JOURNAL OF RESEARCH of the National Bureau of Standards—B. Mathematical Sciences Vol. 78B, No. 1, January–March 1974

The Smith Normal Form of a Partitioned Matrix

Morris Newman

Institute for Basic Standards, National Bureau of Standards, Washington, D.C. 20234

(September 11, 1973)

It is shown that if

$$M = \begin{bmatrix} \dot{M}_{11} & M_{12} & \dots & M_{1t} \\ 0 & M_{22} & \dots & M_{2t} \\ & \ddots & & \\ 0 & 0 & \dots & M_{tt} \end{bmatrix}$$

is a matrix over a principal ideal ring R such that the matrices M_{ii} are square and have pairwise relatively prime determinants, then the Smith normal form of M is the same as the Smith normal form of

 $M_{11} + M_{22} + \ldots + M_{tt}$

Key words: Elementary divisors; invariant factors; partitioned matrices; Smith normal form.

Let R be a principal ideal ring. Let A be an $r \times r$ matrix over R, B an $s \times s$ matrix over R. It is well known that the elementary divisors of A + B are the elementary divisors of A together with the elementary divisors of B, which allows us to reconstruct the Smith Normal Form (hereafter abbreviated S.N.F.) of A + B from the invariant factors of A and of B (see [1],¹ for example). There is a noteworthy instance which merits special attention: namely, when the determinants of A and B are relatively prime. This note is devoted to this case.

We let S(M) denote the S.N.F. of any matrix M over R, and I_n denote the identity matrix of order n. I will denote an identity matrix of unspecified order.

We first prove

THEOREM 1: Suppose that (det(A), det(B)) = 1, and that

$$S(A) = diag(\alpha_1, \alpha_2, \dots, \alpha_r),$$
$$S(B) = diag(\beta_1, \beta_2, \dots, \beta_s),$$

so that $\alpha_1, \alpha_2, \ldots, \alpha_r$ are the invariant factors of A, $\beta_1, \beta_2, \ldots, \beta_s$ the invariant factors of B; and assume for definiteness that $r \leq s$. Then

(1) $S(A + B) = I_r + diag (\beta_1, \beta_2, \ldots, \beta_{s-r}) + diag (\alpha_1 \beta_{s-r+1}, \alpha_2 \beta_{s-r+2}, \ldots, \alpha_s \beta_r).$

AMS Subject Classification: 1530, 1545, 1548.

¹Figures in brackets indicate the literature references at the end of this paper.

PROOF: A moment's consideration shows that the expression given in (1) for S(A + B) is just $S(I_s + A) S(I_r + B)$. Now

$$A \dotplus B = \begin{bmatrix} A & 0 \\ 0 & B \end{bmatrix} = \begin{bmatrix} A & 0 \\ 0 & I_s \end{bmatrix} \begin{bmatrix} I_r & 0 \\ 0 & B \end{bmatrix}$$
$$= (A \dotplus I_s) (I_r \dotplus B).$$

But $A + I_s$ and $I_r + B$ have relatively prime determinants, and it is known that if M, N are matrices over R of the same size such that $(\det(M), \det(N)) = 1$, then S(MN) = S(M)S(N) (see [2]). It follows that

$$S(A \dotplus B) = S(A \dotplus I_s) S (I_r \dotplus B)$$
$$= S(I_s \dotplus A) S (I_r \dotplus B).$$

This concludes the proof.

Now let T be any $r \times s$ matrix over R. Then provided that $(\det(A), \det(B)) = 1$, the next result shows that T plays no part in determining the S.N.F. of

$$\begin{bmatrix} A & T \\ 0 & B \end{bmatrix}.$$

Specifically, we prove

THEOREM 2: Suppose that (det(A), det(B)) = 1. Then the S.N.F. of

ΓA	ΤŢ
0	B

is the same as the S.N.F. of

PROOF: Let A^{adj} be the adjoint of A, B^{adj} the adjoint of B, so that A^{adj} , B^{adj} are matrices over R satisfying

 $\begin{bmatrix} A & 0 \\ 0 & B \end{bmatrix} \cdot$

$$AA^{\operatorname{adj}} = A^{\operatorname{adj}}A = \det(A) \cdot I_r,$$
$$BB^{\operatorname{adj}} = B^{\operatorname{adj}}B = \det(B) \cdot I_r$$

Since $(\det(A), \det(B)) = 1$, elements α, β of R exist such that

$$\alpha \det(A) + \beta \det(B) = 1.$$

Now consider the equation

$$\begin{bmatrix} I_r & X \\ 0 & I_s \end{bmatrix} \begin{bmatrix} A & 0 \\ 0 & B \end{bmatrix} \begin{bmatrix} I_r & Y \\ 0 & I_s \end{bmatrix} = \begin{bmatrix} A & T \\ 0 & B \end{bmatrix}.$$

4

(2)

Then (2) holds if and only if

 $(\mathbf{3})$

$$T = AY + XB$$
.

But (3) may be satisfied by choosing

$$X = \beta T B^{\mathrm{adj}}, Y = \alpha A^{\mathrm{adj}} T.$$

Thus (2) has a solution in matrices X, Y over R, and it follows that $\begin{bmatrix} A & T \\ 0 & B \end{bmatrix}$ and $\begin{bmatrix} A & 0 \\ 0 & B \end{bmatrix}$ are equivalent, and hence have the same S.N.F. This concludes the proof.

We remark that because of Theorem 1, the S.N.F. of $\begin{bmatrix} A & T \\ 0 & B \end{bmatrix}$ is completely determined by the invariant factors of A and the invariant factors of B, when $(\det(A), \det(B)) = 1$.

This result is definitely false if the determinant condition is removed. For example, the S.N.F. of $\begin{bmatrix} 4 & 0 \\ 0 & 6 \end{bmatrix} \text{ is } \begin{bmatrix} 2 & 0 \\ 0 & 12 \end{bmatrix}, \text{ but the S.N.F. of } \begin{bmatrix} 4 & 1 \\ 0 & 6 \end{bmatrix} \text{ is } \begin{bmatrix} 1 & 0 \\ 0 & 24 \end{bmatrix}.$

We note in passing that if

$$S(A) = \text{diag} (\alpha_1, \alpha_2, \ldots, \alpha_r),$$

then

$$S(A + A + \ldots + A) = \alpha_1 I_k + \alpha_2 I_k + \ldots + \alpha_r I_k,$$

where there are k replicas of A in the direct sum.

Theorem 2 may be generalized as follows:

THEOREM 3: Let M be a matrix over R, and suppose that M may be partitioned as

M =	M ₁₁ 0	$M_{12} \ M_{22}$	 $M_{1t} M_{2t}$,
	0	$\begin{array}{c} \cdot \cdot \cdot \\ 0 \end{array}$	 M _{tt}	

where the matrices M_{ii} are square and have pairwise relatively prime determinants. Then the S.N.F. of M is determined by the invariant factors of the M_{ii};

$$S(M) = S(M_{11} + M_{22} + ... + M_{tt}).$$

PROOF: Put

$$A = M_{11},$$

 $T = [M_{12}, \ldots, M_{1t}],$

$$B = \begin{bmatrix} M_{22} & \dots & M_{2t} \\ & \dots & \\ 0 & \dots & M_{tt} \end{bmatrix},$$
$$M = \begin{bmatrix} A & T \\ 0 & B \end{bmatrix},$$

 $\mathbf{5}$

Then

and $(\det(A), \det(B)) = 1$. By Theorem 2 and the result on the multiplicativity of the S.N.F.,

$$S(M) = S\left(\begin{bmatrix} A & 0\\ 0 & B \end{bmatrix}\right)$$
$$= S\left(\begin{bmatrix} A & 0\\ 0 & I \end{bmatrix}\right) S\left(\begin{bmatrix} I & 0\\ 0 & B \end{bmatrix}\right)$$

since $(\det(A), \det(B)) = 1$. Repeating this procedure with the matrix B, we ultimately obtain

$$S(M) = S(M_{11} + I)S(I + M_{22} + I) \dots S(I + M_{tt})$$

= $S(M_{11} + M_{22} + \dots + M_{tt}).$

This concludes the proof.

References

Newman, Morris, Integral Matrices, Academic Press, New York (1972).
 , On the Smith normal form, J. Res. Nat. Bur. Stand. (U.S.), 75B (Math. Sci.), Nos. 1&2, 81-84 (Jan.-June 1971).

(Paper 78B1-392)