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This paper exa mines several aspects of the discrete matrix model of population trans ition. Certain 
appropriate applications of matrix theory and exploita tion of the s pec ifi c form of the model s hould 
serve to enhance its already well-developed s tatus. The aspects dealt wit h in clude (1) a simplification 
of the Perron-Frobe nius theory; (2) row and co lumn sum bounds on maximal e igenvalues; (3) relations 
between osciUations in a population and the remaining e ige nvalues; (4) implications of stab ility for 
th e transition matrix; and (5) relation s between characte ri s ti c quantities of a sta bl e population. 
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1. Introduction 

The purpose of this paper is to examine certain aspects of the matrix model of population 
dynamics, We begin with a brief discussion of the model. More de tails may be found in Keyfitz 
(1968)_ 

In the discrete model of population, the population at time t is represented by a vector, v(t). 
The ith component of th is vector, Vi(t), is the number of people at time t between the ages of 
(i -1) Llt and iLlt where D.t is a fixed time period, usually one or five years_ 

The following matrix A = (aij) acts on v (t) to give v (t + 1), see Keyfitz (1968): 

o am ,m - I 

o 
o 

o 

(1) 

where all, • , _, alII are age-specific fertility rates and a2t, _, alii , III - I are survivorship ratios , 
both of which are based on the time period Lll. In this paper we assume these rates re main constant. 
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A matrix, X, with nonnegative entries is called reducible if there exist a permutation matrix P 
such that 

P- IXP= [~ ~] (2) 

when Y and Z are square matrices. Matrices which are not reducible are called irreducible. The 
matrix (1) is reducible. However if we restrict ourselves to the first n rows and columns we get the 
following irreducible matrix 

o 

A= 

o 

alII 

o 
o 

all ,lI _ IO 

(3) 

where al 1l is the last nonzero fertility rate. We also restrict v(t) to the first n components. This 
restricted model still contains all the essential information, see Parlett (1970). 

The most important theorem for this population model is 

THEOREM 1: (Perron-Frobenius): Let A be an irreducible nonnegative (entry-wise) matrix. Then A 
has a simple positive eigenvalue r called the Perron root with corresponding eigenspace of dimen­
sion 1 and such that the absolute value of all other eigenvalues is less than or equal to r. If A has 
exactly h roots with absolute value r then these roots are: r, re i21T /h , re i41T /h , ••• , rei(h - 1)21T/h. 
Furthermore, an eigenvector associated with r can be chosen to have positive components. 

The proof of this theorem uses the Brouwer fixed point theorem. However, parts of this proof 
can be simplified for the matrix A in (3). The characteristic polynomial of A is 

Since f (0) < 0 and f (x) > 0 for sufficiently large x, there is a positive root r, that is f (r) = O. 
To prove thatf(x) has no root with greater modulus than r we need the following theorem due to 
Rouche see Nehari (1961), p. 138. 
THEOREM 2: If gl (z) and g2(Z) are polynomials over the complex numbers such that 

everywhere on a circle C, then the polynomial gl(Z) + g2(Z) has the same number of roots, counting 
multiplicity, inside C as gl (z). 

It is clearfrom (4) thatf(R) > 0 for allR > r. Hence 

for all R > r. Let gl (z) = z1l and g2 (z) = f(z) - z". Let R > r, then if z is on the circle of radius R 
about the origin , we get: 
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(6) 

< R/I by (5). 

It follows that all the roo ts of fez) li e within th e circle Iz 1= R. Sin ce R can be made arbitrarily 
close to r, no eigenvalue can exceed r in absolute value. W e also point out that r lies between the 
minimum and maximum row s um s and also between th e minimum and maximum column sums 
of (3). Since the row a nd column sum s of (3) are of a very simple na ture, in specific cases this 
may give fairly tight bounds on r. For example, in a hum an popula tion th e survivorship ratios ai,i - I, 

i=2, ... , n may fall within a small range, and if total fe rtility, the sum all + ... + alII also falls 
in that range, then r must fall in that range. For the proof of these and referen ces to further inequal· 
ities see Gantmac her (1959). 

In general even better bounds on r can be attained from the aij at the price of greater computa· 
tion , see Marcus and Mine (1964). Perhaps the best of these applicable to an irreducible matrix 
of the form (3) is the following. 

THEOREM 3: Let s be th e minimum row sum and S the maximum row sum of A. Le t a be the sum 
of all e ntires of A divided by n , and le t k be the smallest positive off di ago nal e ntry of A. Set 
E= (k/S) /I - I. Then 

W e make one more definition which will be used later. An irreducibl e nonnegative matrix is 
called primitive if its P erron root is stri ctl y larger th a n the absolute value of a ll other c haracter­
istic roots of A. A matrix which is not primitive is ca ll ed imprimitive. A detailed di scussion of 
primitivity is conta in ed in Sykes (1969). 

2. Oscillations in Population 

It is well-known that under co nstant fertility and mortality the age s pecific population vector 
converges to a multiple of the eigenvector corresponding to the P e rron root , provided that th e 
population matrix is primitive. In thi s section we investigate what is ha ppe ning to th e population 
vector as it approaches its stable value. W e will show that the population vector osc illates much 
like a damped pendulum , e ve ntually co min g to "rest" at the stable population vec tor. 

Bernadelli (1941) di scusses the importance and causes of these. waves. 

Let Al = r , A2 , . .. , A/I be the eigenvalues of the matrix A given in (3), numbered so that 
AI ~ IA21 ~ ... ~ IAIII. Let r; = IAi I and let OJ be the angle Ai forms with the x axis , - 7T < Oi ";;; 7T . 

Assume for now that the eigenvalues of A are distinct and that if rj = rj then i = j or r; is the complex 
conjugate of rj. An account of what happens if these assumptions do not hold is given below. 
Let W; be an eigenvector of A corresponding to the eigenvalue A;. Since Aw; = A;W; implies 

A;w; = A w ;=Aw;, where the bar denotes complex conjugate , we see that if A;= A; +I the n we can 
choose W; + I = Wi. It is well-known from matrix theory that because A has distinct eigenvalues any 
vec tor can be expressed as a linear combination of WI, ... , W/I. SO write 

v(O) = C IWI + C2W2 + . .. + C/IW/I. (7) 

T a kin g th e co mplex conju gate of both sides of (7) a nd usin g the fact that v(O)=v(O) we see that 
CI is real and that if W; + 1= w; th en C; + 1 = c;. ApplyingA f to (7) gives 

(8) 
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If 1...2 is not real then 1..3 must be the complex conjugate of it. That means r2 = r3, 82 = - 83. 
Since ri < r2 for i > 3, v (t) can be approximated by 

(9) 

for sufficiently large t. 

Now cir/wl is , of course, the stable part of the population and the other two terms, which are 
both real by the remarks above, give rise to the fluctuations from the stable population; that is, 
they give rise to waves. It is clear from (9) that the period of the oscillation is 2'TT/1 821. Also we see 
that the damping is determined by r2: the size of the wave relative to the total population decrease 
at a rate of r2/r per time period. 

If r2 is real, then the W3 term can be left out of the approximation in (9) and we have (h = 'TT and 
thus the period will be two. 

The case when A is imprimitive is important for insect population. In this case r2 = r which 
means the waves never die out. Suppose that A has exactly h eigenvalues whose absolute value is r. 
Then by Theorem 1 these eigenvalues are: 

i(II - I )O _ i(II - I )O 

r, re iO , re - iO , re i20 , re - i20 , ••• , re , re if h is odd 
(10) 

i~ e 
r, re iO , re- iO , re i20 , re- i20 , ••• , re 2 if h is even 

where 8 = 2'TT/h. The oscillations corresponding to these eigenvalues have periods of: 

h, h/2 , h/3, . . , 2h/h-1 if h is odd 
(11) 

h, h/2, h/3,. ., 2h/h = 2 if h is even. 

From this we see that the waves have periods which have harmonic ratios. Note that the entire 
sum of the waves will repeat itself every h time periods. 

We now consider what happens if we relax some of our assumptions. If there are other eigen· 
values , besides the complex conjugate of 1..2 which have the same absolute value as 1..2 and the 
eigenvalues of A are still distinct, then the population waves would be the sum of the waves given 
by all the eigenvalues whose absolute value is r2. In general the total fluctuation will be the sum 
of the waves generated by all the eigenvalues other than r. However the magnitude of oscillation 
of the eigenvalues Ai with ri < r2 will become small as compared to the magnitude of the oscilla· 
tions of the eigenvalues with absolute value equal to r2. 

Now suppose r > r2 = 11..21 and that 1.. 2 = 1..3= ... = Ah" and that rJ= IAj < 11.. 21 = r2 for j > k. 
Let WI, .•. , WII now be a basis which gives rise to the Jordan Normal Form, see Marcus and 

Mine, (1964). That is 

j=3, . .. , k. (12) 
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As before, we expand v(O) in terms of WI, . .. , WI!. Applying A I to v(O) and ignoring terms correspond· 
ing to eigenvalues whose absolute value is less than r2, we get 

+(C.A1+C tAl _I +C4t(t-I) A' - 2 + + t(t-I) ... (t-(k-3)) A1 - (I; - 2)) 
2 2 3 2 2 ! 2 • •• C I; (k _ 2) ! 2 W2 

( 
\/ \/ - 1 t(t-I) . .. (t- (t-4)) \ 1 _ (1; _ :1)) \, 

+ C3"2+ C4t"2 + .. . +Ck (k-3)! " 2 W3+" .+Ck"2Wk (13) 

(13 ) 
t(t-1) ... (t-(k -3)) ([ (k-2)!A~' - 2 

=clr'wl+ A1 - (I; - 2) C2 +. 
(k-2)! 2 t(t-1) ... (t-(k-3)) 

C~~ - 2) !A~' - 2 ) 

+···+t(t-1) ... (t-(k-3))Wk. 

Again for large t this can be approximated by 

() t(t-1), .. (t-(k-3)) 1('2) 
v t ~ ClrWI + CI; A.2- n' - W2. 

(k - 2) ! 
(14) 

We see from this equation that eventuall y the population vector does exhibit wave behavior. 
We can also see that the period of oscillation is the one which is associated with A2 and the relative 
damping from time period t - 1 to t is 

(t - (k - 2))r 
(15) 

which approaches the usual value of r2/" for large t. 
If there are several groups of eigenvalues all having absolute value "2 then the overall wave 

will be a sum of terms as in (14), one s uch term for each group of eigenvalues. The behavior of these 
terms is more complicated but for large t these terms become similar to the waves obtained in (9). 

3. Stability and the Relation Between the Perron Root and Other Demographic 
Variables 

A population is said to be stable over time if the percentage of the population in each age group 
is constant over time, that is the vector of population divided by the total population is constant 
over time. 

It is well·known that a constant primitive transition matrix leads to stability over time. 
As a converse we prove the following. 

THEOREM 4: If a population exhibits stability over time then its transition matrix A(t) is constant 
if and only if the age specific birth rates are constant over time. 

PROOF: If the transition matrix A(t) is constant over time, the birth rates must, of course, be 
constant. If the age specific birth rates, alj, j= 1, ... , n, are constant, then it suffices to note 
that in a stable population the survivorship ratios ai, i - h i = 2, ... , n are constant. This is the case 
since stability implies each age group is increasing at the same constant rate, 

The theorem must be stated in this form since varying sets of birth rates could ' lead to es· 
sentially the same process if they deli ver new cohorts increasing at the same rate as the population 
each time period. 
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In a one sex population the net reproduction rate (NRR) or expected number of births to a 
female allowing for the probabilities of mortality can be defined within the matrix model as the sum 

(16) 

The rate of natural increase (RNI) of a stable population is merely the constant rate of increase 
it is experiencing in total numbers over time. Clearly RNI = Al -1 in a stable population, where 

. Al = r is the maximal positive eigenvalue. (A population is said to be stationary when Al -1 = 0.) 
Since the NRR is somehow also a measure of how the population is increasing, intuition would 

expect a positive correlation between the NRR and RNI and thus AI. The following theorem states 
the greatest extent to which that intuition may be formalized. 
THEOREM 5: (1) A stationary one-sex population is characterized by RNI = (AI - 1) = (NRR - 1) = O. 

(2) In a stable one-sex population, (i) NRR > 1 if and only if Al > 1 and RNI > 0 if and only if 
NRR > Al and (ii) NRR < 1 if and only if Al < 1 and RNI < 0 if and only if NRR < AI. 

PROOF: The characteristic polynomial, det (AI - A) of our matrix form (3) was computed to be 

... -al ,,,an,n - Ian-I,lI-2 . .. a21 in (4). 

It is important to note that the sum of all the subtracted coefficients is merely the NRR. 
Now, in case (1), if Al = 1 is a root off(A) = 0, then 1 = 1-f(l) = NRR and conversely. 
In case (2), A/AI has maximum eigenvalue A; = 1 by linearity. But this means that 1 = ai , d Al + 

al,2a2 , I/Ai + aJ,3a3,2a2,I/A~ + ... + al,nan, 1I - la1/ - I,n- 2 ... a2,1/'A[' (from the characteristic poly­
nomial of A/AI) which is equivalent to 

Thus AI > 1 if and only if 

if and only if NRR > 1, and in this case NRR must be greater than 'AI' 
The proof is similar for Al < 1 which completes the theorem. 

(17) 

Since the same NRR could arise from many different sets of ai./s there is no more precise 
relation between the NRR and AI. 
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