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The real roots of a polynomial with rational coefficients may be evaluated to absolute precision by
integer arithmetic. Based upon the theorems of Sturm and Budan, two algorithms for this evaluation
are described, and some comparative observations are offered.
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1. Introduction

Given some Py(x), we consider the sequence Py(x), P;(x), . . . P/(x) of polynomials

P,(x) — E pl"i)) xni—m

formed by an algorithm (detailed below) under which the degrees ng, n;, . . . n; of the Pi(x) decrease
monotonically. We denote degree drop by di = n; —ni—; = 1; we distinguish the leading and maxi-
mum coefficient magnitudes of the P;(x) by ¢;=|p{?| and g; = | p'?|; we denote the norms of the
Pi(x) by e;=(Z(p{i)2)"2; and we distinguish the degree of the initial Po(x) by N=no. We observe
t=N, and we define M=N —1.

We consider two algorithms. In the Sturm case: P;(x) is the derivative of Py(x), and each
other P;(x) is the negative of the remainder polynomial upon dividing P;_»(x) by Pi—:(x): and
d; = 1 yields t = N. In the Budan (or Fourier-Budan) case: every P;(x) for i = 1 is the derivative
of Pi_i(x); and all d; =1 yields t=N. We discuss these cases, first together, and then separately.

We seek the real roots of Po(x) by determining the p{? for i 2 1 and then employing a pro-
cedure which requires determining, for selected values of x, the sign(s) of either Po(x) or all
Pi(x). Hence, as convenient, we may replace any P;(x) by any associate polynomial formed by
multiplying Pi(x) by some positive scaling factor f;. Arbitrarily, we regard p(® > 0; and (option-
ally) we ignore zero roots of Py(x) by imposing p(” # 0 (adjusting N if necessary). Trivially, we
demand N > 0.

By B we denote some bound such that all real roots of Py(x) lie in the range —B<x =B
(e.g., eo < B); and, by analyzing the signs of the P;(x) at interval endpoints, we develop succes-
sively smaller intervals x” < x = x” within —B < x = B to bound each root in an interval of desired
small length.

We consider only rational p{?) (e.g., terminating digital expressions), and we restrict all f;
to be rational, whence all p(}) are rational.
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For exactness in computation, through suitable f; we constrain all p{) to be integers; and we
consider only integer values for B and all x" and x”; hence only integer values are assumed by the
Pi(x) at interval endpoints, and the maximum error within which roots ultimately are determin-
able is 1. Root determination to subinteger precision is tractable, under this integer convention,
by suitable initial upscaling of the p{) and corresponding terminal downscaling of the (integer)
roots thus determined. Accordingly, hereinafter the minimum value of x"—x' is 1.

Toward precluding unnecessarily large magnitudes among the integer values of the p(i) and
Pi(x), we remove all common prime factors from the p{) of each P;(x): initially from Py(x), and
from each other P;(x) as the algorithm is executed.

The restriction that all values of p{)) and B and x’ and x” (and Pi(x)) be integers affords
opportunity to isolate the roots of Py(x) into intervals which are bounded exactly— without error
accural from numerical rounding or truncation. We are not concerned here with perturbations
in root values resulting from change(s) in the integer value(s) of any individual p{?.

By V(x) we denote the number of sign changes (ignoring any P;(x) =0) in the sequence
Po(x), Pi(x), . . . Pi(x); and by R(x', x") we denote the number of real roots of Py(x) in the
interval x' <x=x". Also, we define R(x', x")=V(x') —V(x"). The distinct considerations
‘which apply in establishing R(x', x”) = R(x', x") are discussed separately for the Sturm and
Budan cases below.

In both cases, establishing B as any (e.g., the smallest) integer power of 2 which maximizes
R(—B,+B) = R(—», +), and employing ¥ (x) at interval endpoints, the real roots of P,(x)
may be separated into intervals of lengths diminishing to 1 —and thus evaluated to within an error
of at most 1—by repeated interval halving: first of the initial interval —B < x = B, and then of its
repeatedly halved subintervals ' < x = x” for which R (x', x") #0.

2. The Sturm Case

The Sturm algorithm is expressible as P;(x) = [Qi(x)Pi—1(x) —0iPi—»(x) ]/pi fori=2,3, .. . ¢t,
terminating when Py 1 (x) =0,where 6; and ¢; are positive scaling factors and the Q;(x) are discarded.

Obviously di=1, but d; =1 applies for i = 2; and ¢ = N. The constrain that all p{) be integers
commends the establishment of ;= (c;—; )%i-2+1, and ¢; > 0 may be chosen arbitrarily so long as
the integer quality of the p{i is maintained. Under Euclid’s algorithm (for polynomials), the final
P¢(x) is (within scaling factors) the greatest-degree polynomial divisor of every P;(x), and each of
its roots is a root of every P;(x); and, by a property of the derivative, each single or multiple root
of Po(x) is, to multiplicity one less, a root of each P (x), Py(x), . . . P/ (x).

In the Sturm case, every single or multiple root of P¢(x) counting exactly once, R(x’, x”)
=R(x', x")=V(x') —V(x") is the number of distinct real roots of Po(x) in the interval x’ < x = «”,
provided that neither x' nor x” is a root of P/(x) (for then would follow all P;(x)=0); however
this constraint upon x' and x” vanishes when every Pi(x) is replaced by its quotient upon
division by (p{9/c;)P((x), for then Py(x) contains no multiple roots, and P;(x)==1 (and N is
correspondingly reduced by n;).

For the choice all ¢;=1, the p{) Inay assume unreasonable magnitudes when not all ¢;=1.
The ¢:i may be chosen [1]' such that the magnitude of each p() is equal to that of a particular
subdeterminant, of order 2(N—n;) —1, of the Sylvester matrix for Po(x) and P;(x). This choice
is ¢i=sis2 . . . SiaG2, where hy=(di)(1—ds)(1—d3) . .. (1 —dk—2)(1—dk—1)(dr) and
sk = (cx)"k; and ¢2=1 is understood; and when all d;=1, there applies simply ¢:= (ci_)? for
i >2. In each of these determinants: only coefficients of P;(x) occur in N —n; columns, and only
coefficients of Py (x) occur in M —n; columns; hence by Hadamard’s theorem, each subdeterminant
magnitude is bounded by e{¥-")e(M-1) = eNeM.

! Figures in brackets indicate the literature references at the end of this paper.

40



In implementing the Sturm case, with due sign consideration each p'!) may be computed
as = its counterpart subdeterminant of that Sylvester matrix, and the bound ee* is excessive at
least to the extent that common integer factors occur among the p() of the P;(x). Since only
py? and p{! occur in one row of each Sylvester matrix subdeterminant concerned, their greatest
common factor [¢y, ¢;] is a common factor of all p(» for i = 2, and additional common factors may
appear in the several P;(x) as the algorithm is executed. However, in the absence of foreknowledge
of such additional factors, the a priori minimum bound of the p(}) magnitudes for i =2 is given by
eN=mde(M-n)][cy,c,] = eNeM/[co,c1].

We denote G=eYe¥/[co,c1].

Indeed, in the Sturm case, the p() may be computed [2, 3] as = determinants of elements
pli-V and pli-2); and when they are so computed, the magnitudes of intermediately formed
products of p{i-" and p{i-? may exceed G, particularly for the larger values of i. However, the
bound G does apply for the p(?) magnitudes throughout 2=i=¢, and the generation of the Sturm
polynomial coefficients may be conducted to digital precision which need but modestly exceed
two times (for sign) the bound G: e.g., modulo some prime which exceeds 2G; or, to preclude
engaging cumbersomely large integers, by a modular arithmetic in which each quantity is repre-
sented by its residues, modulo a set of distinct primes whose product exceeds 2G.

3. The Budan Case

The Budan algorithm [5] is Pi(x) =d(Pi_,(x))/dx fori=1,2, . . . t=N.
All di=1; and, indeed, P/(x) need not be computed, for it is a constant P;(x)= (N!) p(®»

of sign identical to that of p{». Clearly, all p'i) magnitudes for i<t are bounded by
[PR|=(MDNgo< (M) eo.

In the Budan case, every m-fold root of Py(x) being counted m times, R (x', x") =V (x') =V (x")
is an upper bound on the number of real roots of Py(x) in the interval x’ < x = x”, and R (x', x")
can differ from R(x', x”) only by an even integer. Therefore R(x’, x”) is known precisely only
when R(x', x") =R (x', x") = 1; otherwise R(x', x") = R(x', x") applies.

The potential even integer excess of R(x', x”) over R(x’, x") accrues from potential complex-
conjugate pairs of roots of Py(x); and the engagement of R(x', x") in isolating the real roots of
Py(x) introduces potential ambiguity, when R(x', x”) =2, in distinguishing the occurrence of
complex roots of Py(x) from two cases of the occurrence of real roots in x” < x = x": the case of
m-fold real roots, for m = 2, which are not expressible as integers under whatever upscaling is
employed; and the case of distinct (single or multiple) real roots which lie in the same interval
x" < x = x” and differ in value by less than the resolution employed (utlimately x"—x"=1).

In particular cases, however, such ambiguity may be removable, at least partially, by two
devices.

Under Descartes’ rule, Po(x) can have no more positive real roots than the number of sign
changes in the sequence p(”, p{”, . . . p{) and no more negative real roots than in that sequence

with every alternate p{? negated.

Also, denoting by ¥, (x) the number of sign changes in the sequence P;(x), P;_1(x),. . . Pu(x),
and defining Ry (x', x") =Vu(x') —Vu(x"), and constraining m = ¢t — 2: if Px(x’) >0 and Pr(x") >0
for allk=¢t,t—1, . . . m, except only 0> P,.;(x'), then R,,(x', x") =2, but no real root of P, (x)
can exist in 2’ < x =x” when the respective magnitudes of P, (x'); and P,(x") exceed x"—x’
times those of their tangent slopes P, 1(x’) and Pu1(x") and a corresponding argument applies
for <vice>. [And x'"—x'=1 in the ultimate resolution.] The occurrence of every such condi-
tion, for a distinct interval x" < x =x", reveals the existence of one pair of complex-conjugate
roots of P, (x), and therefore of Py(x), for the real roots of every P;(x) separate those of P;_(x).
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4. Summary

Comparison and/or contrast between the Sturm and Budan algorithms for polynomial real
root evaluation is difficult to express, for performance under either is conditioned by the particular
set of p(» which comprise Po(x).

For equal expenditure of digit capacity, in a computer, to accommodate the p{) in either case,
and for large N and large (multi-decimal-digit) p{?’ magnitudes, the bounds e¥ed/[co, ¢, ] and (M!)e,
suggest the achievement of higher resolution of real roots under the Budan case, but at risk of
uncertainty in the solution whenever R(x', x”) > 1 occurs for some x’ < x = x” at the termination
(x"—x"=1) of interval halving.

Under the Sturm case. the precise value of R{(x’, x”) is known for every interval x’ < x = x”,
but to potentially lower resolution because of the evidently higher a priori bound on the magni-
tudes of the p{».

In the appendix is displayed a table, summarizing admittedly limited experience for the Sturm
case, showing common logarithms of: (a) the bound eYe); (b) the maximum g; generated in execut-
ing the Sturm algorithm for ¢;=s52 . . . si_2ci_» but otherwise without common factor removal
(without reducing the p{) magnitudes by [co, ¢i]); and (c) the maximum g; after common factor
removal among the coefficients of each Pi(x) [and after division of each Pi(x) by (p{"/c.)P(x)].

The first 14 of the 16 entries are for the Nth degree polynomials whose roots are —1,—2,...—N
for N = 14; the 15th entry is for the 10th degree polynomial with the six real roots —1/10, —1/11,
0, 8101/8111, 1. 2, and the two doubled imaginary roots *i; and the last entry [4] is for the 8th
degree polynomial x® — 134x” + 6496x°% — 147854x° + 1709659x* — 10035116x* + 28014804x> —
29758896x + 6531840 whose six real roots are 58.1801 . . ., 32.1652 . ...17.6740 . . ., 13.0545 . . .,
1.7103 . . ., 0.2915 . . . . Also shown in the table is the smallest integer j which satisfies e; < B = 2.

For the first 14 entries, the sharpness of the reduction from (a) to (b) and (c) probably is due
to the algebraic regularity with which the p{” are expressible—as sums of products of integers
(root negatives). For these 14 entries the maximum g; occurs among the lower values of i, and,
through symmetry in this “canonical” case of uniformly spaced roots, each Py(x) has the final
(common factor removed) form 2x+ (N+1) for even N and x+ (N+1)/2 for odd N.

For the last two entries, the reduction from (a) to (b) and (c) is less pronounced, probably
because of less algebraic regularity among the p{¥.

However, despite the magnitude of the reduction from (a) to (b) and (c) for the last two entries —
no further data [2] are available at this writing—there exists considerable contrast between the
magnitudes of (c) (for the Sturm case) and the corresponding common logarithms of the bound
(M1)go (which would apply for the Budan case): 49.73 versus 11.52 for the 15th entry and 34.93
versus 11.18 for the 16th entry.

This contrast suggests serious consideration of the Budan algorithm, as well as the (infallible)
Sturm algorithm, as a mechanism for determining, to absolute precision by integer arithmetic,
the real roots of polynomials of large degree with large rational coefficient magnitudes.

42



5. Appendix

N (a) (b) (c)
1 0.0 0.0 0.0 1
2 1.81 .48 .48 2
3 5.98 1.08 1.08 4
4 12.13 1.70 1.70 7
5 24.19 4.92 2.65 9
6 38.93 9.08 3.71 12
{1 57.81 14.79 4.42 15
8 76.26 17.38 5.07 18
9 104.65 27.11 6.07 21
10 141.60 42.53 7.47 25
11 179.22 55.65 8.50 28
12 218.35 67.24 10.35 32
13 269.97 88.21 11.11 36
14 311.37 107.80 12.66 40
10 128.51 72.88 49.73 24
8 113.79 61.65 34.93 26
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