JOURNAL OF RESEARCH of the National Bureau of Standards – B. Mathematical Sciences Vol. 78B, No. 2, April-June 1974

A New Proof of Pick's Theorem*

Steven Minsker**

(March 18, 1974)

Pick's theorem states that, if f is a univalent analytic function on the open unit disk with f(0) = 0and f'(0) = 1, and $|f| \le M$, then $\left|\frac{f''(0)}{2}\right| \le 2\left(1 - \frac{1}{M}\right)$. A new proof of this result is given, and a comparison with the usual proof is made

Key words: Bieberbach's theorem; coefficient estimate; univalent analytic function.

Let \mathscr{F} denote the collection of all univalent analytic functions $f:\Delta(0; 1) \to \mathbb{C}$ with f(0)=0and f'(0) = 1. Such functions have power series expansions of the form

$$f(z) = z + a_2 z^2 + a_3 z^3 + \dots$$

Bieberbach's famous theorem states that $|a_2| \leq 2$ for all $f \in \mathcal{F}$, with equality holding only for the functions $g_{\beta}(z) = \frac{z}{(1+e^{i\beta}z)^2}$, β real. The theorem that will interest us here is as follows:

THEOREM (*Pick*, [2])¹: If $f \in \mathcal{F}$ and $|f| \leq M$, then $|a_2| \leq 2\left(1 - \frac{1}{M}\right)$.

The usual proof consists of an application of Bieberbach's theorem to the functions

$$f_{\beta}(z) = rac{f(z)}{(1 + e^{i\beta}f(z)/M)^2},$$

β real. (See, for instance, [1], p. 224, ex. 4.) We offer the following proof which, although it also uses Bieberbach's result, is considerably different.

PROOF: Let $\phi(z) = \frac{f(z)}{M}$. Then ϕ sends the open unit disk into itself. Let $\phi_1 = \phi$ and inductively define $\phi_n = \phi \circ \phi_{n-1}$. If $\phi_n(z) = A_{n,1} \ z + A_{n,2} \ z^2 + \dots$, it is clear that $A_{1,1} = \frac{1}{M}, \ A_{1,2} = \frac{a_2}{M}$, $A_{n,1} = A_{1,1} A_{n-1,1}$, and $A_{n,2} = A_{1,1} A_{n-1,2} + A_{1,2} A_{n-1,1}^2$. It follows that $A_{n,1} = A_{1,1}^n$ and $A_{n,2} = A_{1,2}A_{1,1}^{n-1}(1 + A_{1,1} + A_{1,1}^2 + \dots + A_{1,1}^{n-1}).$

Now $\phi_n | A_{n,1} \in \mathcal{F}$ for each *n*, so Bieberbach's theorem implies that $|A_{n,2}| | A_{n,1} | \leq 2$, or

$$|A_{1,2}|A_{1,1}| (1+A_{1,1}+A_{1,1}^2+\ldots+A_{1,1}^{n-1}) \le 2.$$

Consider two cases:

(1) $A_{1,1}=1$ (that is, M=1). Then $|A_{1,2}|n \le 2$ for all n, so $A_{1,2}=0$ and $a_2=0$. Thus $|a_2|$ $\leq 2\left(1-\frac{1}{M}\right)$ trivially.

AMS Subject Classification: 30A34.

^{**}Present address: Department of Mathematics, University of Pittsburgh, Pa. 15260.

¹Figures in brackets indicate the literature references at the end of this paper.

(2) $A_{1,1} < 1$ (that is, M > 1). Then, letting $n \to \infty$, we get $|A_{1,2}/A_{1,1}| \frac{1}{1 - A_{1,1}} \le 2$, so $|a_2|$

 $\leq 2\left(1-\frac{1}{M}\right)$. Since the case M < 1 cannot occur (as is seen by applying Schwarz's lemma to f/M), the proof is complete.

REMARK: The two proofs are related in the following fashion. Suppose that M > 1 and that equality holds in Pick's theorem, that is, $a_2 = -2\left(1 - \frac{1}{M}\right)e^{i\beta_0}$, β_0 real. Then $A_{n,2}/A_{n,1} \rightarrow -2e^{i\beta_0}$.

Now it is a consequence of the Koebe distortion theorem and Hurwitz's theorem that \mathscr{F} is compact for the topology of uniform convergence on compact subsets of $\Delta(0;1)$. So any convergent subsequence of $\{\phi_n/A_{n,1}\}$ must converge to a function in \mathscr{F} with second coefficient $-2e^{i\beta_0}$, and hence must converge to g_{β_0} . It follows that $\phi_n/A_{n,1} \to g_{\beta_0}$. But then $g_{\beta_0} \odot \phi = \lim_{k \to \infty} (\phi_n \odot \phi)/A_{n,1} = \frac{1}{M} \lim_{k \to \infty} (\phi_n \odot \phi_k) = \lim_{k \to \infty} (\phi_n \odot \phi_k)/A_{n,1} = \frac{1}{M} \lim_{k \to \infty} (\phi_n \odot \phi_k$

$$\phi_{n+1}/A_{n+1,1} = \frac{1}{M} g_{\beta_0}$$
. So $g_{\beta_0} = M(g_{\beta_0} \odot \phi) = f_{\beta_0}$. Thus, we have shown that, if $M > 1$ and equality

occurs in Pick's theorem, the sequence $\{\phi_n/A_{n,1}\}$ converges to f_{β_0} for some β_0 . And we have shown that, for equality to occur, the function f must satisfy $f_{\beta_0} = g_{\beta_0}$ for some β_0 (this is also true for M=1, for then f(z)=z by Schwarz's lemma and $f_\beta = g_\beta$ for all β). This condition turns out to be sufficient also, so equality holds in Pick's theorem only for the functions

$$h_{\beta}(z) = e^{i\beta}M \frac{z + e^{i\beta} - \sqrt{(z + e^{i\beta})^2 - 4e^{i\beta}z/M}}{z + e^{i\beta} + \sqrt{(z + e^{i\beta})^2 - 4e^{i\beta}z/M}}, \beta \text{ real.}$$

References

[1] Nehari, Z., Conformal Mapping (McGraw-Hill, 1952).

[2] Pick, G., Über die konforme Abbildung eines Kreises auf ein schlichtes und zugleich beschränktes Gebiet, Sitzgber. Kaiserl. Akad. Wiss. Wien, Math. – naturwiss. Kl. Abt. Ha 126 (1917), 247–263.

(Paper 78B2-404)