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Mullins has treated a two-dimensional model of grain boundary motion in which each point on the
boundary moves toward its center of curvature with a speed proportional to its curvature. For bound-
aries which preserve shape under uniform magnification, an integral representation of the boundary
shape is found. We then obtain several analytic results from approximate evaluations of the integral.
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The motion of an idealized grain boundary in two
dimensions has been treated by Mullins [1]." In this
model. a given point on the grain boundary moves
towards its center of curvature with a speed that is
proportional to the curvature. Recently Sun and Bauer
[2] have extended the Mullins treatment by numeri-
cally solving the differential equation for the boundary
shape for the case of boundaries which are invariant
under magnification. They have used the results to
measure grain boundary mobilities [3].

The shape of a boundary which is invariant under
magnification is given by

r(6,t) =R(0) T(t) (1)

where r and 6 are polar coordinates and ¢ is the time.
T(t) =[T?(0) + 2ct]'/%, where c is a separation constant
and R (6) satisfies the nonlinear differential equation

{R>*+2R;—RRyo} /{R? [R*+ R3] }=— (c/k). 2)

Here, the subscript 6 denotes differentiation with
respect to 6 and £k = Mo where M is a mobility and o
is the boundary free energy.

The purpose of this note is to obtain some analytic
results for R(#); in particular, the solution of eq (2)
can be reduced to a single quadrature. Following
standard techniques [4], we find

R
O(R)—6o= | daa'{C,a?

Ro

exp (ca*k) =1}, 3)

! Figures in brackets indicate the literature references at the end of this paper.

where 0(R,) = 6, and C, is an integration constant.
Sun and Bauer consider that a free surface acts as a
mirror plane; thus for a free surface along the ray
0 = 0, we take as an additional boundary condition
Ro = 0 at R,. Introducing the change of variable

n= (a*/R%) —1, eq (3) becomes
R ==t [an(14n) {1 +n)
0

exp (bn) —1}'%  (4)

where p= (K*/R3) —1 and b= (c/k) R2. The boundary
shapes for different values of b have been discussed by
Mullins. Figure 3 of reference [1] and figure 1 of refer-
ence [2] illustrate boundary shapes for various values of
b. In reference [1], Ry=3/2 and 6y=m/2 and in refer-
ence [2], 0p=0 and « and f(«@) are equal to our 6() — 6,
and b, respectively. From the equation for T'(t), we see
that b > 0 yields solutions which increase in size with
time while 6 < 0 gives solutions which shrink toward
the origin r=0. For example, from eq. (2) it is clear that
b=—1is a circle of radius Ry; eq (4) is singular in this
case since when R(0)=R,, 6 # 0(R). The case b=0
corresponds to a straight line. For 4 >0, Sun and
Bauer [2] solved numerically a differential equation,
equivalent to eq (2), to obtain the boundary shape. For
b >0, R ranges from R, to infinity. For 6 <0, R ranges
from Ry to a value of R at which the quantity [ (1+p)
exp(bp) —1] becomes negative. It follows that for
—1<b<0, R is greater than R, while for b <—1, R is
less than R,.

Although it does not appear possible to evaluate the
right-hand side of eq (4) analytically, we can obtain
some approximate analytic results. For values |bp|
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=|(b/R3) (R2—R3)|<<1(and b # —1), we have (1+n)
exp (bn) —1=(1+b)n {1+ (bn) (1+5/2)/(1+b)}
and integration of eq (4) gives

cos {2(1—5%/2)1/2 (6—6,)}
={1-p(1-0—-0)/(1+b)}/{1+p} (5)

When b >> 1, the only contribution to the integrand
occurs for 7 near zero. We can than approximate the
integrand by {exp (bm) —1}-'/2. Upon integration and
rearrangement, we obtain

R=R, {1_ (2/b) In cos [b(e-—ao)]}l/l (6)

We see that 6 —6y=m/2b when R is infinite. Thus,
eq (6) gives the shape of a grain boundary which makes
a very small angle with a free surface.

Finally, for R infinite, we obtain an approximate
analytic formula for 6(«) — 6, as a function of b.
We rewrite the integrand of eq (4) in the form
[+ b6)n]-"2 [1+ n]-" exp [~ bn/2] [1+ {1 —bn
— e }/{m(1 + b)}]-'/2. Expanding the last factor in
powers of b7, yields

(1+{1—=bn—e "} /{n(1+b)}]-1/2
=l+amtoam*+ .. .,
where a;=02/4(1+b) and a»={b%96(1+b)}{[9b/

(14+b)] —8}. The resulting integrals can be evaluated
in terms of error functions to give

6() —60y={m/2b(1+b)}'*{g+a:(1—g)
+a: (g—1+b671)}, (7)

where g= (mwb/2)12 exp (6/2) erfc [(b/2)'2]. The a»
term is small compared to the leading term. Thus, eq (7)
provides an analytic representation of the numerical
results for b as a function of 6() — 6,, which are given
in figure 2 of reference [2]. It is perhaps surprising that
eq (7) is a good approximation for all values of b, since
it is based on an expansion in powers of (1). However,
when b7 is not small, the integrand is very small due to
the exponential term and makes a negligible contribu-
tion to the integral. For b < <1, eq (7) yields

6() =6 =3 [1— (2b/m)'"2]
and for
b— o, §(o)—6,=>b"!
(m[2)"2 [1+ (1/4) + (1/32)]=1.61/b,

which is in reasonable agreement with the result
(m/2b) obtained from eq (6). As an example of an inter-
mediate value of b, we find that for 6="7.1, 6(®) — 0=
10.0° in agreement with Sun and Bauer.
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