JOURNAL OF RESEARCH of the National Bureau of Standards —B. Mathematical Sciences
Vol. 78B, No. 1, January—March 1974

Comparison of Some FORTRAN Programs for Matrix
Inversion*

Kenneth E. Fitzgerald**

(August 6, 1973)

In this paper several programs for computing the inverse of a matrix are compared primarily on
the basis of execution time. Accuracy estimates and two programs that use iterative refinement are
included. It is shown that for small matrices, improvement procedures are worthwhile but for large
matrices, one must be more careful in their use. Two other points are also brought out: the value of
multiplying matrices before taking the norm of a product and the need for some kind of an error
estimate to be included in the output of every program.

Key words: Error estimates; evaluation of computer programs; execution time; inverse of a matrix;
iterative refinement; linear systems.

Introduction

In a previous paper [1] a number of FORTRAN programs for finding the inverse of a matrix
were compared solely on the basis of accuracy. Information with respect to the execution time of
these programs is also of importance and we would like to discuss this factor in this paper. This
latter element becomes a very important consideration when iterative refinement is used because
a more accurate inverse will clearly result but we must evaluate the added time and effort it requires.

In this paper, then, we will briefly summarize the major results of the previous work in order to
have them at hand, describe the programs and the test matrices to be used, present the information
with respect to execution time as well as accuracy, and then discuss the results.

Review

Any discussion ot accuracy involves the concept of a norm to determine the *‘size” of the error
and we will use two: the Frobenius norm, where N(4) = V3, | @ij|%, and the maximum element

norm, where N(4) = n - max | a;j|. It is important to note the need for the multiplication by the

size of the matrix in the latter case so that the second condition for a norm, N(AB)<N(A)N(B),
will be satisfied. With regard to this particular inequality, we would like to emphasize a point
made in the previous paper. The derivation of many theoretical error bounds involves the use of
this property and it is clearly much simpler and faster to calculate the norm of each matrix and
multiply these two numbers than to multiply two matrices and then compute the norm. However,
it has been our experience that the latter procedure gives a much smaller number than the former
and as a result gives a much better indication of the value of the result. This can clearly be seen
by looking at columns three and four in tables 1 to 10 that follow. The error bounds used in those
tables were derived in the previous paper and we will just summarize the results now.

AMS Subject Classification: 65F05, 65F35.

*An invited paper.

**Present address: Manhattan College, New York, N.Y. 10471

! Figures in brackets indicate the literature references at the end of this paper.

15

Let X be an approximate inverse and let Y be the residual matrix / —AX. Then for any norm,
if N(Y) <1, we have

N(X)
"1+N(Y)

N(X)
1—N(Y)

o

< N(41) <

2 @ N1 — 1) < 01

Y
(b) N(4-1 — X) < %

N(E)
2N (4)

SNA'—X),E=(I—XA) — (I —A4X)

4. 1-N(Y) < N"E;’f)l) <1+N()

NA-'=X) _NQXY) 1+N()
NA-Y) — NX) 1-N(Y)

5. (a)

N(A4-'—X)

1+N(Y)
VRS

<sN) - 1=N ()

N(E) 1-N(Y)<N(A—1_X) o ~ -
CAN) N@X) | N ,E=(I—XA) — (I - 4X)
N~ —X)

NG < N(Y).

The derivation of the above is based primarily on the relation Y=I—AX and, after transposing
and taking inverses, on the relation (I—Y)-'=I4+Y+Y2+ . . ., if N(Y) <1, which also insures
that the eigenvalues of Y are of modulus less than one. It will be very interesting to note in the
following tables the relation between numbers 2(a), an absolute error bound and 7, a relative
error bound. Before discussing the results, however, it would be good to describe the programs
and test matrices.

The Computer Programs

1. LEQ

A FORTRAN subroutine used to solve the matrix equation AX = B and to evaluate the determi-
nant of 4. It was written by Max Goldstein of the AEC Computing and Applied Mathematics
Center at the Courant Institute of Mathematical Sciences, New York University. The Gauss
elimination method is used. The matrices are normalized row-wise by dividing by the largest
element of A(I, J) in that row, then the A matrix is reduced to triangular form by (N—1) trans-
formations using pivotal condensation process after which X (I, J) is computed by a back-
substitution process. This transforms B into X and leaves the product of the diagonal elements
as the determinant of 4.

16

2. MIDAS

A FORTRAN and ALGOL package to solve general nonsingular systems of linear algebraic
equations, invert matrices, and compute determinants. Error bounds on the solution or inverse
are available as an option. It was written by Peter A. Businger of Bell Telephone Laboratories,
Inc., Murray Hill, New Jersey. The error bound is a bound on the distance between any element
of the true inverse and the corresponding element of the computed inverse (unless the bound
equals —1, in which case no bound is available). Gaussian elimination with partial pivoting is used
to decompose the N X N input matrix into the product of a lower and an upper triangular matrix
(LU decomposition). The magnitude of intermediate results is estimated; in case of alarming
growth the program switches to complete pivoting. When solving a system of equations Ax=b,
the accuracy of the solution obtained from the triangular system is improved by iteration; in the
case of matrix inversion the iteration is omitted for the sake of computational efficiency. (We note
that the error bound is essentially N(X)N(Y)/[1—=N(Y)], Y=I—A4X.)

3. MINV

A FORTRAN subroutine, one of the IBM System/360 Scientific Subroutine Package. It inverts
a general matrix by the standard Gauss-Jordan method. The determinant is also calculated. A
determinant of zero indicates a singular matrix.

4. SPINV

A single precision FORTRAN IV program for inverting a matrix or solving a set of linear equa-
tions. To a program from the SHARE library (7090—F1 3180INV1 Single Precision Matrix Inversion
with Selective Pivoting, written by A. R. Sadaka), Sally T. Peavy, National Bureau of Standards,
incorporated accuracy checks. This is also the routine used by INVERT of OMNITAB.

5. SOLVE

A FORTRAN program by Cleve Moler given in the book Computer Solution of Linear Algebraic
Systems by George Forsythe and Cleve Moler. It uses Gauss elimination with partial pivoting and
has a subroutine IMPRUV, which can be called to improve the solution of a linear algebraic sys-
tem. Appropriate messages for various kinds of singularity are available. It is presently under-
going some changes to increase efficiency in most FORTRAN systems although these changes
should not materially alter the numerical behavior [2].

6. LINEQ1

A FORTRAN subroutine used to solve the real matrix equation AX = B and wrnitten by David S.
Dodson, Department of Computer Sciences, Purdue University. The matrix 4 is factored into
lower and upper triangular matrices L and U and then the equations LZ =B and UX =Z are solved
in turn. Double precision accumulation of inner products and iterative refinement are used to
improve accuracy.

The Test Matrices

An indication of the degree of difficulty that may be encountered in computing the inverse of a
matrix is given by the “condition number” of a matrix. There are many ways of arriving at such a
number and the one we shall use is called the P-condition number:

526-390 O - 74 - 2

where A\ is an eigenvalue of largest modulus and w, of smallest. We will give this value for each of
our test matrices. Since the execution time for inverting matrices of small size (20 by 20) is rather
minimal, roughly two seconds, we used matrices of order 100. This means, of course, that the
Hilbert matrix had to be excluded as a test matrix (loge P(H,) = 3.5n, n=100) and hence we used
only the following five matrices.

1. Ao

This is a 100 X 100 matrix where Ax= (1/k)I + J and J is the 100 X 100 matrix of all ones. P (A4x)
=1+ 100%. The integer form for use as a test matrix is obviously achieved upon multiplication by k.

0 =1~ g/
P(A100) = 10001
~ 10E+05
2. Ayuno

The same as above except that we change the value of k.
P(A]()()()) = 100001

~ .10+ 06
3' A10000
The same as above except that we change the value of k.

P(Alo()()o) = 1000001

=~ .10E +07

4. Ty

This is a 100 X 100 tridiagonal matrix with —2 on the diagonal, 1 above and below the diagonal,
and 0 elsewhere.

—92,i=j
T= (tij),tijz l,ll_]|=1
0,]i—j| =2.

P(T,) =~ (4/m*)n*

41F + 04

N

SNTeM

This is just the square of the above matrix.
P(T?y) = (4/m*)* (n?)*

~ .16E + 08

18

The Results

In tables 1 to 10 we give the information with regard to accuracy, using the two different norms,
and in tables 11 to 22, the information concerning time; the last set of tables, 23 to 32, will com-
bine the two pieces of information. We will then discuss the results.

TABLE 1. Accuracy of results

Program oNfI Zieecl;(Nu-ax) | XED NOND) | Relative | v 3o | Rank
e 1-N(Y) | 1-N(Y) | error

LEQ.. v oo 68E—05 | 18E—02 | 45E—05 | 18E—01 | 45E—06 | 30E—02 | 6
MIDAS....ovooooveeoeeeeeeeeoeen, 19E—03 | 24E—01 | 39E—05 | 25E+00 | 41E—06 | 12E—02 | 4
MINV oo 60E—06 | 79E—03 | 12E—06 | 79E—02 | .12E—07 | 46E—03 | 3
SPINV. ..o J9E—05 | 62E—02 | T0E—05 | 61E—01 | 71E—06 | 61E—02 | 7
No IMPRUV...| .13E—05 | .16 E—02 | 42E—05 | 16E—01 | 43E—06 | 33E—02 | 5
SOWVE o IMPRUV.......| 86E—07 | 22E—04 | 69E—07 | 22E—03 | 710E—08 | 26E—04 | 2
LINEQI............ooovviiinnnnn. .15 E—06 25 E—04 46 E—07 25 E—03 47 E—08 32E—-04 1

NQXY) NN

Contiion Nomber=10 E+05 st R —(N&) < ;V(;))

Norm =FROBENIUS
N(A'=X) _ N(XY) 1+N(Y)
N(A-') 1-NY) NX)

*Difference from 1. Y=I—AX

TABLE 2. Accuracy of results

Program i}d iﬁ:ﬁi Nu—ax) | YED P NEONE) | Relative | oy gy | Rank
vector® 1-N(Y) | 1=N(Y) | error
LEQ- oo, A1E—03 | 20E—01 | 55E—04 | 20E+00 | 56 E—05 | 20E—01 | 7
MIDAS....covooeveereeeeeeeeeeeenn. ASE—02 | 20E+00 | 11E—04 | 25E+01 | .13E—05 | .I9E—01 | 5
MINV oo 41E—05 | 40E—01 | 41E—06 | 42E+00 | 43E—07 | 39E—01 | 3
SPINV ... oo ME—03 | 62E—01 | 11E—04 | 65E+00 | J1E—05 | 62E—01 | 5
No IMPRUV...| .60 E—05 | .16E—01 | 83E—05 | .16E+00 | .8SE—06 | 24 E—01 | 4
e IMPRUV....... 88E—07 | 41E—03 | 13E—07 | 41E—02 | .13E—08 | 4TE—03 | 1
LINEQ ..o oeooeooeeoeeens A5E—06 | 33E—03 | 32E—07 | 32E—02 | 32E—08 | 33E—03 | 2
Matrix = 4 000 X = Approximate inverse NA'—X) < LGA) < NX)N(Y)
Condition Number=.10 E + 06 1=N(Y) =07

Norm = FROBENIUS
N(A'=X) _ NQXY) 1+N(Y)
N(A'Y) 1-NY) NX)

*Difference from 1. Y=I1—4X

19

TABLE 3. Accuracy of results

Froeeso i\f ZE:CIL Ni—ax) | NED I NEND) | Relative | v _ x4y | Rank
vector* 1=N(Y) 1=N(Y) erior
LEQ. . ot ooe oo 23E—02 | 19E+00 | 13E—02 | 23E+01 | 16E—03 | 21E+00 | 6
MIDAS. ...voo v, J12E—01 | 46E+01 18 E+00
MINV.coo oo 45E—05 | 45E+00 | 46E—06 | 8LE+0l | 68E—07 | 44E+00 | 3.
SPINV ...oooeoeeeeeeeeeeeeeeen. 34E—05| 61E+00 | 26E—03 | .I6E+02 | 42E—04 | 61E+00 | 5
No IMPRUV.., 38E—05 | .16E+00 | .12E—03 | .I9E+01 | 14E—04 | 24E+00 | 4
SOMVE: o IMPRUV...... 00 33E—02 | 76E—08 | 33E—017 7TE—09 | S4E—02 | 1
LINEQL. ..o 20E—06 | 11E—01 | .1I9E—07 | .11E+00 | 19E—08 | .11E—01 | 2
. N(XY) _NX)N()
Matrix = A 10000 X = Approximate inverse NA1'—X) < 1=N) =< 1I—N(Y)

Condition Number=.10 E + 07
Norm=FROBENIUS

*Difference from 1.

Y=I1—4X

NA'—X) _ NXY) 1+N(Y)

N(A-1) 1-N(Y) NX)
|
TABLE 4. Accuracy of results
Max elt N(XY) | NGON(Y) | Relative
Program of check N(I—AX) error N(I—XA) | Rank
N 1-N(Y) 1-N(Y)
LEQ. oo .14 E—03 19 E—04 .16 E—-01 21 E-01 15 E—-04 S57E—-04 4
VA S o e e 14 E—03 29 E—04 .16 E-01 31 E-01 .15 E—04 28 E—-04 4
MINV ..o .75 E—05 .18 E—04 .69 E—03 J9E-01 .64 E—06 .16 E—04 &3
(o3 1 INAY 500560 080m000006600050000650 .14 E—03 .55 E—04 .16 E—01 59 E-01 .15 E—04 52 E—-04 4
No IMPRUV..| .10 E—04 19 E—-04 .16 E—01 21 E-01 .15 E—-04 57 E—-04 4
SOLVE..........,
IMPRUV...... .15 E—06 .86 E—05 .69 E—05 93 E—02 .65 E—08 .86 E—05 1
LINEQI.......oovviieiiiiiiinnnn| .15 E—06 .86 E—05 .69 E—05 93 E—02 .65 E—08 .86 E—05 1
N(XY) NX)N(Y)
Matrix= T00 X = Approximate inverse NA'—X) =< 1=NQT) = 1—N(Y)
Condition Number= .41 E+ 04
Norm=FROBENIUS vl N(A-1—X) _ NXY) 1+N(Y)
*Difference from 1. N N(4-1) 1-NY) NX)

20

TABLE 5. Accuracy of results

Program i\fd ?l(lee(i Ni—ax) | XX NEONT) | Relative | v xg) | Rank
. 1-N(Y) | 1-N() error
LEQ.. v, 60E+00 | 83E—01 | 82E+05 | 10E+06 | .78E—01 | 20E+03 | 6 |
MIDAS ovvo e, 29E+00 | .IOE+00 | 39E+05 | 12E+06 | 39E—01 | 74E+02 | 5 ‘
MINV oo, 21E+00 | I5E+00 | 27E+05 | 18E+06 | 30E—01 | .I6E+00 | 3
SPINV oo 26 E+00 | .27 E+03 24 E+00
No IMPRUV..| .14 E—01 | .13E+00 | 36 E+05 | .17E+06 | .37E—01 | .18E+03 | 4
SRy IMPRUV....... .00 30E—01 | 70E—02 | 34E+05 | 67TE—08 | 30E—01 | 1
LINEQL....vooosoooeoreereeeo. B31E—05 | 29E—01 | 43E+00 | 32E+05 | 41E—06 | 30E—01 | 2
. N@XY) NX)N(Y)
Matrix="17% | X = Approximate inverse NA1'—X) < 1=N() = =N (Y)

Condition Number= .16 E+ 08

Norm=FROBENIUS

Y=1—AX

NA'—X) _ NEY) 1+N(Y)

*Difference from 1. N(A-") 1-N(Y) NX)
TABLE 6. Accuracy of results
Max elt
N (XY NX)N(Y :
Program of check | N(I—AX) G Soided Relative |y (;—x4) | Rank
vector*® 1=N(Y) 1=N(Y)
LEQ...coiiiiiiiiiiiii, 68E—05| 31E—02| .67E—04 | 30E+00 | .68 E—06 | .21 E—01 4
MIDAS. ... J9E—-03 | .24 E4+00 | .17 E—03 .31 E+02 21 E—05 | .33 E—02 7
MINV ... OH60E—06 | 69E—02 | B81E—06 | 6OE+00 | .82E—08 | .55E—03 &
SPINV ... L9E—-05 | (92E—02 | .13E—03 | 92E+00 | 13E—05 | .89 E—02 6
No IMPRUV..] 13E—05 | .25E—02 | 84 E—-04 | 24 E+00 | 85E—06 | .26 E—01 5
SOLVE..........| g
IMPRUV....... B6E—07 | 4E—04 | 69E—06 | 45E—02 | .70 E—08 | 49 E—04 1
LINEQI.......oooviiviiiiiinnnn. A5E—06 | . 6OE—04 | 69E—06 | 68E—02 | .70E—08 | .79 E—04 1
N(XY NX)N(Y
Matrix = A4 00 X = Approximate inverse NA'—X) =< (X¥) = (;V ;.)
Condition Number=.10 E + 05 1=N(¥) 1-N()

Norm=n - (Maximum Element)

*Difference from 1.

Y=1—-A4X

21

NA1'—X) _ N@XY) 1+N(Y)

NA-Y)

1-N(Y)

N(X)

TABLE 7. Accuracy of results

Program i Ni-ax) | Y&D_ | NONE) | Relative | v xq) | Rank
—— 1-N(Y) 1-N(Y) error
TEE) J1E-03 | 37E—01 | 58 E—03 | .38E+01 | .61 E—05 | .79 E—01 4
VLD AL ASE—02 | .20E+01 .31E—01
W U INN 6 0o00mnanioomonnaascosamacod 40E—05 | 16 E+00 | .1I8E—05 | .19E+02 | .21 E—07 | .39 E—01 3
SN Y 44 E—-03 | 92E—01 | 81E—03 | .10E+02 | .90 E—05 | .92 E—01 6
No IMPRUV..| .69 E—05 | 29E—01 | .74E—03 | .29E+01 | .77E—05 | .12E+ 00 5
SOLVE oo IMPRUV......| 88E—07 | 62E—03 | 11E—06 | 62E—01 | .11E—08 | .70 E—03 1
TETIN T ()] ASE—06 | 97E—03 | .64E—06 | .96E—01 | 65E—08 | .97 E—03 2
Matrix= A 900 X = Approximate inverse NA'—X) < Nar) < DN
Condition Number=10 E+ 06 1-N) 1-N(Y)
Norm=n - (Maximum Element) et N(4-1—X) . N(XY) ' 1+N(Y)
*Difference from 1. N({A™) 1-N(Y) NX)

TABLE 8. Accuracy of results

Program o Ni-ax) | DD\ NEOND) | Relative |y x40 | Rank
veotor® 1-N(Y) | 1-N(Y) | error
111 30 e ononcogenonaatanaamaoaaetonss 23E—02 | 30E+00 | 1ISE—01 | 43E+02 | 20E—03 | .76 E4+00 4
MIDAS.....ccoceeenienneenacnaannnnnn J2E—01 | 46 E+02 .31 E+00
VLTINS 45E—-05 | .15 E+01 .44 E+00
S TN IV 34E—-05 | 86E+00 | .71E—01 | 62E+03 | .13E—02 | .88 E+00 5
e No IMPRUV..; 38E—05 | 22E+00 | .I3E—01 | 27E+02 | .15E—03 | .16 E +01 3
IMPRUV......, .00 S0E—-02 | 47E—07 | 50E+00 | 47E—09 | .11E—01 1
NI O L o005 c00000cmomammmnamonnsal 20E—06 | 12E—01 | .80E—06 | .12 E~+ 01 | 82E—08 | .12E—01 2
Matrix = A 10000 X = Approximate inverse NA1'—X) < 2iets) < NN
Condition Number=.10 E +07 1-NY) 1-N(D)

Norm = n - (Maximum Element)
N(A1'—X) - N(XY) _1+N(Y)
NA-) 1-NY) N(X)

*Difference from 1. Y=I-4X

22

TABLE 9. Accuracy of results

Max elt
NXY NX)N(Y :
Program of check N(I—AX) (@Y) (X)N(Y) R::Erl:rve N(I—XA) | Rank
vector*® 1=N(Y) 1=N(Y)
Hd D{0):scie000100000000000800060050066000 J4E—-03 | 12E—03 | .33 E—01 BOE+00 | 13E—04 | .36 E—03 4
MIDAS.....oceiiiiiiiiieiieanee, J4E—03 | 14E—-03 | 32E—01 | 36 E4+00 | .13E—04 | .13 E—03 4
MINV....oo oo, I5E—05 | 1I2E—03 | .14 E—02 | 30E+00 | 55E—06 | .72 E—04 3
SPINV ...t .14 E—03 SEIID=08) || BB B84E+00 | 13E—04 | .36 E—03 4
No IMPRUV.., 10E—04 | 12E—03 | .33 E—01 BOE+00 | 13E—04 | 36 E—03 4
SOLVE.........]
IMPRUV....... ASE—06 | 36 E—04 | 24E—04 | 90E—01 | 94E—08 | .36 E—04 1
LINEQI.......cooviiiineiiiennns A5E—06 | 36 E—04 | 24 E—04 | 90E—01 | 94E—08 | .36 E—04 1
. . NXY) NX)N(Y)
Matrix = 7’100 X = Approximate inverse NA'—X) < T=N(Y = I—N()
Condition Number=.41 E +04 () ¥
Norm = n + (Maximum Element)

. NA'—X) NXY) 1+N(Y)
*Difference from 1. Y=I—-AX N < I-NY) NQX)
TABLE 10. Accuracy of results

Max elt
NXY NX)N(Y ;
Program of check | N(I—AX) (AT) ONCY) | Relative N(I—XA) | Rank
vector™ 1=N(Y) 1=N(Y) Cl
LEQ. .o, 60E+00 | 88E+00 | .12 E+07 A7E+08 | .10 E4+01 11 E+404 5
MIDAS.....ooeiiiiiieienn, 29E+00 | .71 E400 24 E+06 .54 E407 A8E+00 | 48 E4+03 4
MINV. .o 21E+00 [.76 E4+00 | .19 E+06 | .65 E+07 16 E400 | .93 E+00 3
SPINV ..ot 26 E4+00 | .14 E4+04 .12 E+01
No IMPRUV..| .14 E-01 22 E+01 13 E+04
SOLVE..........
IMPRUV...... .00 J7E4+00 | 29E—01 | 44E+06 | 16 E—07 | .17 E+00 1
LINEQIL....cooovvniiiiiiiinns 31 E—05 15 E+00 93 E+00 | .37 E4+06 S3E—06 | .17 E+00 2
Matrix= Tf X = Approximate inverse NA'—X) < llz(;f:;),) < A;(f;vlz;})/)
Condition Number=.16 E+ 08
Norm = n. (Maximum Element) "
_ (A'—X) NXY) 1+4+N(Y)
*Difference from 1. Y=I—-4X N(4-1) = 1I-NY) NX)

NOTE: In tables 11 to 17, the increase in time for calculating the error bounds for 7’2

100

is due to

the fact that the exact inverse was also calculated and used in evaluating the results for that matrix.
Although these figures are not listed in this paper, they once again show the value of using N (XY)

instead of N(X)N(Y).

23

TABLE 11. Breakdown of run time in seconds per program

Matrix Set up Solution Error bounds Total
A0 eeeennaenineenans 6.4 17.6 59.4 83.4
A 1000+ e eeenernennannns 6.4 17.4 58.7 82.6
A10000: 255w 6.4 17.6 58.6 82.6
Tiiooterrse s ey 3.8 174 58.6 79.9
/i 18.1 17.6 85.7 121.4

Program= LEQ

TABLE 12. Breakdown of run time in seconds per program

Matrix Set up Solution Error bounds Total
Ao s 5v5 aslensrinsin 6.3 49.1 59.6 108.0
A 1000~ oo gias 6.3 41.7 59.0 107.0
A10000-++eneeneeneennns 682 42.6 60.2 109.0
T100cueeeneennnennnn.d 3.8 42.3 59.7 105.8
T2 oeverenneennennens 18.3 42.6 86.5 147.5

Program= MIDAS

TABLE 13. Breakdown of run time in seconds per program

Matrix Set up Solution Error bounds Total
A 100 8.4 29.3 61.1 98.7
A1000--curureennennsd 6.4 29.4 59.7 95.5
A10000 -+ eneneeneenens 6.5 29.4 59.6 95.5
T100eeemneeuuaeennnsd 3.8 29.9 58.8 92.5
1 —— 18.3 30.0 86.6 134.8

Program= MINV

TABLE 14. Breakdown of run time in seconds per program

Matrix Set up Solution Error bounds Total
A)00- e s s e oo 6.3 42.1 59.3 107.7
A 10005 e e 6.4 42.0 59.2 107.6
AT 0000 6.3 42.1 59.4 107.7
T100ceueeeuienaeennnnn. okl 41.9 58.5 104.0
T?oo 18.2 42.7 85.5 146.3

Program= SPINV

TABLE 15. Breakdown of run time in seconds per program

Matrix Set up Solution Error bounds Total
A100eeeienininnnnnn. 6.3 10.7 59.8 76.8
A1000 e eeeneiiinnnnnn 6.3 10.6 59.7 76.7
A 10000 eeerieiinnd 6.2 10.4 58.9 75.6
T100ceeennen, GonoaE SN 10.4 52.9 67.1
T2 I PR———, 18.2 10.6 87.1 115.9

Program= SOLVE (No IMPRUV)

TABLE 16. Breakdown of run time in seconds per program

Matrix Set up Solution Error bounds Total
/e hihespaaoanenooanoag 6.4 G 60.1 122.2
A1000 e eeeeiiinnan. 6.3 55.6 59.1 121.0
A10000-cwvneeeieannn. 6.2 54.6 58.9 119.8
T100cceeeniiiiinannn. 3.8 55.6 58.5 117.8
11 povsonoocenaoncocod 14.9 136.7 84.8 236.4

Program = SOLVE (With IMPRUV)

TABLE 17. Breakdown of run time in seconds per program

Matrix Set up Solution Error bounds Total
A100ececeeiiniininn 6.2 49.0 59.6 114.9
A1000 e 6.4 49.2 59.6 115.2
A 10000+ eveneeeinnnd 6.4 49.8 60.1 116.3
T100ceuneiiiiiiannn, 3.8 49.6 57.1 110.5
LI o s oncaco 18.3 79.8 84.9 183.0

Program = LINEQ1

25

TABLE 18. Comparison of programs according to time in seconds

Program Set up Solution Error bounds Total Rank
LEQ..ccooiiiiiiiiiiiiiieee, 6.4 17.6 59.4 83.4 2
MIDAS. ..., 6.3 42.1 59.6 108.0 4
MINV . 8.4 29.3 61.1 98.7 3
SPINV ..o, 6.3 42.1 59.3 107.7 4

No IMPRUV 6.3 10.7 59.8 76.8 1
SOLVE.....
IMPRUV.......... 6.4 55.7 60.1 122.2 7
LINEQL......oooviiiiiiiniinnnnn] 6.2 49.0 59.6 114.9 6
Matrix =4 100 Condition Number=.10E + 04
TABLE 19. Comparison of programs according to time in seconds

Program Set up Solution Error bounds Total Rank
LEQ. oo 6.4 17.4 58.7 82.6 2
MIDAS. ...ttt 6.3 41.7 59.0 107.0 4
MINV ... 6.4 29.4 59.7 95.5 3
S N/ —— 6.4 42.0 59.2 107.6 5

No IMPRUV.., 6.3 10.6 59.7 76.7 1
SOLVE........
IMPRUV....... 6.3 55.6 59.1 121.0 7
LINEQL......cocvviiniiiiennn. 6.4 49.2 59.6 115.2 6
Matrix = 41000 Condition Number=.10 E + 05
TABLE 20. Comparison of programs according to time in seconds

Program Set up Solution Error bounds Total Rank
LEQ. ..o 6.4 17.6 58.6 82.6 2
MIDAS. ...t 6.2 42.6 60.2 109.0 5
VN Y 6.5 29.4 59.6 95.5 3
S INAY ¢ o0 acaredonnenccomsaonsas 6.3 42.1 59.4 107.7 4

No IMPRUV.. 6.2 10.4 58.9 75.6 1
SOLVE........

IMPRUV....... 6.2 54.6 58.9 119.8 7
LINEQI......cooiiiiiiiiiininnn 6.4 49.8 60.1 116.3 6

Matrix=A10000

Condition Number=.10 E+ 06

26

TABLE 21. Comparison of programs according to time in seconds

Program Set up Solution Error bounds Total Rank
LEQ. ..o 3.8 17.4 58.6 79.9 2
M A S e et 3.8 42.3 59.7 105.8 5
VN e e e 3.8 29.9 58.8 92.5 3
o1 I e nonacarenaassnocartoaie) 3.7 41.9 58.5 104.0 4
No IMPRUV .| 3.1 10.4 52.9 67.1 1
SOLVE........
IMPRUV....... 3.8 55.6 58.5 117.8 7
TN o0 ccmooocoueannosaaamanaag 3.8 49.6 57.1 110.5 6
Matrix= T100 Condition Number= .41 E+ 05
TABLE 22. Comparison of programs according to time in seconds
Program Set up Solution Error bounds Total Rank
|1 {0 e o e A e 18.1 17.6 85.7 121.4 2
W NBY:NShnconssoscnseanessassacocnad 18.3 42.6 86.5 147.5 4
MINV. ..o 18.3 30.0 86.6 134.8 3
SPINV ...ooviiiiiiineiiiiiieeed 18.2 42.7 N(Y)> 1
SOLVE. No IMPRUV.. 18.2 10.6 87.1 115.9 1
IMPRUV....... 14.9 136.7 84.8 236.4 6
A BN O 65006 000 saasoocanososasssd 18.3 79.8 84.9 183.0 5
Matrix=T2 | Condition Number=.16 E+ 08
TABLE 23. Summary of results
T
Program N(I—AX) -—-——lzz(if}),) S“‘Z's‘;“c‘;'r‘ljs';me
R (1) S ———— .18 E—02 45 E—05 17.6
MDA S o 24 E—01 .39 E—05 42.1
MINV. . it seennnaed 79 E—03 12 E—06 29.3
SPINV ...t . .62 E—02 .70 E—05 42.1
| No IMPRUV.......| .16 E—02 42 E—05 10.7
SOLVE.....
IMPRUV............. 22 E—04 69 E—07 55.7
N e 25 E—04 46 E—07 49.0
Matrix= 4 100 NA'—X) sw
Condition Number= 10 E + 04 1-N(Y)

Norm= FROBENIUS

27

TABLE 24. Summary of results

N(XY) Subroutine time
Program N(I—AX) - N) Baconds
LEQ. ..o .20 E—01 .55 E—04 17.4
VI AT . .20 E+ 00 11 E—04 41.7
MINV...ooiiiiiiiieieieeienennnd 40 E—01 .41 E—06 29.4
SPINV ..ot .62 E—01 .11 E—04 42.0
No IMPRUV........ .16 E—01 83 E—05 10.6
SOLVE
IMPRUV 41 E—03 13 E—07 55.6
IINI O 66 000 000 oecosoastonaassssnad .33 E—03 32 E—07 49.2
Matrix=A4 1000 NA-'—x)=< M—
Condition Number=.10 E+ 05 1-N(Y)

Norm=FROBENIUS

TABLE 25. Summary of results

N(XY) Subroutine time
Program N(I—A4X) T——N_(Y)_ (Seconds)
LEQ ..o 19 E+00 .13 E—02 17.6
MIDAS. ..o .46 E+01
MINV ..o .45 E+00 .46 E—06 29.4
SPINV ...t .61 E+00 .26 E—03 42.1
No IMPRUV16 E+00 12 E—03 10.4
SOLVE
IMPRUV............. .33 E—02 .76 E—08 54.6
ILTINTION 00 000 000 cnosoassccooasancannd 11 E—01 J9E—07 49.8
N(XY
Matrix = 410000 NA-'—=X)< 1_—_—(_[—\1_—})/—
Condition Number=.10 E +06 ¥)

Norm =FROBENIUS

TABLE 26. Summary of results

N(XY) Subroutine time
Program N(I—AX) m (Seconds)
LEQ. .o 19 E—04 .16 E—01 17.4
MIDAS.29 E—04 .16 E—01 42.3
MINV .o .18 E—04 .69 E—03 29.9
S RTINS N Sy .55 E—04 .16 E—01 41.9
No IMPRUV19 E—04 .16 E—01 10.4
SOLVE
IMPRUV............. .86 E—05 .69 E—05 55.6
LINEQI......coviiiiiieieennn .86 E—05 .69 E —05 49.6
Matrix = T100 N(A—! —X)SM
Condition Number=.41 E 405 1-N(Y)

Norm =FROBENIUS

TABLE 27. Summary of results

Program N(I—AX) 71{(;’52,) Sul:g::}t(i):g;)i me

[() e A e .83 E—-01 .82 E+05 17.6
MIDAS. ..o .10 E+00 .39 E+05 42.6
VTNV S e ov e 15 E+00 .27 E+05 30.0
SPINV ... 27TE+03

No IMPRUV. 13 E+00 .36 E+05 10.6
SOLVE...........

IMPRUV....... .30 E—01 .70 E—02 136.7
HINIOJ L coconnontoosamonsapssanssntod .29 E—01 .43 E+00 79.8

Matrix=T?%,, NA'—X)=< %

Condition Number=.16 E + 08
Norm =FROBENIUS

TABLE 28. Summary of results

N(XY) Subroutine time
Program N(I—AX) =N () (Seconds)
LEQ. .o 31 E—02 .67 E—04 17.6
VITIDA'S WSSy .24 E+00 .17 E—03 42.1
MINV69 E —02 .81 E—06 29.3
S I e, .92 E —02 8 15 =8 42.1
No IMPRUV.| .25 E—02 .84 E—04 10.7
SOLVE..........|
IMPRUV....... .46 E — 04 .69 E —06 55
LINEQI......oovviiiieiiiineeannens .69 E —04 .69 E—06 49.0
N(XY)
Matrix = 400 N(A~'=X) S1oND
Condition Number=.10 E + 04 (

Norm=n - (Maximum Element)

29

TABLE 29. Summary of results

N(XY) Subroutine time
Program NI —A4X) m (Soconds)
X0 00 000 000 00s000a0006090000000m0000 37E—-01 .58 E—03 17.4
MIDAS.20 E401
MINV. ..o .16 E+00 .18 E—05 29.4
SPINV. ..ot 92 E—01 .81 E—03 42.0
No IMPRUV 29E—-01 .74 E—03 10.6
SOLVE.....
IMPRUV............. .62 E—03 .11 E—06 55.6
LINEQL......oooviiiiiiiineiinens 97 E—03 .64 E—06 49.2
14
Matrix=A1000 IV(A'1 —X)SM—
Condition Number=.10 E +05 1-N(Y)

Norm =n - (Maximum Element)

TABLE 30. Summary of results

N(XY) Subroutine time
Program N(I—AX) m (Seconds)
LEQ. ..o, .30 E+00 A5 E—01 17.6
IVITID/A'S S —| .46 E+02
MINV ..o .15 E+01
S RN S SN, .86 E+00 71 E-01 42.1
No IMPRUV........ .22 E+00 13 E-01 10.4
SOLVE.....
IMPRUV............. .50 E—02 ATE—-07 54.6
LINEQL......coviviviiiiiiennen, 12 E-01 .80 E—06 49.8
Matrix = A4 10000 NA'—X)< M
Condition Number=.10 E +06 1=N(Y)

Norm =n - (Maximum Element)

30

TABLE 31. Summary of results

Program N(I—AX) N(XY) Subroutine time
1—N(Y) (Seconds)
TR} (1) S — 12 E-03 33 E—01 17.4
MIDAS.....oiiiiiiiiiiieiieieeeean 14 E—03 3201 42.3
MINV...ooiiiiiiieceeiceaeen S2AF==(3 14 E—02 29.9
SPINV ..ot 33 E—03 33 E—01 41.9
No IMPRUV., 12 E—03 33 E—01 10.4
S{OILA 3000000004
IMPRUV....... .36 E—04 24 E—04 55.6
LINEQL.......oiiiiiiiiieiinnn, .36 E—04 24 E—04 49.6
N(XY
Matrix=T'0o N(A“'—X)S%
Condition Number= .41 E+ 05 —N(Y)

Norm= n - (Maximum Element)

TABLE 32. Summary of results

N(XY ine ti
Program N(I—AX) (XY) Subroutine time
1-N(Y) (Seconds)
| 30 oot comsantmnsoaasatnadtse .88 E+00 A2 E+07 17.6
W10 YNk ceonaoonacanponcanaaononaonood .71 E+00 .24 E+ 06 42.6
IVETIN]V R —"— .76 E+ 00 .19 E+ 06 30.0
SR IIN V7S ——— 14 E+04
No IMPRUV., 22 E+01
SOEV/ERSsws
IMBRUVesm 17 E+00 .29/ E—01 136.7
| LY INTHE M mponmnnoncsntasmanossontd .15 E+00 .93 E+00 79.8
)) et _ N(XY)
Matrix=T12, NA'=X)= 1—-N(Y)

Condition Number=.16 E+ 08
Norm=n - (Maximum Element)

Discussion

As was mentioned earlier, the value of multiplying matrices before taking the norm of a product
of two matrices is clearly demonstrated in tables 1 through 10. N(/I-4X) is a relative error bound
and N(XY)/[1—N(Y)] is an absolute error bound and yet for the A matrices, the latter was always
smaller than the former. For the T matrices this is not true except when iterative refinement
(IMPRUYV) is used. In these cases, however, the relative error in column 5 is a much better bound
than N(/ —AX). As was indicated in the previous paper also, this absolute error bound is as close
to the actual error as one could expect.

31

Let us now turn our attention to the time element. For small matrices, the use of iterative re-
finement added such a small increase (1 second for the 20 X 20 case) that it seems definitely useful.
For larger matrices, however, the picture is not quite so clear, but let us make some general ob-
servations first.

As will be noticed in tables 11 to 22, the information that took longest to gather was the error
bounds. It is not necessary to calculate all this information in a particular run but only what would
be useful. What is included in that part of the program is the computation of [—4X, I-XA4, X(I—AX),
the difference between the residuals and the calculation of the two norms for these quantities. It
is up to the user to decide what is the necessary information.

From tables 1 to 10 it can be seen that the programs without iterative refinement performed
quite similarly concerning accuracy, with MINV consistently being slightly better. Iterative
refinement, of course, had its desirable effect. From tables 11 to 17 we see that each program was
consistent in its execution time for the different matrices with the exception of the two programs
that used iterative refinement, LINEQ1 and SOLVE with IMPRUV. In these programs more
iterations were needed for the most ill-conditioned matrix, T%,.

In tables 18 to 22 it can be seen that SOLVE without IMPRUV was definitely the fastest. As a
point of information for those familiar with this program, we used the new version given in (2) to
find the inverse of Tio. The times are given in the following table:

Old version New version
DECOMP................ 2.7 o
SOLVE................... 8.2 8.7
Total.......ceenvvvnnnnnn. 10.9 9.0

Admittedly, the times are rather minimal but the decrease for DECOMP is considerable. Whether
this reduction is primarily due to omitting the scaling used in the old version or to the different
way of writing matrix multiplication is not clear. However, abundant support for the latter is given
in (2) and this increase in efficiency makes SOLVE without IMPRUYV even faster than the other
programs. We might add that the numerical accuracy did not change: all digits were identical in
both runs.

The two programs using iterative refinement were quite comparable except in the case of T2,
For this matrix, LINEQ1 had 6 digit accuracy whereas SOLVE with IMPRUV had 8 digit accuracy
in almost every element.

The more important question of whether iterative refinement is worth the extra time remains.
This is an almost impossible question to answer in the abstract. The proposer of the problem is
really the only one who can make that decision. If an accurate inverse in itself is the desired end-
product, then some criterion for N(4-'—X) may be used to decide. (It is certainly important that
this criterion be included in the output of every program anyway.) It seems from tables 23 to 35
that for 4100, 41000, and Ajo000 iterative refinement would not be needed and that SOLVE without
IMPRUYV would be the most efficient—an excellent error bound in the fastest time. It would seem
that for 7%, some improvement is necessary. However, to let the program run its full length might
not be necessary. From our experience with SOLVE with IMPRUYV using a UNIVAC 1108, we
estimate for this size matrix approximately 20-25 seconds per iteration and each iteration yields
at least one digit improvement. The way SOLVE is set up allows the user to decide whether or not
to use the subroutine IMPRUV and, if used, the maximum number of iterations to be performed.
Approximation of the number of correct digits in the nonimproved computed inverse is also available
from one iteration in this subroutine. (See [3], p. 50.) We have found those estimates to be very
good.

32

In summary, for programs without iterative refinement, it seems that SOLVE is the fastest and
MINYV, the most accurate. It also seems that SOLVE has the best combination of accuracy and
time. If iterative refinement may be desired, it seems the optional nature of IMPRUYV and its added
information would indicate its high value.

It still remains up to the originator of the problem to decide just exactly what is desired. At any
rate, the purpose of the information contained herein is to help whomever has to make the decision.

References

[1] Fitzgerald, Kenneth E., Error estimates for the solution of linear algebraic systems. J. Res. Nat. Bur. Stand. (U.S.)
74B (Math. Sci.), No. 4, 251-310 (Oct.—Dec. 1970).

[2] Moler, Cleve B., Matrix computations with FORTRAN and paging, Comm. ACM 15, 4 (April 1972), 268-270, 274.

[3] Forsythe, George, and Moler, Cleve B., Computer Solution of Linear Algebraic Systems (Prentice-Hall, Inc., Englewood
Cliffs, N.J., 1967).

(Paper 78B1-395)

33

526-390 O - 74 - 3

	jresv78Bn1p_15
	jresv78Bn1p_16
	jresv78Bn1p_17
	jresv78Bn1p_18
	jresv78Bn1p_19
	jresv78Bn1p_20
	jresv78Bn1p_21
	jresv78Bn1p_22
	jresv78Bn1p_23
	jresv78Bn1p_24
	jresv78Bn1p_25
	jresv78Bn1p_26
	jresv78Bn1p_27
	jresv78Bn1p_28
	jresv78Bn1p_29
	jresv78Bn1p_30
	jresv78Bn1p_31
	jresv78Bn1p_32
	jresv78Bn1p_33
	jresv78Bn1p_34

