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Memory fun ctions , which enter into the equations of motion for time correlation functions , are 
co nstructed from neu tron scatte ring , infrared absorption and light scatte ring data involving single 
particle motions in liquids. The qualitative features of these memory functions are re lated to the 
shape of the corresponding time correlation fun ctions. It is found that a negative portion to the memory 
fUllction is indicative of a rapid loss of corre lation in time while s trong temporal corre lations imply a 
memory function wh ich does not go negative. The mathe matical s truc ture of a memory fun c tion is 
examined for the case of the idea l gas by expanding and evaluating the projection operator represent a· 
tion of the function. The resulting ex pression has a ri ch mathematical st ructure and can be expressed 
in a closed form only for its Laplace transform. 

Key words: Depolarized Rayleigh scattering; idea l gas; incohere nt neutron scatt e ring; infrared absorp· 
tion ; liquid s tate; memory function; projection operator; Raman scattering; time corre lation fun ction. 

1. Introduction 

The time correlation of molecular quantities has 
proven to be a useful way of describing molecular 
motions in liquids. These time correlation functions, 
which are obtained as Fourier transforms of data, 
can be investigated usin g recently developed techniques 
of time dependent statistical mechanics [1]. Exact 
equations of motion for the time correlation functions 
have been derived which involve memory functions, 
quantities which characterize the history of the fluid 
[1,2]. While time correlation functions are now widely 
used to represent molec ular motions [3], only a few 
studies of memory functions have appeared [4-9]. 
In this paper we examine some properties of memory 
functions as derived from data and from model cor­
relation functions. Our results, combined with other 
results obtained from computer simulations, enable us 
to make some qualitative observations about the general 
features of these important quantities. 

A motivation for studying memory functions is the 
hope that these quantities will have simpler structure 
than the time correlation functions. Should this be 
true, it would be possible to model molecular motions in 
liquids in terms of a relatively simple memory function 
once the qualitative features of the memory functions 
are understood. Indeed , this has been done empiri­
cally for the velocity time correlation functions 
obtained by computer simulation of the Lennard­
J ones model fluid [10]. 

The mathematical structure of memory functions 
has been studied in the short time and long time limits 
[4-6]. We present here a calculation for all ti mes of the 

memory function for the incoherent neutron scattering 
by an ideal gas. The mathematical structure of this 
quantity is found to involve even powers of the velocity 
of a particle in terms of deviations of the even powers 
from their average values. This structure is more com­
plex than the structure of the time correlation function. 
Thus we have examples which sugges t the existence of 
a rich underlying mathematical structure which yields 
relatively simple functional forms for the memory 
functions. 

It is plausible to expect that future studies will find 
a whole range of cases and that for as yet to be deter­
mined physical situations, the memory functions are 
comparatively simple quantities. 

The paper is organized in the following way. First 
we introduce some notation and outline briefly the 
relation connecting a time correlation function and a 
memory function . In section 3 we construct memory 
functions from data and discuss the structural features 
of these quantities. The mathematical structure of 
memory functions is probed in section 4 where the 
memory function for the incoherent scattering from 
an ideal gas is calculated from the microscopic defini­
tion of a memory function. The structure discovered in 
this analysis is found to have some unexpected features. 
The discussion of the qualitative features of memory 
functions in section 5 makes use of both our results and 
the results of other studies. 

2. Formal Preliminaries 

Molecular motions in liquids may be studied ex­
perimentally in a number of ways. For example, the 
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translational motion of a single atom is probed by 
incoherent neutron scattering and the changes in 
orientation of a single molecule is probed by depolar­
ized Rayleigh scattering. Infrared absorption and 
certain types of depolarized Raman scattering also 
probe orientational motions. In each case one can 
obtain from the data, a time correlation function 
which describes some aspect of the motion of a 
typical molecule in the fluid. 

The notation we shall employ for a time correlation 
function is ljJ(t) with ljJ(O) = 1 where 

ljJ(t) = (u*(O)u(t)/( 1 u 1 2 ). (2.1) 

Here the angular brackets ( . . .) indicate an 
ensemble average and the phase function 

u(t)=exp (-iLt)u(O) (2.2) 

evolves in time as determined by the Liouville operator, 
L, for the system. The phase functions associated with 
various experimental probes are described elsewhere 
[11]. 

A formally exact equation of motion for ljJ(t) may 
be derived using the projection operator formalism of 
Zwanzig [1, 2]. The equation is 

aljJ(t) =-f t dt'K(t-t')ljJ(t') (2 .3) 
at 0 

with 

aljJ I =0 
at ~ 1= 0 • 

(2.4) 

The memory function K (t) is specified as 

K(t) = (u*(O) exp [ - (l-P)iLt]u(O) (2.5) 

where the projection operator P has the property 

Pg=u(.u*g) (2.6 ) 

for any phase function g and 

u=-iLu. (2.7) 

3. Memory Functions 

In this paper we examine memory functions ob­
tained by recursively solving eq (2.3) for K(t) when 
ljJ(t) is known from experiment. The numerical pro· 
cedures are discussed in the appendix. We use in· 
coherent neutron scattering data for liquid argon 
[12] as an example of translational motion. Infrared 
absorption data and depolarized Raman scattering 
data for neopentane [13] and depolarized Rayleigh 
scattering data for benzene [14] are used as examples 
of orientational motion. 

The results are displayed in figures 1-4. There the 
correlation function , ljJ(t) , and the normalized memory 
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FIGURE 1. Single particle translation motion/or liquid 
argon at T = 85.2 K. 

The time correlation fun ction (-) and normalized memory fun c tion (---) for Q 
= 2.0A - 1 are pictured. 
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FIG URE 2. Reorientation of liquid benzene molecules at t = 59 °C 
studied via depolarized Rayleigh scattering. 

The 1= 2 component of reorientation motion is pictured. The lime correlation fun c tion 
(-) and the normalized memory func tion (---) are shown as fun ctions of time. 

function, K(t)/K(O), are shown as functions of time. 
These memory functions are characterized by a rapid 
initial decrease to negative values followed by an ap­
proach to zero which is prompt when compared with 
the decay of the correlation function. This appears to 
be a fairly common situation as evidenced by its 
presence in the memory function for the incoherent 
neutron scattering from an ideal gas as shown in 
figure 5. It is not a universal feature as counter ex­
amples may be constructed. 

The results for K(t) become erratic for long times. 
This is a result of the sensitivity to irregularities in 
ljJ (t) of the numerical procedure used to obtain 
K(t). The uncertainty of K(t) in figure 1 is on the 
order of± 0.02 for times greater than 1O- 12 s. The pair 
of dashed lines in figure 3 indicate the range of values 
assumed by K(t}. In fi gure 4 the solid horizontal lines 
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FIGURE 3. Reorientation oj neopentane at 24 1 K studied by inJrared 
absorbt ion. 

The 1= I compone nt of reorien tation motion is pictured. The solid line (-) is the time 
correlation function and the dashed li ne (---) is the normalized memory function. 
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F IGURE 4. Reorientatio n oj neopentane at 239 K studied by Rama n 
scatte ring Jrom the 924 cm - I band. 

The lime correlation functjo n (-) and the normalized memory function (---) for 
the 1= 2 component of reorientat ion motion are dis played as functio ns of time. 
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FIG URE 5. The time correLation Junction (--) and normaLized 
memory Junct ion (- - - ) Jo r incoherent neutron scattering Jrom 
an ideaL gas. 

The time is measured in un its of q1/2{3m . 
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FIGURE 6. The model time correlation Junction (--) and the 
corresponding normaLized memory Junction (---) oj eq (3. 1) 
are displayed. 

This shows that me mory functions need not have negative regions. 
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indicate the range of values obtained for K (t) for times 
greater than 0.8 X 10- 12 s. The data used to obtain 
figure 2 were carefully smoothed so the erratic behavior 
does not show up until longer times are reached and 
would not be visible with this scale. 

Figure 5 shows the memory function associated with 
a Gaussian time correlation function (ideal gas). 
Here the negative region is not as pronounced as in 
liquid argon but it is definitely there. 

A model time correlation function which does not 
have a negative portion to its memory function is 

(3.1) 

The results for A = 1.0 and T= 0.5 are displayed in 
figure 6. The t~il of the memory function is approxi· 
matelyexponential. 

The existence of a negative portion in the memory 
function is not surprising. From eq (2.5) we observe 
that C (t), the negative of the second time derivative 
of I/J(t), is not dissimilar to K(t) Since 

C(t) =- a2 1/J(t)/at 2 

= (u* exp [-iLt]u). (3.2) 

At least for short times, K(t) and C(t) should be 
fairly close in value. They are identical at t = O. The 
function C (t) necessarily has negative portions since 

L" dtC(t) = O. (3.3) 

This follows readily from the initial condition a I/J (t) / 
at I t = 0 = O. By taking Laplace transforms we obtain 

so that 

C(z) = r Jte - ztC(t) 

=_Z2~(Z) +z 

(" dt C(t) = lim C(z) = o. Jo z _o 

(3.4) 

(3.5) 

Let us now examine further the relationships between 
C(t) and K(t). The operator identity 

exp [ - (1- P) iLt] = exp [ - iLt] 
(3.6) 

+ Jot dt ' exp[ - iL(t - t'l ]iPL exp[ - i(1- P)Lt ' ] 

may be used to show that 

K(t) = C(t) - (tdt'K(t - tl)al/J(tl)/at ' . Jo (3.7) 

This equation may also be obtained directly from eq 
(2.3). In some of the cases considered in this article, 

the second term in eq (3.7) is numerically small com· 
pared to K(t) for short times. This suggests that 
K (t) = C (t) might be a useful starting point for an 
iterative solution of eq (2.3). Unfortunately this is 
not the case as only the trivial solution I/J(t) = 1 exists 
when K (t) is replaced by C (t). 

Another limitation of this way of examining K (t) 
only becomes apparent after the mathematical 
structure of K(t) is studied by evaluating eq (2.5) for 
incoherent neutron scattering by an ideal gas. This is 
done in the next section. The point to be made here 
is that the decomposition of the memory function 
implied by eq (3.7) is not particularly useful for 
evaluating K(t), at least for this example. 

4. Ideal Gas Memory Function 

In this section we examine the memory function for 
incoherent neutron scattering by an ideal gas. The 
phase function u is exp (iq' r) where q is the momen· 
tum transfer and r is the position of a gas atom. It is 
a simple matter to show that for the ideal gas 

(4.1) 
= (cos (q. vt») =exp [_q 2t2 /2/3m] 

where m is the mass of the gas atom and /3 = 1/ k8 T, 
the inverse of Boltzmann's constant k8 times the 
absolute temperature T. 

The memory function is formally 

K(t) = (e -iq·r(_ iq' v) r( 1- I')iLt (iq' v)e iq.r) . (4.2) 

The evaluation of this expression is now to be under· 
taken. The procedure we follow is to expand the 
exponential factor exp[- i (l - P)Lt], apply the oper· 
ator - i(l - P)L the appropriate number oftimes and 
then collect the resulting terms in such a way that a 
closed form is obtained for the Laplace transform of 
K (t). It does not seem to be possible to obtain a closed 
form for K (t) itself. 

For the ideal gas, the dynamics are trivial; 

- iLr= v 

- iLv= O. 

Let us consider first the expansion of K (t) : 

K(t) = ( e - iq'r( -iq . v) ,~o 
(-t)II[(l-P)iLJII . ) 

(iq'v)e,q'r 
n! 

(4.3) 

(4.4) 

We note that the odd terms in t will vanish when the I 

expectation value is taken. First consider the n = 2 
coefficient. 

[(1 - P)iL)2(iq . v)e iq .r 
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= (1- P)iL[ (q . V)2 - ((q . V)2) Je iq . r 

= [(q . v)2 - ((q . v)2)]( -iq . v)e iqr 

(4.5) 

Repeated application of [(1- P) iL J 2 yields a sequence 
of terms of the type 

(-l)"k21 (iq' v)e iq ' r 

where the coefficients k211 satisfy 

(4.6) 

and 
ko = 1. 

A more useful grouping of terms is achieved by in­
troducing another set of coefficients {C j } defined by 

1/ - 1 

k211 = L Cj(X211 - 2j - (X 211 - 2j ) ) 
j = O 

(4.7) 

with Co= 1. The notation x= q' v has been introduced 
to simplify the writing. The C/s satisfy the recursion 
relation 

1/ - 1 

CII = - L Cj(X211 - 2j)_ (4.8) 
j = O 

Now let us express K(t) in terms of the C/s. The 
factors exp(iq' r) yield 1 when the expectation value 
is taken so we drop those terms_ 

/ x (-t2)1111 - 1 ) 
= (x2) +\ x2L (2n)! L Cj(X211 - 2j_(X211 - 2j» 

11 = 1 ) = 0 

(4.9) 

/ x II - I (-t2)11 ) 
= (x2) +\ (X 2_(X2» L L (2n)! CjX211 - 2j . 

n = I ) = 0 

It will prove convenient to reorder the double sum in 
eq (4.9) so that 

(4.10) 

The next step in the analysis involves the use of eq (4.8) 
to systematically replace the C/s in eq (4.10) with Co. 

Thus we find 

K (t) = (x 2 ) + Cog I (t) 

(4.11 ) 

Now reorder the j and k sums and extract the k = 0 
term to obtain 

(4.12) 

This process can be repeated with the result 

x 

K(t) = (x 2 ) -Co L (- l)'''gN(t) (4.13) 
N= I 

where 

x 

L 
lI = k N _ 1 + 1 

... (X 2kN_1 - 2k' N_2) (X 211 - 2"N_) . (4.14) 

Further progress is possible if we make use of the 
moment property of the x's for the ideal gas, namely 

(X2j) = (2j-I)! !(X2)j. (4.15) 

The (2n)! term in the denominator can be removed by 
taking Laplace transforms [15]. For the case N= 1, we 
obtain 

Closed forms for the other gj (z) are also possible. 
We evaluate g2 (z) to illustrate how this is done. 
First we use eqs (4.14, 4.15) to obtain 

g2(Z) = ( (x 2 - (x2» j~1 n~+ I (2j - I)!! 

(X 2)j(-I)nX2n-2j ) 
Z2n+ 1 
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Next we make use of the result 

(2j-l)!! =.J! LX dq q2j exp(-q2/2) (4.18) 

to obtain 

in agreement with the result of summing K(z). 
Although a closed form for K (t) has not been 

found, we have determined the underlying structure 
of the memory function. How it compares with the 
structure implied by eq (3.7) is worth noting. From 
eqs (4.21) and (4.22) it is evident that 

(4.28) 

A simple calculation shows that 

(4.19) and 
gl(t) = C(t) - (x 2 )!/J(t) 

let) = a!/J(t)/at. 

(4.29) 

(4.30) 

where 

A ~ I X e - q2/2(x 2)q2 
/(z) = - dq'J + ( 2) 2' 

7T 0 z- x q 
(4.20) 

It is a straightforward task using these techniques to 
show that 

(4.21) 

Next, the Laplace transform of the memory function 
is found to be 

(4.22) 

This in turn is shown to be 

K(z) =-z+ [ ~ 7T(!2) 

(4.23) 

One may also express K(z) in terms of tiJ(z) as 

K(z) =-z+ 1/~(z) (4.24) 

qy taking Laplace transforms of eq (2.3) and solving for 
K(z). In terms of (x 2 ), it follows from eq (4.1) that 

(4.25) 

since 

(4.26) 

and thus 

~(z) = .v 2(:2) exp(z2/2(x2 ») erfc (z/ Y2(x2) ) (4.27) 

An iterative solution of eq (3.7) yields 

K(z) = C(z) i [- j(Z)]II. 
n=O 

(4.31) I 

Consistency requires that 

X 

~(z) L [- j(Z)]1I = liz. (4.32) 
n=O 

Since j (z) = z$(z) - 1, eq (4.32) is satisfied and the 
two solutions are equivalent. The mathematical 
structure which was found to be useful for summing 
the memory function expansion may appear in retro· 
spect to be inconvenient because of the extensive 
cancellations which necessarily occur. However, 
attempts to impose the structure of eq (3.7) on the 
expansion were unsuccessful in achieving a form which 
could be completely summed. 

In order to see just what sort of structure we have 
developed, let us review the steps followed in summing 
the expansion of K(t). The set of coefficients {k 211 } 

resulted from grouping the sum in terms of powers of 
the time. Next. the sum was arranged in terms of the 
deviations of X21 from the average (Xii) and resulted 
in the set of coefficients {C J. This was the crucial 
step in the analysis as it exhibited the underlying 
structure of the memory function. Clearly this way of 
arranging the sum is different from the structure 
implied by eq (3.7) since C(t) does not involve the 
projection operator. Next we eliminated all C/s except 
Co from the expansion through repeated use of eq 
(4.8). The closed form obtained in eq (4.23) required 
an explicit relation among the moments of x, namely 
eq (4.15) which follows from the Boltzmann distribution 
for the velocities. It would be interesting to see if this 
type of structure could usefully be imposed on K(t) 
for an interacting system. This topic is not considered 
here. 

s. Discussion 

The time correlation functions, !/J(t) , shown in 
figures 1-4 are typical of the ones obtained from 
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liquid state scattering a nd absorption data. The curves 
initially exhibit a rapid falloff and then go over to 
an approximately exponential function for long times. 
The functions, tjJ(t) , are everywhere positive and, 
except for the short tim e part, the curves are con­
cave upward. The memory functions K(t) exhibit a 
rapid initial falloff which carries the m to negative 
values. The negative portion of K(t) has the effect 
of decreasing the magnitude of atjJ/a t and thereby 
redu ci ng the slope of tjJ(t) so that tjJ(t) remains 
positive for all times. 

It is interesting to compare thi s situ ation with that 
found from computer simulations for the velocity 
time correlation functions in Lennard·Jones liquids 
[9, 10]. There th e time correlation functions achieve 
negative values. This implies that the initial s tate is 
"strongly remembered" by the sys tem, a viewpoint 
consisten t with the behavior of K(t) since K(t) 
remains positive. At higher te mperatures, where the 
kinetic e nergy is large compared with the stre ngth of 
the pairwise interac tion energy, the time correlation 
functions do not go negative while the memory fun c­
tions do. 

This s ugges ts that the persis te nce of the memory 
function is closely related to the time evolution of 
the cage· like many body structure described by 
R ahman [16]. He found fro m his molecular dynamics 
calculations that a liquid atom und ergoes a stron!'" 
velocity reversing collision and then "rattles" about 
in a loose cage of neighboring atoms until it escapes 
when the cage breaks down. The rattling motion leads 
to negative values of the velocity time correla tion 
fun ction. However, if the cage breaks up too rapidly, 
as it would at high temperatures or low densities, no 
rattling motion, coherent with the initial condition, 
occurs and I/1(t) remains positive. 

The calculation of the me mory function for the ideal 
gas shows that this function has an exte nsive mathe· 
matical structure. This is expressed in the properti es 
of the coefficients {k 21l } a nd {C j }. The memory fun c­
tions constructed from data show more structure tha n 
the me mory fun ction de termined numerically from the 
ideal gas time correlation fun ction. 

This cO III]JC1ri ~un is the basis for the following con­
jecture. The mat hematical s tructure of the memory 
function for an interacting syste m should exhibit two 
parts, in contrast with the one part exhibited by the 
ideal gas. There should be a "short-time" part which 
dominates the initial behavior of K(t) and the n goes 
rapidly to zero. The second part of the me mory fun c· 
tion should dominate the re mainder of the tim e in­
terval. This part can be either positive or negative 
depe nding on the type of correlation involved and is 
dominated by many- body effects which are only poorly 
understood. The testin g of this conjecture is a s ubject 
for further work. 

6. Appendix 

The numerical inversion of eq (2.3) to obtain K(t) 
from I/1 (t ) is acco mplished by replacing the integro-

differential equation by a se t of co upled differe nce 
equations defined on a di scre te set of evenl y s paced 
time points ti with ti+l-ti= llt. For simplicity, a s ub­
script notation is used so I/1(t i ) becomes I/1i and 
1/1(0) = 1/10. The trapezoidal rule and simple differe nce 
expressions are used to replace integral and differe ntial 
operations. A typical member of thi s set of differe nce 
equations is 

(6.1) 

These equations for K i are solved rec ursively in terms 
of the {1/1;} subjec t to the initial conditions 

1/10 = 1, 1/11 = 1/1 - 1 

K o= 2(I/1I-I/1o) / (t.U) 2. 
(6.2) 

The las t conditi on follows from eqs (2.5 and 3.2) whi ch 
indicate that 

The solution has the form 
(6.3) 

; - 1 

K i = - Kol/1i - 2 L K i - j I/1j (6.4) 
j = 1 

i > 1 

Th ese express ions were used to obtain the K(t) 
curves discussed in the tex t. 

It is necessary that I/1(t) be a s mooth function of t 
if this technique is to yield useful res ults for K(t). 
Figures 1-4 indicate the kinds of uncertainties which 
show up in K(t) . Some care is needed in the selection 
of the time increment Ilt. If it is too large the differe nce 
expression for the first derivative is inaccurate. If Ilt 
is too small, the noise in I/1(t) governs the outcome 
rather than I/1(t) itself. 

Another procedure for solving for K (t) is described 
in appendix B of reference [6]. This procedure is more 
accurate than the one described here in that it uses 
spline fits to I/1 ( t) to estimate derivatives and it uses 
a more accurate integration scheme. However, when 
the procedure we use is stable, the results of the two 
methods agree closely. 

I wish to thank Drs. Livingston and Dardy for making 
their data available to me prior to publication. 
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