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An n by n complex matrix A4 is said to be positive stable if Re () >0 fnr each eigenvalue \ of 4.
If A satisfies both of the following two conditions, then A4 is positive stable: (1) for each k=1, N,
the real part of the sum of the £ by k principal minors of A is positive: and (Z) the minimum nfthe redl
parts of the eigenvalues of A is itself an eigenvalue of 4. Special cases include hermitian positive defi-
nite matrices and M-matrices.
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Suppose A= (aij)eM,(C), the n by n complex matrices. Then let Pr(A4) denote the sum of
the & by k principal minors of A. If Re (A) >0 for each eigenvalue \ of 4, then A is called (positive)
stable, and if Re [Pr(4)] >0, k=1, . . ., n, then A4 is called prestable [2].! This note was sug-
gested by the following question which arose in the stability analysis of an economic equilibrium
[3]. Suppose AeM,(R), the real n by n matrices, has the sign pattern (M):

a;i;i >0, =1, .. .,n
and
aij<0, 1#j, 1, =1, . . ., n.

If A is prestable, does it then follow that A is stable ? Unfortunately, this is not one of the 13 equiv-
alent conditions given in [1] for 4 to be an M-matrix. An affirmative answer to this question is a
corollary to what we shall prove.

LEMMA 1: If AeM(C) is prestable, then A has no nonpositive real eigenvalues.

PROOF: Suppose A is prestable and that —r, r = 0, is a nonpositive real eigenvalue of 4. But
then A — (—r)I=A+rl is singular which means det (44 rl)=0. However,

det (A+rl)=r"+ 3 Py(d)rn—»

k=1

so that Re[det(A4 +rl)] > 0, a contradiction. This means there is no such r and completes the proof.

When the minimum of the real parts of the eigenvalues of 4eM,(C) is itself an eigenvalue of
A, we shall say that 4 has the property (*).

THEOREM: Suppose AeM (C) has property (*). If A is prestable, then A is stable.

PRrRoOF: Because of lemma 1 and property (*), the minimum of the real parts of the eigen-
values of 4 is positive. This means 4 is stable.

Since it is clear that the well known class of hermitian matrices satisfies property (*), it fol-
lows that:
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COROLLARY 1: If AeM (C) is hermitian, then A prestable implies A stable.

Another well known class of matrices which has property (*) are those of sign pattern (M).
LEMMA 2: If AeM (R) has sign pattern (M), then A has property (¥).
PROOF: Suppose that m is a real number greater than each of the a;;. Then 4 may be written

A=mIl—P

where P is an entry-wise nonnegative matrix. Because of the Perron-Frobenius theorem, P has a
dominant positive eigenvalue r such that r = |\|, and thus r = Re (\), for each eigenvalue \ of P.
It then follows that m —r is an eigenvalue of A and is the smallest of the real parts of the eigenvalues
of A, so that 4 has property (*).

COROLLARY 2: If AeM,(R) has sign pattern (M), then A prestable implies A stable.

Proor: This follows from Lemma 2 and the theorem.

We close with a question of interest which arises from the preceding remarks:
What are necessary and sufficient conditions on A such that A satisfy property (*)?
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