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The well known theorem of Lyapunov is generalized to characterize matrices whose spectra lie 
in a given open convex angular sector. Related facts about positive definite matrices, the polar decom­
position and matrices with cramped spectra are also given. 
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A theorem of Lyapunov which has several equivalent formulations characterizes the matrices 
whose eigenvalues lie in the right half-plane. By considering one of the formulations from a new 
point of view, a characterization of the matrices whose eigenvalues lie in an arbitrary open positive 
convex cone is obtained. The positive cone of the characterization generalizes the right half-plane 
of Lyapunov's Theorem. 

Throughout we shall consider square matrices A, B, C ... over the complex field. Denote 
the field of values of A by F (A) = {x* Ax III x II = I} and the set of eigenvalues (spectrum) of A by 
u(A). It is well known that F(A) is a compact convex subset of the complex plane which contains 
u(A) and that F(A) coincides with the convex hull of u(A) whenA is normal. We shall also employ 
the concept of the angular field F ang (A) = {x* Ax I x =P o} mentioned by Wielandt [5J I and the 

angular spectrum uang(A) = {i (XiAilu(A) = {i", . .. , An}; (Xi;;;": 0, i= 1, ... , n; and i (Xi > oJ. 
, = 1 1= 1 

Fang(A) and u ang(A), respectively, are just the smallest positive convex cones which are anchored 
at the origin and contairi F (A) and u(A). Finally let R signify the open right complex half-plane and 
L be the class of positive definite hermitian matrices. 

The three versions o(Lyapunov's Theorem of interest are 
(1) [Strong Form [3J] 

u(A) c R if and only if for each HEI there is a GEI such that GA +A*G=H; 
(2) [Weak FormJ 

u(A) c R if and only if there is a GEL such that GA + A *GEL; and 

(3) [Field of Values Formulation] 
u(A) C R if and only if there is a GEI such that F(GA) cR. 
That (2) and (3) are equivalent follows immediately from the fact that the field of values of 

.!( GA + A * G) is just the projection of F (GA) onto the real axis. For a discussion of the equivalence 
2 
of (1) and (2) see [3 ,4]. 
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Formulation (3) is of interest in that it points out that Lyapunov's Theorem relates a region of 
containment for a-(A) to a region of containment for the field of values of a positive definite multiple 
of A. In particular the two conic regions of containment are the same. We shall show that the R 
of Lyapunov's theorem (3) can be replaced by an arbitrary open positive convex cone f (f shall be 
such throughout). This then characterizes {A I a(A) C f} and relates the eigenvalues and field 
of values for arbitrary matrices. It should be noted that the following is of interest only when f de­
scribes an arc of less than or equal to 71". 

THEOREM A: The set a-(A) C f if and only if there is a GEl such that F(GA) C f. 
We present the proof of the theorem using 3 lemmas. 
Let Co denote the convex closure and d the distance function. 

LEMMA 1: Given an arbitrary square complex matrix A and a positive number E, there exists an 
invertible matrix S such that 

(The field of values can be made close to the convex hull of the spectrum via similarity.) 
PROOF: Reduce A to Jordan form J by similarity. If J is diagonal, we are done. If not, the 
superdiagonal l's may be made arbitrarily small by diagonal similarities_ Thus F(D - IJD) may 
be made arbitrarily close to the convex hull of the diagonal of J which is just Co(a-(A». 
LEMMA 2: Let det B oF- O. Then 

F ang(B* AB) = F ang(A). 

(The invariance of the angular field under congruence will mean that F (B * AB) c f if and only 
if F(A) c f.) 
PROOF: x*B* ABx = y* Ay and y = Bx oF- 0 if and only if x oF- O. 
LEMMA 3: If GEl, then 

a(A) C a-ang(A) C F ang(GA). 

PROOF: It suffices to show a- (A) C Fang (GA). Since GEl, G may be written G = P * P, det P oF- O. 
Then, 

a-(A) = a-(PAP - I) = a-«P - I) * GAP - I) C F «P- I) * GAP - I) C F ang( (P-l) * GAP-I) =F ang(GA). 

PROOF (of theorem): Suppose a- (A) C f; choose 5 by lemma 1 so that 

d(F(5A5 - 1 ), Co(a-(A») < min (Co(a-(A»,c), 
cEf 

which is posItive. This means F (5A5 -I) C r. By lemma 2, F (5 * (5A5 - I ) 5) C f also, so that 
we have F(GA) C f where G=5*5d. 

For the converse suppose F(GA) C f, GEl. Then Fang(GA) C f and by lemma 3, 
a- (A) C Fang (GA) C f and the theorem is proven. 

That l is the only class of matrices enjoying the property of lemma 3 is of individual interest. 
THEOREM B: a- (A) C Fang (GA) for all matrices A if and only if GEl. 

PROOF: It suffices to show that a- (A) C Fang (GA) for all A implies GEl since the converse has 
been proven in lemma 3. 
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First let A run through 1 and notice that (J"(AG*)C Fang(GAG*)=Fang(A)=the positIve 

real axis. This means that (J"(GA) is real and positive for all AE1. Now write G in its polar form 
G=UH whe re U is unitary and HEt. We may take A=H- tEl and then GA=UHH - I=U. Since 
(J"(U) = (J"(GA) is r eal and positive, U can only be the id e ntity. Thus G=HE1. 

Several remarks now follow from the preceding. 
COROLLARY 1: (J" ony(A) = n F ollv(GA). 

GEl 

PROOF: By theorem B (J"an g(A) C n Fan g( GA) ; but in theorem A we may c hoose f as c lose as 
GEl 

we like to (J" ang(A) which proves the equali ty. 
COROLLARY 2: If A *CEl (or equivalently CA-t El) , then (J"(A) C Fany(C). 
PROOF: Suppose CA - I = HE 1, the n 

(J"(A) c Fang(HA)=Fang(C). 

COROLLARY 3: Suppose A = HU, where U is unitary and H E 1 is the polar decomposition of A, then .. 

PROOF: By assumption AU*=HEl or, equivalently, UA - tEl which implies (J"ang(A) C F ang(U) 
by corollary 2. Since U is normal , F ang(U) = (J"ang(U) whi ch is contained inFang(HU) =Fang(A) 
by Theorem B. 

In order to c haracterize the matrices whose eigenvalues li e in a half-plane, we define a matrix 

A to be cramped if (1) deL A 0/= 0 and (2) the set {I~II ~.E(J"(A)} lies on an arc of the unit circle of 

less than 180°. It is clear that thi s is equivale nt to saying the maximum pairwise difference of the 
arguments of the eigenvalues is less than 7r (and 0 ~ (J"(A)) or there is a 8 such that (J"(eiOA) C R. 
We then have 
COROLLARY 4: If det A ¥= 0, the following statements are equivalent: 

(i) A is cramped; 

(ii) ° ~ (J" (llIg(A); 
(iii) there is aGE 1 such that 0 ~ F(GA); 
(iv) there is aGE 1 such that FOl/g(GA) is not the entire complex plane and A does not have 

two characteristic roots which determine a line segment containing O. 
PROOF: The equivalence of (i) and (ii) is immediate and the equivalence of (i) and (iii) follows from 
theore m A. IfF ang(GA) is not the entire complex plane, it can be at most a closed half-plane which 
means (J"ang(A) is at most a closed half-plane by theorem B. It then follows that (iv) implies (i). 
Since 0 ~ F (GA) implies 0 ~ F ang( GA) and that A is cramped, we have that (iii) implies (iv) and the 
corollary is complete. 
COROLLARY 5: If GEl and GA is hermitian (resp . hermitian positive definite), then the roots of A 
are real (resp_ real and positive). 
PROOF: An application of Corollary 2. This last corollary is known by other means: see [2,5]. 

In order to facilitate a final corollary which translates theorem A into a representation theorem, 
let F(r)={AIF(A) C f} and S(r) ={A I (J"(A) C f} where r is as before_ It is clear thatF(f) 
C S(L) . 

COROLLARY 6. S(r) = 1· F(r) 
PROOF: Suppose AE1 ·F(r) , then A = PB where PEl and F(B) cf. Then P - tEl and P - tA 

= BEF(r) which implies (J"(A) C r by theorem A and means AES(f). 

If AES(r), then also by theorem A, we have F(GA) cf for some GE1_ Since G- tEl and 
A = G- I (&A) we Ilave AE2;· F(r) to complete the proof. 

Finally one question is suggested and left for further study by theorem A_ How may we char­
acterize the B's such that F(B)Cf, B=GA where GEl and (J"(A)Cf, or alternatively how do 
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we characterize the G's in k such that F (GA) c r. When r = R, this question is answered in part 
by Lyapunov's theorem (1) and the invertibility of the Lyapul)ov operator. In this case any positive 
definitite real part may be obtained, but with each real part only one imaginary part may be obtained. 
Thus many B with F(B) cR are omitted from the range." 
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