JOURNAL OF RESEARCH of the National Bureau of Standards – B. Mathematical Sciences Vol. 78B, No. 1, January–March 1974

On Characters of Subgroups*

Russell Merris**

(October 16, 1973)

Let *H* be a subgroup of *G*. Let χ be an irreducible character of *H*. Let χ^{G} be the character of *G* induced by χ . The irreducibility of χ^{G} is discussed. In particular, if *H* is normal in *G*, then χ^{G} is irreducible if and only if χ cannot be extended to any subgroup of *G* which properly contains *H*.

These results have application to the determination of irreducibility of a class of representations of the full linear groups.

Key words: Frobenius Reciprocity Theorem.

I. First Introduction

Let H be a subgroup of G. Let χ be an irreducible complex character of H. In the course of the author's study of a class of representations of the full linear group, the following criterion arose:

Condition 1. There is an irreducible character λ of G such that $(\lambda, \chi)_H = 1$, and $(\xi, \chi)_H = 0$, for every irreducible character ξ of G different from λ . (Here, of course,

$$(\xi, \chi)_{H} = \frac{1}{o(H)} \sum_{h \in H} \xi(h) \chi(h^{-1}).$$

It turns out that when $G = S_m$, the symmetric group, Condition 1 is equivalent to the irreducibility of a certain representation of the full linear group [3].¹ The main purpose of this (essentially expository) note is to investigate character theoretic statements which are related to Condition 1.

II. Second Introduction

Let *H* be a subgroup of *G* and let χ be an irreducible character of *H*. Can we obtain from this situation any information about the irreducible characters of *G*? It would be most pleasant, for example, if χ could be extended to a character of *G*. But, this is not always possible.

One general method to obtain a character of G from χ goes as follows: Define χ^* on G by $\chi^*(h) = \chi(h)$ for $h \in H$, and $\chi^*(g) = 0$ for $g \in G \setminus H$. then

$$\chi^{G}(g) = \frac{1}{o(H)} \sum_{f \in G} \chi^{*}(f^{-1}g f), \qquad g \in G,$$

turns out to be a character of G whose degree is $\chi(id)$ [G:H]. It is called the character of G induced by χ [1,2].

AMS Subject Classification: Primary 20C15; Secondary 15A69, 20G05.

^{*}An invited paper. **Present address: Instituto de Física e Matemática, Av. Gama Pinto, 2, Lisbon, 4 (Portugal).

¹Figures in brackets indicate the literature references at the end of this paper.

Now, of course, we would like to know something about χ^{G} . For example, is it an irreducible character? In general, the answer is no. We are indebted to Frobenius for the following very useful result:

(Frobenius Reciprocity) Theorem: Let H be a subgroup G. Let χ and λ be characters of H and G respectively. Then

$$(\chi, \lambda)_H = (\chi^G, \lambda)_G.$$

As we shall see, the irreducibility of χ^{G} is related to the extendability of χ .

III. Results

Suppose $g \in G$. We let χ^g denote the character of gHg^{-1} defined by

$$\chi^g(gHg^{-1}) = \chi(h), \qquad h\epsilon H.$$

THEOREM 1: Let H be a subgroup of G. Let χ be an irreducible character of H. The following are equivalent

a. Condition 1.

b. χ^G is irreducible (in fact $\chi^G = \lambda$).

c. For all $g \in G \setminus H$, χ^g and χ are different characters of $H \cap gHg^{-1}$.

THEOREM 2: If χ^G is irreducible, then χ cannot be extended to any subgroup of G which properly contains H.

Unfortunately, the converse of Theorem 2 is not true in general. For example, let $G=S_4$. Let H be the subgroup generated by $\{(14)(23), (1234)\}$. (Then H is the dihedral group D_4 of order 8.) Let χ be the irreducible character of H of degree 2. The only subgroup of G which properly contains H is G itself, and χ does not extend to G. The character χ^G , of degree 6, is the sum of the two inequivalent characters of G of degree 3.

When *H* is normal in *G*, however, the converse does hold.

THEOREM 3: Let H be a normal subgroup of G. Let χ be an irreducible character of H. If χ cannot be extended to any subgroup of G which properly contains H, then χ^G is irreducible.

In this connection, we point out a recent result of Roth [4, Theorem 3.1].

(Roth's) Theorem. Let ξ be a character of G of degree 1. Let $H = \ker \xi = \{g \in G : \xi(g) = 1\}$. Suppose there exists an irreducible character λ of G such that $\lambda \xi = \lambda$. Then there exists an irreducible character χ on H such that $\chi^G = \lambda$.

IV. Proofs

We begin with Theorem 1. The equivalence of a and b is immediate from the Frobenius Reciprocity Theorem, i.e., $\chi^G = \lambda$ if and only if $(\lambda, \chi)_H = 1$, and $(\xi, \chi)_H = 0$, for every irreducible character ξ of G different from λ . The equivalence of b and c is Theorem (45.2)' of [1].

The proof of Theorem 2 is equally straight forward. If χ^G is irreducible, then (by Theorem 1) for all $g \in G \setminus H$, χ^g and χ are different on

$$H \cap gHg^{-1} \subset \langle H, g \rangle,$$

the group generated by H and g. Thus, since characters are class functions, χ cannot be extended to $\langle H, g \rangle$.

We proceed to the proof of Theorem 3.

LEMMA: Let H be a normal subgroup of G. Let χ be an irreducible character on H. Then χ can be extended to $\langle H, g \rangle$ if and only if $\chi^g = \chi$.

PROOF: As above, necessity is clear. Suppose, then, that $\chi(g^{-1}hg) = \chi(h)$ for all $h \in H$. Let $h \rightarrow A(h)$ be an irreducible representation of H affording χ . Define

$$B(h) = A(g^{-1}hg), \qquad h \in H.$$

Then $h \rightarrow B(h)$ is a representation of H which affords χ . It follows that A and B are equivalent. Let U be nonsingular such that

$$B(h) = U^{-1}A(h)U, \qquad h \in \mathcal{H}.$$
 (1)

Now, let r be minimal such that $g^r \in H$. Observe

$$A(g^{-r})A(h)A(g^{r}) = A(g^{-r}hg^{r})$$

= $A(g^{-1}g^{-r+1}hg^{r-1}g)$
= $B(g^{-r+1}hg^{r-1})$
= $U^{-1}A(g^{-r+1}hg^{r-1})U$
= . . .
= $U^{-r}A(h)U^{r}$.

Thus, $A(g^r)U^{-r}$ commutes with A(h) for all $h \in H$. It follows from Schur's Lemma that $A(g^r)U^{-r}$ is a scalar matrix S. We now replace U in (1) with U times any scalar rth root of S^{-1} , i.e., we may assume that $U^r = A(g^r)$.

Next, we define R on < H, g > by

$$R(hg^k) = A(h)U^k$$

for all $h \in H$ and $k = 0, 1, \ldots, r-1$. We claim R is a representation of $\langle H, g \rangle$. Observe

 $R(h_1g^s)R(h_2g^t) = A(h_1)U^sA(h_2)U^t$ (2)

$$R(h_1g^sh_2g^t) = R(h_1h'_2g^{s+t}) = A(h_1)A(h'_2)U^{s+t},$$
(3)

where $h'_{2} = g^{s}h_{2}g^{-s}$. To obtain equality between (2) and (3), it remains to show that

$$U^{s}A(h_{2}) = A(h_{2}')U^{s}.$$

But, this follows as above. This establishes our claim that R is a representation of $\langle H, g \rangle$. Since the restriction of R to H is A, the character afforded by R extends χ . The proof of the lemma is complete.

Now, to complete the proof of Theorem 3, we appeal to the implication $c \to b$ of Theorem 1.² Since $gHg^{-1} = H$, this implication establishes that χ^G is irreducible if $\chi \neq \chi^g$ for all $g \in G \setminus H$, i.e., by the lemma, if χ cannot be extended to $\langle H, h \rangle$ for all $g \in G \setminus H$.

COROLLARY: Let *H* be a normal subgroup of *G*. Suppose [G:H] is prime. Let λ be an irreducible character of *G*. Then either the restriction of λ to *H* is irreducible or $\lambda = \chi^G$ for some irreducible character χ of *H*.

² For a slightly different proof, one could appeal at this point to [2, (9.11)].

5. References

- [1] Curtis, Charles, and Reiner, Irving, Representation Theory of Finite Groups And Associative Algebras, (Interscience, [1] Ontris, Charles, and Reiner, Fright Representation Theory of Timle Ordeps That Associative Algebras, (New York – London, 1962).
 [2] Feit, Walter, Characters of Finite Groups, (Benjamin, New York, 1967).
 [3] Merris, Russell, The irreducibility of K(A), Linear and Multilinear Algebra, to appear.
 [4] Roth, Richard, On the conjugating representation of a finite group, Pacific J. Math. 36, 515–521 (1971).

(Paper 78B1-396)