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Note on Diffusion of Vapor into Flowing Gas
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The theory of diffusion of vapor between the walls of a tube and a stream of gas is applied to a
generator of known humidities. The rate of approach to equilibrium is evaluated for gas velocities
in the laminar flow range. The effect of pressure drop is examined.
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The apparatus described by Greenspan, [1]! as
well as others used to generate known humidities,
includes a long tube of negligible curvature, down
which a carrier gas flows. The walls of the tube are
coated with the solid or liquid phase, and the vapor
diffuses between the walls and the carrier gas. The
length of the tube should be such that the gas should
be fully saturated with the vapor at the outlet, or at
least, the departure from full saturation should be
well known. Precautions should be taken against
entrainment of water droplets or ice particles.

With the addition of terms which represent the
transport of the vapor, the differential equation for
diffusion becomes:
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where ¢ is the vapor concentration, v the velocity of
the carrier gas, and D the coefficient of diffusion
for the vapor in the carrier gas. We will consider the
case of laminar flow, far enough down the tube that
the entry transients are negligible. We will take the
channel as circular, of radius a. In the steady state
the flow of the gas will be parallel to the axis and the
axial velocity at distance r from the axis given by
v=wvo(l —r?/a*) where vo is the velocity at the axis.
Div v represents the expansion of the gas in conse-
quence of the pressure drop in the tube. If this is
small, the acceleration of the gas will produce negligi-
ble distortion of the parabolic flow pattern, so that
Div v=—(vo/p)(1—r%/a?) dp/dz. After the start-up
transients have subsided, the time derivatives are
zero. We can now write the differential equation as:

2 2 2
20

o

dz 0z

Eéﬁ_a_c]zo
ror 0z2 D az

! Figures in brackets indicate the literature references at the end of this paper.
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where z is the axial coordinate.

The importance of the velocity effects can be meas-
ured by a dimensionless number b= avo/D. For water
vapor in air, b is about 1.5 times the Reynolds number.

Let us seek a general solution of the differential
equation as the sum of a set of terms each of which
can be separated into factors dependent on the axial
and on the radial coordinates. Near the outlet the solu-
tion will be shown to be dominated by a term which
includes the expansion of the carrier gas due to the
pressure drop. Upstream, terms will be found which
contain factors which decay exponentially with respect
to the axial coordinate. We will be concerned particu-
larly with the more persistent of these terms. All terms
of the solutions will be finite within the tube, i.e., for
r<a and symmetrical about the axis at r=0. At the
wall (r=a) the solution has a value independent of z;
for the terms which decay exponentially the value is
zero. Let us try the sum of a number of terms of the
form ¢e-2?/2, where ¢ is a function only of r, say

¢=2A,.(r2/a2)". The requirements of symmetry and
0

finite values are met by restricting n to positive in-
tegers. Putting this in the differential equation we get
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where B= (a/b)(dp/dz) is the (taken as constant)
fractional loss of pressure in a distance equal to the
radius. Substituting for ¢ and performing the differ-
entiations the following relations between coefficients
are obtained:

4A,=—[b(B+ a) + a%]4,



an? A,=—[b(B+ a) +a]Adp1+b(B+a)An

¢ reduces to zero at r=a for an infinite number of
values of a. For B8 < a < b, the first three of the roots
are given by

(a+B)b=17.3136, 44.608, 113.922.

The closely related problem of the transfer of heat from
a tube to a fluid was examined by Graetz [2] and inde-
pendently by Nusselt [3]. Their solution was essen-
tially the same as the above, and is summarized in a
review article by Drew [4] who also recalculated the
roots.

Their interest, and the experimental comparisons,
were with relatively short tubes, for which the terms
containing the second and third roots were significant,
and they omitted the quantities «® and B in the differ-
ential equation.

Their values for the roots are compared with the
values indicated below in the table

Roots of ¢;(1) =0

j Graetz Nusselt Drew ’ V(a+B)b
1 2.7043 2.705 2.70436 2.704365
2 6.50 6.66 6.6791 6.67903
3 10.3 10.67337

When ¢ is plotted as a function of the radius the
curves corresponding to these roots resemble the
Bessel function Jo(yr/a), where y>= (a+ )b, for small
radii. As r— a, the curve is flattened somewhat. For
r > a the function increases in absolute value without
limit. This set of functions can be used to fit boundary
conditions, such as the humidity distribution of the gas
entering the tube, in a manner similar to the Fourier
of Bessel series.

The coefficient o? in the differential equation repre-
sents diffusion in the axial direction. It reduces
the value of the root slightly. The conditions of opera-
tion to be evaluated in Greenspan’s experiment are a
mean velocity of 71 cm/s, a radius of 0.4 cm, and a
diffusion coefficient of 0.1 cm/s corresponding to
—80 °C at atmospheric pressure. Thus &~ 530,
a~ 0.014 and the effect is to reduce the value of the
first root from (a+ B)b=7.3136 to 7.3125.

The distance required for a term to decrease by a
factor of e equals a/a. For Greenspan’s experiment this
is 29 cm for the first root, 4.7 cm for the second, and
1.85 cm for the third. The decay distances for higher
roots are much smaller. If the tube is long enough
these terms will decay to negligible values at the outlet,
and the associated transfer of material at the wall is
substantially complete.

The effect of pressure drop is indicated by the
coefficient B8 in the differential equation. This may
be small compared with the smallest value of a con-
sidered above, but significant when a=0, correspond-
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ing to a distribution of concentration which is uniform
over the length of the tube. If Bb is small so that
B2b2 can be neglected, only the first three terms of the
series are significant and we have

A1=_BbA(),A2:(Bb+BZb2)A0/4‘ oo oo
At radius r

C(r)=Ao [1—Bb (r*/a*) + (Bb/4) (r'/a*) + B2 (. . .)]

Atthe wall,r=a

C(a)=Ao [1—Bb+Bba+p2 (. . .)]

Because of the expansion of the carrier gas there
will also be a transfer of gas from the wall to the
stream at a uniform rate

2maD ( _—65;(—0)> = 2wDA,Bb per unit length.

At the outlet, if all other terms have decayed to
negligible magnitude, the concentration is

C(r) _Ao[1—pb(r*/a*)+ (Bb/4) (r'/a*) —B>(. . .)]
Cu A 1—Bb+ (Bb/4) +B2. . .]

by long division, we get
C(r)/C=1+Bb(1—r*/a®) — (Bbl4) (1 =r'/a)
+82(. . .).

The quantity of vapor discharged at the outlet is

mavoC|2= #fr:avC(r)d(ﬂ)

0

=m2frzavo(1—rZ/az)C(r)d(rZ/aZ)
0

=wa2v0war=a(l—r2/a2) [1+Bb(1—r?a?)
’ —(Bb/4) (1—ria*)+. . .1d(r?*/a?)

1 r=a 2,.2 r4 r2
— 2 = S = =
Ta vo(]w[z-f-,BbJ; (l a2+a4)d(a2>

=ma*voCy» [%+Bb(l—l+1/3)
—(Bb/4) (1—1/2—1/3+1/4) . . ]

=ma2voCy(1/2+1186/48+. . .).



Therefore

(C—Cw)/Cw=11Bb/24.

In the apparatus used by Greenspan the pressure
drop was measured to be 8= (adp/dz)/po 5.2X 108
at atmospheric pressure so that Bb=—2.8 X 107°. The
corresponding error in concentration is (C—Cy)/Cyw=
—(11/24)%x 2.8 X 10> ~—1.2 X105,

In the above we have taken the vapor concentration
at the interface with the condensed phase to be that
in equilibrium at the bath temperature. A more
complete discussion would take into account the
temperature gradient in the wall and the balance at
the interface between the latent heat of evaporation
and the thermal conduction in the wall and in the gas
stream. It should also consider the effect of the partial
pressure of the vapor on the conservation equation.
These factors can be neglected in Greenspan’s experi-
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ment since the partial pressure of vapor is 0.1 percent
or less, and a rough calculation indicates that the
thermal gradient in the wall will change the decay
lengths by less than 1 percent at 0 °C and much less
at lower temperatures. They cannot be neglected at
higher temperatures. There is also the possibility that
the rate of evaporation or condensation is affected
by a potential barrier in a surface film.

The author thanks Mr. Lewis Greenspan for pro-
gramming the computations.
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