem 2 provides a converse to the theorems of Pearl [4] and Smith [6]. While Theorem 2
is restricted to the 4X4 case, the results of section 3 refer to the general nX n case. Smith [8] has
generalized Theorem 1 to the n X n case. Perhaps the results of section 3 can be applied to find a

converse of that result.
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