JOURNAL OF RESEARCH of the National Bureau of Standards – B. Mathematical Sciences Vol. 78B, No. 2, April-June 1974

Rational Equivalence of Unimodular Circulants*

Stephen Pierce **

(December 5, 1973)

We answer a question of M. Newman by providing all unimodular positive circulants are rationally equivalent to the identity.

Key words: Circulant, totally positive unit.

Let P be the $n \times n$ matrix satisfying $P_{12} = \ldots = P_{n-1, n} = P_{n, 1} = 1$ and all other entries 0. The elements of the group ring Z[P] are called integral circulants. Let G be the group in Z[P] consisting of the positive definite symmetric unimodular elements. M. Newman [2, p. 198] asks which members of G are rationally equivalent to I_n . The answer to this question is in fact an easy consequence of the Hasse norm theorem [1, p. 186].

THEOREM: All members of G are rationally equivalent to I_n.

PROOF: Let $A \in G$. As noted in [2, p. 198], we must show that any eigenvalue λ of A is of the form $\alpha \overline{\alpha}$ for some α in Q_n , the *n*th cyclotomic field. Let K be the real subfield of index 2 in Q_n . We must show λ is a norm from Q_n to K. If $n = 2p^n$, p a prime, then p is fully ramified in Q_n . In any other case, Q_n is unramified over K at all finite primes. So at most one finite prime ramifies from K to Q_n .

Now λ is totally positive, so λ is a norm at all Archimedean localizations. And λ is a unit; thus λ is a norm at all finite localizations, except, possibly, one. By the product formula, λ is a norm everywhere, and hence, by the Hasse norm theorem, λ is a global norm.

References

(Paper 78B2-398)

Hasse, H., Bericht über neuere Untersuchungen und Probleme aus der Theorie der algebraischen Zahlkörper (1930).

Newman, M., Integral Matrices (Academic Press, 1972).

^[3] O'Meara, Introduction to Quadratic Forms (Academic Press, 1963).

AMS Subject Classification: Primary, 1548; Secondary, 1079.

An invited paper. This work was partly supported by National Research Council of Canada Grant A-7862. * Present address: Department of Mathematics, University of Toronto, Toronto 181, Ontario, Canada.