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This paper examines several aspects of the discrete matrix model of population transition. Certain
appropriate applications of matrix theory and exploitation of the specific form of the model should
serve to enhance its already well-developed status. The aspects dealt with include (1) a simplification
of the Perron-Frobenius theory; (2) row and column sum bounds on maximal eigenvalues: (3) relations
between oscillations in a population and the remaining eigenvalues: (4) implications of stability for
the transition matrix; and (5) relations between characteristic quantities of a stable population.
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1. Introduction

The purpose of this paper is to examine certain aspects of the matrix model of population
dynamics. We begin with a brief discussion of the model. More details may be found in Keyfitz
(1968).

In the discrete model of population, the population at time ¢ is represented by a vector, v(t).
The ith component of this vector, vi(¢), is the number of people at time ¢ between the ages of
(i—1)At and iAt where At is a fixed time period, usually one or five years.

The following matrix A = (a;;) acts onv(t) to givev(t+1), see Keyfitz (1968):

— S
ayy a2 ¢ o 3 Ain 0 o 5 5 0
asy O 0
0 as
(1)
0 Am,m—1 0
— —]

where a1, . . ., a;, are age-specific fertility rates and as;, . . ., @mn.m_1 are survivership ratios,
both of which are based on the time period At. In this paper we assume these rates remain constant.
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A matrix, X, with nonnegative entries is called reducible if there exist a permutation matrix P
such that

(2)

poxr=[l, 0]

v Z

when Y and Z are square matrices. Matrices which are not reducible are called irreducible. The
matrix (1) is reducible. However if we restrict ourselves to the first n rows and columns we get the
following irreducible matrix

— S
aiq o o . A1n
as; 0 0
0 ass 0 0

4=\ ’ (3)
0 An,n—1 0

where a;, is the last nonzero fertility rate. We also restrict v(¢) to the first n components. This
restricted model still contains all the essential information, see Parlett (1970).
The most important theorem for this population model is

THEOREM 1: (Perron-Frobenius): Let A be an irreducible nonnegative (entry-wise) matrix. Then A
has a simple positive eigenvalue r called the Perron root with corresponding eigenspace of dimen-
sion 1 and such that the absolute value of all other eigenvalues is less than or equal to r. If A has
exactly h roots with absolute value r then these roots are: r, rei?7/h reldm/h = pei(h=1)27/h
Furthermore, an eigenvector associated with r can be chosen to have positive components.

The proof of this theorem uses the Brouwer fixed point theorem. However, parts of this proof
can be simplified for the matrix 4 in (3). The characteristic polynomial of 4 is

FN)=Nt—a N 1= @120 N2 — @13Q3202 NP L L L —@in@pn—1@n-1,n—2 . . - G21. 4)

Since £(0) < 0 and f(x) > 0 for sufficiently large x, there is a positive root r, that is f (r) =0.
To prove that f(x) has no root with greater modulus than r we need the following theorem due to
Rouché see Nehari (1961), p. 138.
THEOREM 2: If g,(z) and g»(z) are polynomials over the complex numbers such that

21(z)| > |g:(2)]
everywhere on a circle C, then the polynomial g,(z) + g2(z) has the same number of roots, counting
multiplicity, inside C as g,(z).
It is clear from (4) that f (R) > 0 for allR > r. Hence

R"> aR" '+ as1a:R" 2+ asiazasR" 3+ . . .+ azas . . . ann-1a1 2 ©)

for all R > r. Let g,(z) = z" and g2 (z) = f(z) — z". Let R > r, then if z is on the circle of radius R
about the origin, we get:
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|g2(2)|: I— a 2" ' = as@12z" P — . . . — @n@ss . . . Aua-101n
= O1|R"_l aF (Ig](l]gR"72 +. ..+ Az1A32 . . . App-1A1n (6)
< R" by (5).

It follows that all the roots of f(z) lie within the circle |z| = R. Since R can be made arbitrarily
close to r, no eigenvalue can exceed r in absolute value. We also point out that r lies between the
minimum and maximum row sums and also between the minimum and maximum column sums
of (3). Since the row and column sums of (3) are of a very simple nature, in specific cases this
may give fairly tight bounds on r. For example, in a human population the survivorship ratios a; ;_1,
i=2, . . ., n may fall within a small range, and if total fertility, the sum a,;; +. . .+ a, also falls
in that range, then r must fall in that range. For the proof of these and references to further inequal-
ities see Gantmacher (1959).

In general even better bounds on r can be attained from the a;; at the price of greater computa-
tion, see Marcus and Minc (1964). Perhaps the best of these applicable to an irreducible matrix
of the form (3) is the following.

THEOREM 3: Let s be the minimum row sum and S the maximum row sum of 4. Let o be the sum
of all entires of 4 divided by n, and let k& be the smallest positive off diagonal entry of A. Set
€= (k/S)"'. Then

ste(c—s)sr<S—e(S—oa).

We make one more definition which will be used later. An irreducible nonnegative matrix is
called primitive if its Perron root is strictly larger than the absolute value of all other character-
istic roots of A. A matrix which is not primitive is called imprimitive. A detailed discussion of
primitivity is contained in Sykes (1969).

2. Oscillations in Population

It is well-known that under constant fertility and mortality the age specific population vector
converges to a multiple of the eigenvector corresponding to the Perron root, provided that the
population matrix is primitive. In this section we investigate what is happening to the population
vector as it approaches its stable value. We will show that the population vector oscillates much
like a damped pendulum, eventually coming to “rest’ at the stable population vector.

Bernadelli (1941) discusses the importance and causes of these waves.

Let Ay =r, N2, . . ., A\, be the eigenvalues of the matrix 4 given in (3), numbered so that
A = |Ay| = ... = |\|. Let ;= |\i| and let 0; be the angle A\; forms with the x axis,—7 < 0; < 7.

Assume for now that the eigenvalues of 4 are distinct and that if r;=r;theni=j or r; is the complex
J J

conjugate of r;. An account of what happens if these assumptions do not hold is given below.

Let w; be an eigenvector of A4 corresponding to the eigenvalue \;. Since Aw;= Aaw; implies

Niwi=Aw;=Aw;, where the bar denotes complex conjugate, we see that if \;= A;;; then we can
choose wi,;=1w;. It is well-known from matrix theory that because 4 has distinct eigenvalues any

vector can be expressed as a linear combination of w,, . . ., w,. So write
v(0) = cywy + cows + . . .+ chwn. (7)

Taking the complex conjugate of both sides of (7) and using the fact that 5(0)=v(0) we see that
¢, is real and that if w;, = w; then ¢;, ;= ¢;. Applying A to (7) gives

v(t) =cirwy + caNws + . . .+ calfwn. ®)
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If A; is not real then \3 must be the complex conjugate of it. That means r, = r3, 6, = — ;.
Since r; < ry fori > 3,v(t) can be approximated by

v(t) = cir'wy + c:Nws + czNbws

Il

cir'wy + corf(cos t0> + 1 sin t02)ws

9

+ c3ri(cos t0; — i sin 6y )w;
= clr’wl aF ré [COS Bgt (Clez + C3ZU3) + Sinezt(021,{}2 - c;;w:,)i]

for sufficiently large ¢.

Now ¢r'w, is, of course, the stable part of the population and the other two terms, which are
both real by the remarks above, give rise to the fluctuations from the stable population; that is,
they give rise to waves. It is clear from (9) that the period of the oscillation is 277/| 62 |. Also we see
that the damping is determined by ry: the size of the wave relative to the total population decrease
at a rate of ry/r per time period.

If ry is real, then the ws term can be left out of the approximation in (9) and we have 6, = 7 and
thus the period will be two.

The case when A is imprimitive is important for insect population. In this case ro = r which
means the waves never die out. Suppose that 4 has exactly h eigenvalues whose absolute value is r.
Then by Theorem 1 these eigenvalues are:

(=09 (1

r, rel, re=i, re2f re-26  re 2 | re 2 if his odd
(10)
A A ‘ ) ql
r, rel?, re=i, rei20 re=i20 re 2 if his even
where 6 = 27/h. The oscillations corresponding to these eigenvalues have periods of:
h, h/2, h/3, ..., 2h/h — 1 if h is odd
(1T)

h, h/2, h/3, ..., 2h/h =2 if A is even.

From this we see that the waves have periods which have harmonic ratios. Note that the entire
sum of the waves will repeat itself every h time periods.

We now consider what happens if we relax some of our assumptions. If there are other eigen-
values, besides the complex conjugate of A, which have the same absolute value as A\, and the
eigenvalues of 4 are still distinct, then the population waves would be the sum of the waves given
by all the eigenvalues whose absolute value is .. In general the total fluctuation will be the sum
of the waves generated by all the eigenvalues other than r. However the magnitude of oscillation
of the eigenvalues A; with r; < ry will become small as compared to the magnitude of the oscilla-
tions of the eigenvalues with absolute value equal to r.

Now suppose r>r;=|\z| and that \,=X3=. . .=\, and that r;=[\;| < [\2|=r for j > &.
Let w;, ..., w, now be a basis which gives rise to the Jordan Normal Form, see Marcus and

Minec, (1964). That is
Aw1=rw1, Aw2=}\2ng,

ij:wj_1+)\jo ]=3, e ke (12)
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As before, we expand v(0) in terms of wy, . . ., wy. Applying 4! to v(0) and ignoring terms correspond-
ing to eigenvalues whose absolute value is less than ry, we get

v(t) =crtw, +

cat(t—1) -2

i(a=1) . o o (= (=8
+(c2)\;+c3t)\g—1+ 21 U=29E, o o @ ( ) (k—(2)!( ) A;Ak—x))wz
+ (C3A;+C4t)\é_l+. . .+th(t_1) (k—(;)_'(t—4)) )\;‘("'*3)>w;g+. 5 .-}-ck)\;wk (13)
(13)

s=1)) . . . (= ((=8) (k—2)! Ak-2

- Mw\-—w([ . . ]
ciren (k—2)! 2 D =3y k|w
cfh=2) (k-2

TS, = —3) ““‘)'

Again for large t this can be approximated by

Hg=1) . . . (F= Us=3))
r=2)1

v(t) = cir'wi + ck A= (R =2y, (14)

We see from this equation that eventually the population vector does exhibit wave behavior.
We can also see that the period of oscillation is the one which is associated with X\, and the relative
damping from time period ¢t — 1 to ¢ is

il ra
(— (k—2)r (15)
which approaches the usual value of r./r for large ¢.

If there are several groups of eigenvalues all having absolute value r. then the overall wave
will be a sum of terms as in (14), one such term for each group of eigenvalues. The behavior of these
terms is more complicated but for large ¢ these terms become similar to the waves obtained in (9).

3. Stability and the Relation Between the Perron Root and Other Demographic
Variables

A population is said to be stable over time if the percentage of the population in each age group
is constant over time, that is the vector of population divided by the total population is constant
over time.

It is well-known that a constant primitive transition matrix leads to stability over time.

As a converse we prove the following.

THEOREM 4: If a population exhibits stability over time then its transition matrix A(t) is constant
if and only if the age specific birth rates are constant over time.

ProOF: If the transition matrix A(¢) is constant over time, the birth rates must, of course, be
constant. If the age specific birth rates, a;j, j=1, . . ., n, are constant, then it suffices to note
that in a stable population the survivorship ratios a;,;—1, i =2, . . ., n are constant. This is the case
since stability implies each age group is increasing at the same constant rate.

The theorem must be stated in this form since varying sets of birth rates could lead to es-
sentially the same process if they deliver new cohorts increasing at the same rate as the population
each time period.
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In a one sex population the net reproduction rate (NRR) or expected number of births to a
female allowing for the probabilities of mortality can be defined within the matrix model as the sum

al,l+al,202,1+a1,3a3,2a2,1+ ol e
(16)

+(11,nan,nf1an—1,n—2 .. Q2.

The rate of natural increase (RNI) of a stable population is merely the constant rate of increase
it is experiencing in total numbers over time. Clearly RNI=XA,—1 in a stable population, where
.Ai=r is the maximal positive eigenvalue. (A population is said to be stationary when \; —1=0.)
Since the NRR is somehow also a measure of how the population is increasing, intuition would
expect a positive correlation between the NRR and RNI and thus A,. The following theorem states
the greatest extent to which that intuition may be formalized.
THEOREM 5: (1) A stationary one-sex population is characterized by RNI= (\; —1)=(NRR —1)=0.
(2) In a stable one-sex population, (i) NRR > 1 if and only if \;y > 1 and RNI > 0 if and only if
NRR > \; and (ii) NRR < 1 if and only if Ay < 1 and RNI < 0 if and only if NRR < A;.
PRrROOF: The characteristic polynomial, det (\] —A4) of our matrix form (3) was computed to be

f()\)=)\"_(11,17\"_1_al,zaz,1}\"72—(11,3(13,2(12,17\"73—. 58
ce. A1, n0n,n-1An—-1,n-2 . . - A21 in (4)

It is important to note that the sum of all the subtracted coefficients is merely the NRR.

Now, in case (1), if A\; =1 is a root of f (A) =0, then 1 =1—f(1) = NRR and conversely.

In case (2), A/\; has maximum eigenvalue \; =1 by linearity. But this means that 1 =a,,/\; +
@1,2as,1/N3 + @1,3a3,2a2 1N + . . .+ @i, w@n, n-1@n-1,n-2 . . . az,1/\! (from the characteristic poly-
nomial of A/\;) which is equivalent to

}\1 = ay,1 =P al,zaz’l/}\l A a1,3a3,2a2,1/)\f +. .. + Ay, n@n,n-1aAn-1,n-2 . - 'az,l/Ailil-

(17)
Thus A\; > 1 if and only if
ai, aF ai,2Qas,1 P o oo +al,nan,n—1an—1,n—2 R L 1

if and only if VRR > 1, and in this case NRR must be greater than A,.

The proof is similar for A\; < 1 which completes the theorem.

Since the same NRR could arise from many different sets of a;,;’s there is no more precise
relation between the NRR and \,.
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