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This paper considers the following generalization of the Weber plant location problem: the plant’s
output level is fixed, and its levels of input from its supply points, as well as its location, are among
the decision variables. Hurter and Wendell (J. Reg. Sci., 1972) showed that this problem admits a
kind of separability when the plant’s production function lies in a certain class including the Cobb-
Douglas forms. The present paper (a) determines the extent of that function-class, (b) carries out the
explicit separation for the CES generalization of the Cobb-Douglas functions, and (¢) discusses simple
fixed-point-type iterative solution algorithms, similar to that well-known for the ordinary Weber problem,
for several production functions (Cobb-Douglas., CES, and various two-stage technologies). Local
convergence of these algorithms is established; computational experience will be reported in a separate

Part 11.

Key words: CES: economics; Leontief; location theory; plant location; production functions; trans-
portation; Weber problem, mathematical programming.

1. Introduction

The “ordinary” Weber plant-location problem, set in the real n-dimensional space R”, can be
described as requiring the selection of xeR" to minimize the function

m

dw(x) = til|x — sil|g:- (1.1)

Here the decision variable x represents the location of a plant which requires m inputs for its
operation; s; is the source of the ith input, ¢; the associated unit transportation cost, and ¢; the
level of the ith input. In (1.1), ||-|| denotes some appropriate norm on R", which will be taken as
the Euclidean norm throughout. The abbreviation

pi= ||x — sil| 1.2)

will prove convenient.

This problem can be generalized by including the vector g= (q, . . ., gm) of input levels among
the decision variables. A plant output level ¢° is specified, as is the plant’s production function
f(q) and the unit prices p; of the inputs at their respective sources s;. Now the problem is to choose
xeR" and geR™ so as to achieve

m

min, min(, E {t,'pi + pi}q; (1.3)
1

subject to f(q)=q" (1.4)
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A one-dimensional version of this problem was studied by Sakashita[1]! and extended to a net-
work location problem by Wendell and Hurter [2]. The general case was formulated by Wendell
and Hurter in a paper [3] which is the point of departure for the present work.

The production function f will be said to lie in “class C(q°)” if there is a positive constant
K(q°) such that, for all positive ¢ satisfying (1.4),

m

> qidflagi=K(q"). (1.5)

It is noted in [3] that for this class of production functions, the problem has a kind of separability:
it can be transformed into

mingm(x) (1.6)

where wu(x) is the Lagrange multiplier corresponding to constraint (1.4) for the “inner” minimization
in (1.3).

If f lies in class C(g°) for all ¢° >0, we say it lies in “class C”. As noted in [3], it is a con-
sequence of Euler’s theorem that class C contains all differentiable homogeneous functions, but
it contains other functions as well. In section 2, we determine the extent of class C.

Since class C contains the homogeneous production functions, it in particular includes the
familiar Cobb-Douglas functions [4]

f(g)=exp {a+§‘, ailong} (ai>0) 1.7)

as well as the multi-input CES (‘“constant elasticity of substitution”) functions of Arrow, Chenery,
Minhas and Solow [5],

flg)= (2 biq,.—v)_'/" (b;>0,c>—1,c#0). (1.8)

In [3] the separation (1.6) is carried out explicitly for the Cobb-Douglas case, but the corresponding
problem for other homogeneous functions is noted to be “difficult”. In section 3, we perform the
explicit separation for the CES functions and for several functions representing two-stage tech-
nologies.

The ordinary Weber problem can be regarded as arising from a Leontief production function
(in which specifying the output-level q° fixes the values ¢;), and is a convex programming problem.
In contrast, the mathematical programming problems (1.6) arising from the cases studied here are
nonconvex, so that their numerical solution is nontrivial. In section 4, simple iterative fixed-point-
type solution algorithms are presented, patterned after one well known for the Weber problem.
Local convergence is established for the low dimensions of practical interest, and the analyses
necessary to handle the singularities s; are performed. A subsequent Part II will report our compu-
tational experience, to date, with these algorithms. Further work should take up the case of time-
varying prices p;, transport costs t;, and output levels g°. Another natural line of generalization
would incorporate consideration of market location.

2. Determination of Class C

From (1.4) and (1.5), it is readily seen that C is the class of production functions f which sat-
isfy a partial differential equation of the form

S wiofloai=F[f(a)] @.1)

! Figures in brackets indicate the literature references at the end of this paper.
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for all positive g. Since a production function f has positive first-order derivatives, F is positive-
valued; we also assume it continuous.

THEOREM: Class C consists of the production functions of the form f(q)=M{[h(q)], where h is a pro-
duction function homogeneous of degree 1, and M is an increasing differentiable function.

Before proving this theorem, we note three consequences of it. First, it identifies class C with
the class of “homothetic” production functions introduced by Shephard (see p. 30 of [6]), apart
from questions of smoothness and other properties in a theoretical definition of “production func-
tion”. Second, it ‘“‘explains” the examples of nonhomogeneous members of C given in [3], which
in fact are the logarithms of Cobb-Douglas functions. Third, it implies that analyses of our gener-
alized Weber problem can be confined to production functions which are homogeneous of degree 1,
since with f= M[h| as above, the constraint (1.4) can be replaced by the equivalent h(q)=M ~(¢°).

For the proof, first assume f=M[h] as in the theorem’s statement. By Euler’s theorem on
homogeneous functions, -

Zqiah/Bth(q),

and so by the chain rule of differentiation

m

S qiaflaqi=M'[h(q)]h(q).

an instance of (2.1) with F (v) =M'[M-"(v) |M-'(v).
Conversely, suppose feC satisfies (2.1). Define a function M~ (u) by

M“(u)=exp{ ' [l/F(v)]dv} (2.2)

uq

for some uy > 0. Since F is positive-valued and continuous, M~! is increasing and differentiable,
and thus has an increasing differentiable inverse function M. Define h=M"'[f]; then by (2.1)
and (2.2)

m m

Y qiohlagi= (M~1)' [f] D qidfloai

={M[fUFLfIFLf]1="h,

so that the converse of Euler’s theorem implies that & is homogeneous of degree 1. Since f=M[h],
the proof is complete.

Before leaving this topic, we note that class C also arises in a multi-output generalization of
the problem under discussion. Namely, suppose the m inputs are used jointly to produce several
outputs in accordance with a vector production function having one component f;(q) per output.
Suppose furthermore that the level of each output is prescribed, and that w;(x) denotes the
Lagrange multiplier corresponding to the jth of these constraints in the inner minimization of
(1.3). The first-order optimality conditions for that minimization are

tiPi‘+‘Pi=E lu'j(x)af)/a(II (lzla 2a LRI ) m)9
J

so that with the inner minimization accomplished for each x (and the 9fj/0q; evaluated at its solu-
tion) the objective function (1.2) becomes

i J

>, (tpitp)ai= wi(x) ¥ aiofiloq.
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If now each fj is in class C, with corresponding F; in (2.1), then this minimand is equal to

b () =3 w)F;(f) (2.3)

where f} is the prescribed level of the jth output. Result (2.3) is a multi-output extension of the
separability expressed by (1.6). This (multiple output) line of generalization will not be pursued
further in the present paper.

3. Some Cases of Explicit Separation

To take full advantage of the separability expressed in (1.6), it is necessary to find an explicit
expression for w(x), so that the resultant “pure location’ problem is in explicit form. This will be
possible, in particular, if f satisfies a suitable set of identities

q=Fi[f(q), dfl0qi]. 3.1)

To see why this is so, recall the first-order optimality conditions

tipit+ pi=p(x)d flogi

for the inner minimization in (1.3). The solution g(x) of that minimization will therefore satisfy,

by (3.1),
qi(x) = Gi[(tipi+ pi) [ m(x) ],

where G;(-) =Fi(q°,-). It follows that

"= flg(x)1=f{G:[(tipr + p)In(x)], . . ., Gu[(tmpm+pm)/p(x)]}- 3.2)

Typically (hence the adjective “suitable’ above (3.1)) this equation can be solved to obtain the de-
sired explicit form for w(x).
For the Cobb-Douglas case (1.7), one has in (3.1)

Fi(u, v) = aulv;

thus (3.2) yields

m

logg’=a+ Y ailoglaiq’u(x)/(tipi+pi)]
1

m m

=[a+ 3 ailog (aig") 1+ [logu(x)] 3 ai— 3, ai log (tipi+ pi)-

It follows that

m -1 m
log w(x) = <E a,~> Y ailog (tipi+pi) + const.
1

1

or, with the abbreviation

™= pilti,
3.3)

m

-1 m
log w(x) = (E a,~> > ailog (pi+ ;) + const.
1

1
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Thus the pure location problem (1.6) is equivalent in the Cobb-Douglas case to minimizing

m

ben(x) = E ai log (pi+i), (3.4)

a result derived in [3].
For the CES production function (1.8), one has in (3.1)

Fi(u, v)=u(bifv) e+,

With d=c¢/(c+1), (3.2) yields
(@°) =" bi[q* (bipe(x)/{tipi+ pi}) Vet D] ¢
1

=(¢")[u(x)]- Y b~ {tipi+pi}?
1

m

= (¢") <[] S e pit m}e

where 7; is as above and

ci= b=t 3.5)

If ¢ >0, so that 0 <d <1, then minimizing w(x) is equivalent to minimizing [x(x)]% and it
follows that the pure location problem for the CES case can be expressed as demanding the mini-
mization of

m

beps(x) = cfpit+ mit? (0<d<1). (3.6)

1

If d<0 (e.,—1 < ¢ <0), the pure location problem involves maximizing the form (3.6), or
equivalently minimizing its negative. Our subsequent discussion of the CES situation is readily
adapted to this subcase, but will for simplicity be confined to the subcase 0 < d < 1: the reader is
warned that the later discussion does not as it stands refer to the case ¢ < 0 (i.e., d < 0), though the
revision is simple.

The three functions ¢w, den, Pers all have the form

m

$(x) = E ¢i(pi) (3.7)

where the functions ¢; are defined and nonnegative on (0, ©), positive-valued and twice differen-
tiable on (0, ©), and satisfy

¢, >0 on (0, ). (3.8)

But while for ¢w, which has ¢;(z)= (tigi)u, each summand in (3.7) is a convex function of x,
neither ¢pcp nor ¢eps is convex, so that the CD and CES cases give rise to nonconvex programming
problems. This nonconvexity is most easily seen in the one-dimensional case; whereas ¢ is
linear on each (open) interval between successive points s;, both ¢cp and ¢eps satisfy ¢” < 0 (the
antithesis of convexity) on those intervals.

The absence of convexity suggests the possibility of multiple local minima, and these can in
fact occur. They may occur at a point s; (in the one-dimensional case, local minima occur only
at points s;), which however would not be routinely identified as a critical point since s; is a singular
point of
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grad p;= (x —s:)/pi

and thus of grad ¢. We therefore proceed to develop a special test for the existence of a local
minimum at an s;, say s;. It will be assumed that

Si=S$1 forlsi<r, Si F S1 fori>r.
Let 6 be a nonnegative scalar variable, and weR" be a variable “direction vector”, i.e., || w ||
=1. Set
g(0,w) =d(s1+ w). (3.9)

Then a necessary condition for a local minimum at s, is that
infy, 02(0+ ,w)/06 =0 (3.10)
holds. For x=1s; 4+ 6w, one has
pi=0 fori<r, pi=||0w— (si—s1)| fori>r,

so that

g(0.w) = S $i(6) + i bi([low— (si—s)]).

e

06100 ="3 &; (6) + 3 [6!(p)lpi] [6— (w.si—s1)] 3.11)

r+1

where (w,s; —s;) denotes the scalar product. With the notations

b=3 (&) Usi—silD/lsi—sill (si—s1). 612
A=i $;(0), (3.13)

it follows from (3.11) that
dg(0+, w)/a6=A— (1, b). (3.14)

The Cauchy-Schwarz inequality implies
(w, b) <8,

with equality for all w if 5=0, and for w= b/||b|| and its negative if b # 0. It follows from (3.14) that
min,dg (0+, w)ad=A—|b],
and so
A=|b| (3.15)

is a necessary condition for a local minimum at s;.
Conversely, suppose

o=A—|b|>0. (3.16)

Choose any positive 8; < min;~,||si—si||. Then the right-hand side of (3.11), call it g*(6, w),
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is continuous on the compact domain [0, 8,] X {w: ||w||=1}, hence uniformly continuous. In par-
ticular there is a § > 0, with & < §;, such that if 0 < 0 < § then for all w

g (0, w) >g*(0,w) —o.

Since the previous analysis implies g*(0, w) = o, we have demonstrated the existence of a § >0
such that

0g(0, w)/o0=g*(0, w) >0 for 0 < 0 <& and all w.

Thus in the 8-neighborhood of s, ¢ is uniquely minimized at the point sy, so that (3.16) is a sufh-
cient condition for a strict local minimum at s,. It is a generalization of its specialization (given by
Kuhn and Kuenne [7]) for the ordinary Weber problem.

Next we consider some cases in which the “inputs” transported to the plant from the source-
points s; are best interpreted as “factors of production”, not for the process yielding the plant’s
final output, but rather for intermediate on-site processes producing these ‘“final factors.” Note
that the production functions for these intermediate processes, as well as that for the final process,
must now be specified. The levels of the final factors are (intermediate) variables of the problem;
these levels will be denoted

0=(01,Q:, . . .,0un)

and the production function for the final process will be denoted f(Q).
A variety of interesting problems can be posed in this context; we will briefly take up just a

few of them. For notation, it will be convenient to partition the input-indexing set {1, 2, . . ., m}
into subsets {I(v):w=1, 2, . . ., M}, where iel (v) signifies that the ith input goes into making

the vth final factor. Assuming disjointness of these sets I(v) is not really a restriction on the tech-
nology—so long as capacity constraints at the sources are omitted—since otherwise-identical
inputs can be artifically distinguished according to the final factor in which they will be embodied.

Suppose first that each intermediate process follows a simple Leontief production law; that
is, there are positive constants K; such that

qi=KiQ, for all iel (v). (3.17)
Then the problem can be written
min,; ming [ Y Atipi+pit Ki ] Q. (3.18)
v iel(v)
subject to
fQ) = q". (3.19)

Reduction to a pure location problem follows the same pattern as before; if f is a Cobb-Douglas
function with parameters a,, or a CES function with parameters b, and c, the result is an objective
function
dlby (x) = av log ( Sy Lifpi+ mi} ) , (3.20)
v iel(v)
with Li = Kilj, mi=— p,-/ti, or

(;[){‘,ES (X) = E b,‘ﬁd ( E Ki{tipi+l)i} )d

iel(v)

-3 ( S Lifpi+ mi} )d, (3.21)

iel(v)
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with d =¢/(c + 1), m; as above, and L; = b¥/c Kt;.

Next suppose that the final process is of Cobb-Douglas type, with parameters a,. If each
intermediate process is also Cobb-Douglas, then the ¢;’s are related to the plant output by a Cobb-
Douglas function, so that the material leading to (3.4) applies. Let us suppose, instead, that each
intermediate process is of CES type; assume the vth final factor has a CES production function with

parameters {b;:iel(v)} and c,. The result is a (composite) production function, for the plant,
of Uzawa-CES type [8],

P(q) =exp {a— > (aey) log ( > big; “)} . 3.22)
iel(v)
It is readily verified that
oogi=abigi Oy [ 3 bg-er (el () 3.23)
Jel(v)

Although identities of type (3.1) are lacking, the general approach can still be carried out. Let
a;(x) =tipi+ pi, (3.24)

then (3.23) and the first-order optimality conditions below (3.1) yield

o= pa,bigi Oy [N bigrevr (iel(v)),

jel(v)

or equivalently, with d,=c¢,/(c,+ 1),

d,
aier= () (et (S bar)” Gelw)).

Jelv)

Multiply both sides by 4; and sum over iel(v); the result is

S bigtr=(ula,)- (2 bap)" S buladb

iel(v) Jjel(v) iel(v)

or equivalently

cy+1

> bigrr=(upa,) v | Y bi(ai/bi)du]

iel(v) |:i€[(l’)

log ( D biq;‘v)=~culogu—culog (Ya,) + cu+1)log[ > bl z/bi)dv],

iel(v) iel(v)

leading via (3.22) to

o g =a+ (S log 3 a log(g'a) = @d) log| 3 bialbs |

v v v iel(v)
Thus, with the abbreviations
szau/dvv Tri:pi/tis Lizbil*dl‘t?"a

the objective function for the pure location problem takes the form

GEES (x) —EBV log [ >, Li{pit+mitds ] (3.25)

iel(v)
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If the f,’s are as above, but fis a CES function with parameters b, and c, then the composite
production function is

v={ 0] 5 a0 e e o
v iel(v)

Manipulations like those above lead to an objective function

$E0=3| S Lipr+m o, 3.27)

v iel(v)

with d=c¢/(c+1), d.=c./(c,+1), mi=pi/t and L;=bd/b}~dvtdv.

Now assume f is as above, but the f,’s are Cobb-Douglas functions with parameters a, and
{ai:iel(v)}. Then the composite production function is

\b(q)={ Eb [ exp (av+ > ailogg ) ]*" }*”". (3.28)

iel(v)
For the explicit separation to be tractable, it appears necessary to require each f, to be homogeneous
of the same degree, i.e.,

Y ai=A (all v). (3.29)

iel(v)
With the notations

o=c/(1+ch), A,=a,+ 2 a; log a;,

iel(v)

mi=pilbi, a;=o0a;

a = E a; logti+ (1—o0A) logb,—0A,,

iel(v)

an objective function

2 loﬂ (pit+ 1) } (3.30)

0 =S exn]
v iel(v)
a sum of Cobb-Douglas functions, is obtained for the pure location problem.

The reasonableness of the restriction (3.29) is supported by the following observation, which
applies to the situations (3.25), (3.27), (3.30) above. Suppose feC, with associated function F in
(3.1), and that the functions f, are homogeneous of respective degrees A,. For the two-stage tech-
nology to admit the kind of analysis given in this paper, the composite production function {y must

lie in C. Now
> aidplogi=y af[9Q, >, qidfilogi

iel(v)

=3 4,Q.0f13Q.,

and only if all A, have a common value A can we continue to the

=AF[y]
which shows that eC.

We return now to the matter of testing for a local minimum at a point s;. Since the objective
functions (3.20), (3.21), (3.25), (3.27) and (3.30) are not of the form (3.7), the test (3.16) does not

apply. Instead, these objective functions have the more general form
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d(x) =3 ¢.(p) (3.31)

where p, is a vector with components {p;:iel(v)}. For the point s being tested, define the index-
sets

E(w) = {iel(v):s; = s}, Uw)=I1)—E(),

and introduce a variable vector u, with components {u;:iel(v)} as general argument of ¢,. As in
the analysis leading to (3.16), let

g(0, w) = ¢ (s + 6w)

with 6 a nonnegative scalar variable and weR" a direction vector. Then

9glaf =" > [ddu/ou]({||6w — (s; = s)[[}jerr))

v iel(v)
[0 — (w, si = $)1/|[0w — (si = s)||
=3 S [aguoul [{]16w — (55— )| ercn]

v ieE(v)
M Z ie;u) [8¢V/aul] ({||0w - (sj—s) | |}j51(V)]

[0 — (w, si —s)]/]||0w — (si — s)]|-
It follows that

g0+, w)o0=3 > [ap/oui] ({|ls; —s|}jeren)

v ieE(v)

=2 X loddaw]{lls; = sl}jerw) (w, si—s)/|[si—s]|.

v ieU(v)

Arguing as in the derivation of (3.16), we obtain the criterion

A>||b]] (3.32)
where now
A=3% [o¢/dui] ({Isi—= sl }ierw)) » (3.33)
v i€eE(v)
b= > (si—s)[0dudui] ({|ls;—s||}jerw)/|]si—s|- (3.34)

v ieU(v)

Note that in (3.33) the arguments ||s;—s|| =0 for jeE (v).

One might also consider a two-stage process with the final stage of Leontief type. But then
fixing ¢° fixes all ,, so that the problem is equivalent to one of the single-stage multi-output type
described at the end of section 2.

The final situation to be considered is that the various inputs i€/ (v) are of the vth final factor
itself (without further processing), but are distinguished merely by being from different sources.
That is, the vth intermediate process has as “‘production function” the additive

Q=73 a. (3.35)

iel(v)

Here formal use of the preceding approach would lead to nonsense. The reason lies in the reliance
of that approach upon the optimality condition below (3.1) to characterize the inner minimum in
(1.3). In fact, that condition is guaranteed only for those ¢; which are strictly positive at the mini-
mum, a condition which indeed is satisfied in all the previous cases treated, but is violated here
since each final factor would be purchased only from the least expensive of its sources.
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With ai(x) defined as in (3.24), let
a(x)=min {ai(x):iel(v)}; (3.36)
then (1.3) for the case (3.35) can be written

min min 2 aX(x)Q,.

K Q v

If for example f is Cobb-Douglas with parameters a,, the resultant pure location problem has in
analogy with (3.4) the objective function

bk, (x) = a, log [a*(x)], (3.37)

while if fis CES with parameters b, and c, the result is

Bins ()= b [a(x)] 3.38)

v

where d=c¢/(c+1), analogous with (3.6). Under the plausible assumption (in the present context)
that {¢;:iel(v)} has a single member ¢,, (3.37) and (3.38) can be replaced by

bép(x)=Y a, log [min {pi+mi}], (3.39)
v iel(v)

dlps(x) =3 ¢ [min {pi+mi}]4 (3.40)
v iel(v)

where ¢,=b!%? and 7;=pi/t;. Note that under the further assumption that {p;:iel(v)} has a
single member p,,

min {p;+ i} = [min p;] + 7,

iel(v) iel(v)

with 7, =p,/t,.

4. lterative Solution Methods

The pure location problems obtained in section 3, by working out several cases of “explicit
separation”, require the minimization of fairly complex nonconvex functions ¢ (x). Since such
problems are computationally nontrivial, it seems useful to present a class of iterative solution
methods which are simple in concept and simple to program. These algorithms, which are based
on characterizing an optimal location as a fixed point of an associated transformation of R", are
presented in the present section, while computational experience with them will be reported in
Part I1.

As noted in (3.7) and (3.8), several of these problems have an objective function of the form

m

b(x) = i(pi) 4.1)
1
where the functions ¢;(z) are twice differentiable for nonnegative arguments, and satisfy

b, >0 (i=1,2,....,m). 4.2)
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At any point & not an s;, one has

m

grad ¢= Y &; (pi) (X —si)lpi. @.3)

If % is to be a local minimum, then grad ¢ =0 must hold, or equivalently

f=['lis,-¢; wile: | / [12¢; (elps | @.4)

a formula which displays ¥ as a fixed point of the function on the right-hand side, and incidentally
as lying in the convex hull of the points s;. This formula suggests the iterative scheme

=] 3 oo o | /| S0 wiepe | @5)

Because of the presence of (in general, uncancelled) denominators p{*, this form can be unsuitable
for numerical work when x® is near some s;, say s;, and should be replaced by the algebraically
equivalent form obtained by multiplying numerator and denominator through by p;."'). (This alterna-
tive form also shows that each s; is a fixed point of the transformation given by (4.5).) Of course,
the test (3.16) for a local minimum at s; should be applied in such cases.

For the ordinary Weber problem, with objective function ¢y given by (1.1), the algorithm reads

xk+1D) = [ i Siti(Ii/pl("') ] / [ 2 tiqi/plgk) ] ) (4.6)
1 1

This iterative scheme, which has been repeatedly rediscovered (e.g. [7], [9—11]), goes back at
least as far as Weiszfeld [12], who also gave a convergence proof; the rapidity of that convergence
has been confirmed in a number of instances, e.g. [13].

For the Cobb-Douglas case, with objective function ¢ . given by (3.4), the algorithm reads

CcD

alk+D) = [ 2 siail (p + i) pi¥ ] / [ > ail (p + i) pi ] : @.7)
1

1

while for the CES case, with objective function d)(,ES given by (3.6), it reads

1

xk+1) = [ i sici (p(ik) + ﬂ-i)l—dp(il\') ] / [ 2 Ci/(pgk) + W;)‘*dpﬁ."') ] (4.8)
1

This scheme (4.8) was considered by Cooper [14] for the case of all 7;=0, a limiting case of the
situations of interest here. Note that if some 7;=0, and if the algorithm leads to an x'*) near s;,
then the numerator and denominator need to be multiplied by [p{*]? in (4.7), and [p¥]>~ in
(4.8), not just p(¥). Note also that if some 7;=0, then for both ¢ ., and b, the test for a local
minimum at s; yields A= in (3.13) and thus an affirmative result for the test; for by with all
7;=0, the fact that each s; yields a local minimum was observed by Cooper [15].

By the local convergence property (LCP) for the pure location problem, we shall mean that each
strict local minimum x of ¢, other than the points s;, has a neighborhood N (%) such that if the itera-
tive process enters N(X) at some stage, then it subsequently converges to % (in fact, in an-least-
geometric fashion). In a paper [16] dealing with the general scheme (4.5), Katz (op. cit., Theorem 4)
shows that the LCP holds if, in addition to (4.2), the functions ¢; satisfy

$i(w) < B—n)di(u)lu. 4.9)
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For both d)('n and b, one has ¢} < 0, so that for the low dimensions (n < 3) of greatest practical
interest, (4.9) is satisfied and hence the LCP is assured.
The objective functions (3.20), (3.21), (3.25), (3.27) and (3.30) have the more general form (3.31),

d(x)=Y du(py), (4.10)

with p, the vector with components {p;:iel (v)}. The twice-differentiable positive-valued functions
¢, (u,), where u, is a vector of nonnegative variables {u;:iel (v)}, satisfy in all these cases the
analog

dp,ldu; >0 (all el (v)) 4.11)

of (4.2). The analysis by Katz [16] can be mimicked to obtain a generalization of (4.9) which, together
with (4.11), is sufficient to assure the LCP for the generalization (given later, below) of (4.5).

The details of this imitative analysis are straightforward by reference to [16], and therefore will
not be repeated here. The result is that the condition

> {(ﬂ—3)2 (Upd) [aduloui] (pa) + D [(f—si»f—Sj)/Pin][f""¢v/<"ui("uj](m)}<0»

v iel(v) i,jel(v)

together with (4.11), sufficies for local convergence at z. It follows that the conditions

(n=3) Y A/p)lag.fouil(p)+ Y [(x=si, x—s;)pip;][8*P./0uiou;](p.) <0
iel(v) i, jel(v) (4.13)

for all v, together with (4.11), are sufficient. In particular, if for each v the local minimum % lies
outside the convex hull of the points {si:iel(r)}, so that in (4.13) each scalar product (X —s;,
x—s;) >0, and if each ¢, has all 9°¢,/du;0u; <0, and if n < 3, then local convergence holds at
x. For a more useful condition, one can employ the consequence

(x—si, £—s;)pipj= (—1) (4.14)
of the Cauchy-Schwartz inequality. If each ¢, satisfies
02, louiou; < 0 (i, jel (v); i #j), (4.15)
then it follows from (4.13) and (4.14) that
2 {(n —3) (Yui)op,/ou;+ d*¢p.lou?} — E {02, /0widu;:i, jel (v); i #j} <0, (4.16)
iel(v)

together with (4.11), is sufficient to assure that LCP. Note that (4.16) is a generalization of (4.9).
Consider first the objective functions ¢/, and ¢4, of (3.20) and (3.21). For each of them,
¢, (w,) has the form

S Lifui+ m}) @.17)

iel(v)

(i) = g (

so that (4.16) takes the form
S {(n—3) (Liue,+ L2g)} — S ALLygl si. jel (v). i #j} <0 @.18)

iel(v)

with g}, and g, evaluated at the g,-arcument of (4.17). For (3.21), with g.(v)=1v%, this condition is

D {(n—3) (Lilui) S Lj(u;+ ;) —(l—d)L‘;’} + (1—=d) Y {LiL;:i, jel(v);i#j} <0,

iel(v) Jjel(v)
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or equivalently

S LA (n—=3) (Yu) (witm)—(1—d)}

iel(v)
+ D ALL; [ (n = 3){ (wj+ 7)) [ui + (wi+ m)Ju;} + 2(0—d)]:i, jel (v), i <j} <O.
Since d < 1, assuming n < 3 assures that the first sum is < 0. The generic summand of the second
sum, divided by L;L;, is (if n < 3)
= (n—3)[uj/ui+ u,-/uj]+2(l—d);

applying to the first term the inequality z+ 1/z = 2 for z > 0, proves for n < 3 that the last displayed
expression is

<2(n—3)+2(1—d)=2(n—2—d),
which is negative for n < 2. Thus, for ¢/, LCP holds for the planar and one-dimensional cases.
The same argument, with d=0 in the later steps, yields the same conclusion for ¢F,.

For the objective functions ¢ %5 and ¢ (5 of (3.25) and (3.27), we have the generalization

¢ (u,)= ( > Li{ui+mi} ) 4.19)

iel(v)

of (4.17). Thus (4.16) takes the form
2 Li(uH‘ Wi)’lv_z[{ (n—3) (lti+ 71'i)/ui— (1 —d,r)g,',-+-L,~(u;+ Wi)llVg;:dp]

iel(v)

—d, Y ALiLj(ui+ ) W (uj+m;) Wi, jel (v); i # j} < 0.

For (3.27), with g, (v) =v% where §,=d/d,, this yields
S Li(uitm) %2 {(n=3) (wim ) lui— (1—d,)} Y Li(w+m;)%

iel(v) jel(v)
+Li(ui+m)% (d—d.)]—(d—d,) Y {LiLj(uwi+mi) 4 (uj+ ;) ~1ud, jel(v); i #j} <0
or equivalently

> Li(ui+ 7)2 =2 [(n—3) (ui+ 7)) |ui— (1—d,) + (d—d.)]
iel(v)

+ 3 {LiLj(ui + m:) =t (wj+ 7))t [{(n—3) (wi+ 7)/ui— (1 —d.)} (u; + ))?
+{(n—=3) (wj+ 7)) uj— (1 —d)} (wi+m)2—2(d—d,) (ui+m) (uj+ )]}
1, jel(v); i <j} <0O.

Since d <1, the first sum is negative for n <3. As for the second sum, the factor [-—-] in its
generic summand is forn < 3

<s—[{(1—=d) = (n=3)}H(ui+m)2+ (u;+ m)2} +2(d—do) (wi+m) (u;+ )]
=—{(1—-d,) — (n=3)}Q(ui+ mi,u;+m;),
where the coefficient (1—d,) — (n—3) is positive for n <3, and the quadratic form () is given by
0 (v,w) =v% + w? + 2kvw, k=(d—d,)/{1—-d,) —(n—3)}.
Q is positive definite for k2 <1. Since k <1 follows from the fact that d <1, it suffices to have
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k> (—1). For n=3 this is true if d+1 > 2d,, while for n < 2 it follows without additional restric-
tion. For (3.25) the analysis is similar, corresponding to d=0.
For the objective function ¢{2; of (3.30), condition (4.16) leads to

> aj(ui+m)2{(n—3) (ui+ m)/ui—1}
iel(v)
_Z {a;(l}f/(u,’-l'ﬂ',') (Uj+7Tj) i, jel(v); i ?éj} <0,
which holds for n < 3.

The generalization of (4.5) to the situation (4.7), for which the preceding convergence analyses
employing (4.16) were given, is obtained using the generalization

grad o= > [db.oui] (p,) (£ — si)lpi

v iel(v)

of (4.3). The iterative scheme is

xk+1) = [ 2 E si[a(;[),./aui] (PL)/PI ]

v iel(v)
(4.20)

[ St ol |.

v iel(v)

For x® near some s;, precautions like those noted under (4.3) are required.

It remains to consider objective functions like the ¢, and ¢/, of (3.37) and (3.38), whose
general form is

o*(x)= E b laF(x)], af(x) = min {a;(x) :iel (v) }

with «; defined by (3.24). Let us call x exceptional if a tie occurs in the definition of some a,f(x);
for any nonexceptional point x, let i (v, x)el (v) be the unique index for which the minimum occurs.
For nonexceptional points, the previous analyses can be carried over by replacing «.f(x) with
@iw.r)(x). The reason is that these analyses —testing for a local minimum at a point s;, or for local
convergence to a local minimum (not an s;) of an iterative scheme based on a zero gradient (itself
a local construct)—deal only with local behavior of ¢*, and each nonexceptional point x has a
neighborhood consisting entirely of nonexceptional points y for which i(v, y)=i(v, x) for all v.
But the “radius of convergence” around a local minimum is reduced by the need to avoid contact
with the set of exceptional points; a local minimum lying near this set may therefore be “hard to
get at” for the algorithm. If the algorithm generates an x(*) which is an exceptional point, it is
natural to proceed by breaking the tie arbitrarily, and the effect of this seems difficult to predict.
(An alternative is to employ a more complex logic involving “branching” when an exceptional
x(® is encountered.) The ability to detect a minimizing point which is exceptional is a priori dubi-
ous. These problems are explored on an empirical basis in some of the computational experiments
to be reported in Part II.
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