JOURNAL OF RESEARCH of the National Bureau of Standards – B. Mathematical Sciences Vol. 78B, No. 1, January–March 1974

Second, Third, and Fourth Order D-Stability*

Charles R. Johnson

Institute for Basic Standards, National Bureau of Standards, Washington, D.C. 20234

(August 30, 1973)

For n=2, 3, and 4, conditions are given for the real n by n D-stable matrices. The 3 by 3 sufficient condition is easily checkable and reveals to be D-stable a class of matrices which is not included in any known, general sufficient condition.

Key words: D-stable; positive stable matrix; spectrum.

The concept of D-stability was originally introduced in the economic literature by Arrow and McManus [1]¹ with a stronger definition. We shall adopt the definition of fairly common current usage. Let $M_n(R)$ denote the class of n by n matrices over the real field and denote by $\sigma(A)$ the spectrum of $A \in M_n(R)$. The matrix $A \in M_n(R)$ is called (positive) stable if $\lambda \in \sigma(A)$ implies $Re(\lambda) > 0$. We shall denote the multiplicative group of diagonal matrices with positive diagonal entries in $M_n(R)$ by D_n .

DEFINITION: $A \epsilon M_n(R)$ is called D-stable if DA is stable for all $D \epsilon D_n$.

Several sufficient and some necessary conditions for *D*-stability are known; however, no general characterization is yet known. In this note we present conditions on the *D*-stable matrices in $M_n(R)$ when n=2, 3, and 4. Only one of the known necessary conditions will be of interest to us here.

DEFINITION: A ϵ M_n(R) belongs to the class P₀ [2] if and only if for each k=1, . . ., n all k by k principal minors of A are nonnegative. If also, at least one principal minor of each order is positive, then $A\epsilon P_0^+$.

The best necessary condition for D-stability seems to be

THEOREM 0: [4, 5] If $A \in M_n(R)$ is D-stable, then $A \in P_0^+$.

The converse of theorem 0 is, in general, far from valid. However, for n=2 we have THEOREM 1: A ϵ M₂(R) is D-stable if and only if A ϵ P₀⁺.

PROOF: The necessity follows from theorem 0. Suppose $A \epsilon P_0^+ \cap M_2(R)$ and that D is an arbitrary element of D_2 . Then DA has positive trace and positive determinant. Since $DA \epsilon M_2(R)$, this means that DA is positive stable and that A is D-stable which completes the proof.

For our remaining work we shall employ the stability theorem of Routh and Hurwitz [3]. For $A \in M_n(R)$ denote the sum of the $\binom{n}{k}$ principal minors of order k by $E_k(A)$. Define the Routh-Hurwitz matrix Ω by

AMS Subject Classification: 15-A18, 15-A57, 65-F15.

^{*}This work was done while the author was a National Academy of Sciences – National Research Council Postdoctoral Research Associate at the National Bureau of Standards, Washington, D.C. 20234.

¹Figures in brackets indicate the literature references at the end of this paper.

	$\overline{E}_1(A)$	$E_3(A)$	$E_5(A)$				0	
	1	$E_2(A)$	$E_4(A)$		•		0	
	0	$E_1(A)$	$E_3(A)$				0	
	0	1	$E_2(A)$				0	
$\Omega(A) =$	•	•	•				•	
	•	·	•				•	
	•	•	• 1 •				•	
	•	•	•				•	
	. 0	0	0				$E_n(A)$	

THEOREM 2: [Routh-Hurwitz] $A \epsilon M_n(R)$ is positive stable if and only if the leading principal minors of $\Omega(A)$ are positive.

REMARK: $A \epsilon M_n(R)$ is D-stable if and only if the leading principal minors of $\Omega(DA)$ are positive for all $D \epsilon D_n$.

We are now in a position to give a numerical sufficient condition for 3 by 3 D-stability. THEOREM 3: The matrix A =

$$\begin{bmatrix} \mathbf{x} & \mathbf{a} & \mathbf{b} \\ \alpha & \mathbf{y} & \mathbf{c} \\ \boldsymbol{\beta} & \boldsymbol{\gamma} & \mathbf{z} \end{bmatrix} \boldsymbol{\epsilon} \mathbf{M}_{3}(\mathbf{R})$$

is D-stable if (i) A ϵ P₀⁺ and (ii) xyz > $\frac{ac\beta + \alpha\gamma b}{2}$.

PROOF: Since the conditions (i) and (ii) are preserved under multiplication from D_3 , it suffices to show that they imply stability for which we shall use theorem 2. Conditions (i) and (ii) imply the positivity of the expression:

 $(2xyz - ac\beta - \alpha\gamma b) + (x+y)(xy - a\alpha) + (x+z)(xz - b\beta) + (y+z)(yz - c\gamma)$

This is equivalent to the inequality

$$E_1(A)E_2(A) > E_3(A).$$

Because of (i) we also have that

 $E_1(A) > 0$

Together these mean that the leading principal minors of the 3 by 3 matrix $\Omega(A)$ are positive which completes the proof.

The conditions of theorem 3 are easily checked for a given matrix. Theoretically they are of interest in that they reveal to be D-stable a class of 3 by 3 matrices which are not known to be D-stable by any other present sufficient condition [4].

EXAMPLE: That the conditions of theorem 3 are not necessary for *D*-stability is shown, for instance, by letting A =

6	5	$-\overline{1}$
1	2	5
5	- 3	1

Then A is D-stable since $A + A^*$ is positive definite [4]. However the inequality (ii) of theorem 3 is not satisfied since $12 \ge 64$.

We end with a characterization of 4 by 4 D-stability which, unfortunately, is not numerically checkable.

THEOREM 5: A ϵ M₄(R) is D-stable if and only if (i) A ϵ P⁺₀ and (ii) for each D ϵ D₄ such that det (DA) = 1 we have

$$E_2(DA) > \frac{E_1(DA)}{E_3(DA)} + \frac{E_3(DA)}{E_1(DA)}.$$

PROOF: By theorem 0 we know that the *D*-stability of *A* implies $A\epsilon P_0^+$. We thus assume $A\epsilon P_0^+$ and show that *A* is *D*-stable if and only if condition (ii). However $A\epsilon M_4(R)$ is *D*-stable if and only if $\Omega(DA)$ has positive leading principal minors for $D\epsilon D_4$. Under the assumption $E_4(DA)=1$ which provides no loss of generality this is equivalent to $E_1(DA) > 0$, $E_2(DA)E_1(DA) > E_3(DA)$, and $E_1(DA)E_2(DA)E_3(DA) > E_1(DA)^2 + E_3(DA)^2$. The first of these conditions is subsumed in the assumption $A\epsilon P_0^+$ and the second is subsumed in the third which is equivalent to (ii). This completes the proof.

In considering sufficient conditions for or characterizations of *D*-stability one of course wishes conditions which are invariant under multiplication from D_n . This is a virtue of the new condition (ii) of theorem 3. Whether or not there are significant generalizations of theorem 3 is worthy of further study.

References

- [1] Arrow, K. J., and McManus, M., A note on dynamic stability, Econometrica 26, 448-454 (1958).
- [2] Fiedler, M., and Ptak, V., Some generalizations of positive definiteness and monotonicity, Numerische Mathematik 9, 163–172 (1966).
- [3] Gantmacher, F. R., The Theory of Matrices V. II (Chelsea, New York, 1959).
- [4] Johnson, C. R., D-stability and real and complex quadratic forms, Lin. Alg. and Applic., to appear.
- [5] Quirk, J., and Ruppert, R., Qualitative economics and the stability of equilibrium, Review of Economic Studies **32**, 311-325 (1965).

(Paper 78B1-394)