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Ex press ions a re derived for th e volume of an a pproxim a te s phe re in te rm s of measured breadth , 
the di s ta nce be tween pa ra ll e l planes tangent to opposit e s ides . The diffe rence in volume of a ball 
a nd a true s phe re of the sam e ave rage breadth is show n to be of seco nd orde r , and muc h s ma ll e r th an 
the rando m and sys te ma ti c e rro rs in th e meas ure ments of th e dim e ns ion . Thu s, a ball co mm e rcia ll y 
a vai la ble at mode rate cos t ca n be used for absolut e dcns it y measure me nts of hi gh accuracy. S imilar 
exp ress ion s are given for th e a rea of an approx imat e c irc le. 

K ey words : Asphe ri c ity correc tion; dc ns it y; s phe rica l ha rmoni cs; vo lum e of ball. 

1. Introduction 

The es tabli s hm e nt of a n absolute density standard , 
as is desc ribed by Bowma n et aL in th e co mpanion 
article [1],t requires the determination of th e volum e of 
so me object from its dim ensions. Th e shapes that firs t 
co me to mind a re the cube or rec tangula r prism used 
by Cook [2] in the determin ati on of th e de nsity of 
me rc ury, and the sp here. The latte r is a ttractive 
because of its symmetry, and its re lative ly low cos t 
in the form of ball bea rin gs. Of co urse, no ball is a 
perfec t sphe re, and the question is immediately rai sed 
as to the importance of the topogra phi c deviation s 
from s pheri city. In th e following we will examine th e 
determin ation of the volume from measurable quanti­
ties. Th e discussion will be restri cted to objects whic h 
are eve ryw here convex, a nd free of sharp edges or 
corners. 2 Co m mercial ball bearings meet th ese require­
men ts easily. We will be particularly concerned with 
features which occupy more than one percent of the 
surface. Irregularities s maller than a millimeter in 
exte nt would produce conspicuous di stortion s in the 
interfere nce patterns. The method of measuring the 
interfe rograms a verages over th e irregulariti es 
associated with the texture of the surface. The observa­
tions with th e profilometer and the homogeneo us ap­
pearance of the ball as a n optical surface make it 
improba ble tha t a significant defect of intermediate 
size would escape detection. In the following we will 
show that the correction for asphericity is of the seco nd 
order, give n a good average for the diameter or the 
breadth of the object, and therefore s maller than first 

I Figures in brackets ind icate the lit erature re feren ces at the end of thi s pa per. 
:! Thi s requires that th e s hape can be described by fun c tions which a rc s ill ~le va lued and 

continuous . with s ingle va lued a nd fi nit e firs t and second derivat ives. 
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order uncertainties 111 the meas ure me nt. Th e n we 
will loo k at sampli ng sc he mes for obtainin g th at 
ave rage. 

1.1 . Description of an Object in Terms of Spherical 
Coordinates 

The volume V of an object is gi ve n by th e integral, 

(1) 

where ,. is the dis tance from the ori gin to the surface 
element, which subtends a solid angle dD at th e origin, 
and the integration is perform ed ove r the fu ll so lid 
angle of 47T steradians. Let "0 be the mean radiu s so 
that,. = "0 + 8. Then 

V = 47Trg/3 + ri518dD + 1'0 J, 82dD + i [PdD/3. 

Since the mean value of 8 is zero , and that of 8:) is 
very small, we have 

(2) 

where a; is the mean square va riation of the radiu s. 
Thus, the correction for irregula riti es is of the second 
order. If ar/"o= 10-4 the correction is onl y 3 parts 
in lO B. 

But thin gs are not thi s simple. Measurements with 
many metrological instruments, from the mechani c's 
micro meter to the Saunders interferometer [3] , do not 
yield the diameter. Ins tead, they determine the 
breadth, that is, the separation of parallel planes 



tangent to opposite sides of the object. Since the 
breadth favors the high spots, its average value will 
be somewhat greater than that of the diameter. In 
figure 1 le t R be a point on a surface, and 0 be the 
origin. In general, the tangent plane PT which is normal 
to OR will not pass through R, but the point of tangency 
will be at the top of a nearby high s pot. The tangential 
radius p = OP is given approximately by 

(3) 
, 

where r is the di stance OR; R 1_ = CT the local radius 
of curvature in the region which includes R and the 
point of tangency; 'V r is the gradient, or the change of 
r with respect to the angle subte nded at the origin in 
the direc tion of most rapid increase, i.e., towards the 
top of the hill. In the objects of present interes t , 
R L ~ ro, and the gradient is so s mall tha t the diffe rence 
between sine, angle, and tangent can be neglected. 
Let P = po+ /::"p where Po is the mean value of p, 

J /::"p dO = 0, and 47T(Tl~ = J (/::,.p)2 dO. 
s s 

Then 

r = Po + /::"p - pij ('Vr)2j2Rlo 

r :1 = P3 + 3pij /::"p + 3po (/::"p)2 -1.5 p ij ( 'V r) 2j RL 

Then the volume would be gi ven by 

where 

47T(T~ r = Po J ('Vr2jRddO. 
s 

As before, the topography correction to the volume is 
of the second order, this time involving the mean 
square of the gradient 'V r as well as that of the varia­
tion in breadth. 

In the above we have passed rapidly over several 
points which require closer examination. (a) It is not 
obvious that the expression for the volume is in­
dependent of the choice of the origin. (b) Equation (4) 
is in terms of the tangential radius, which cannot be 
measured since the center of a solid object is not 
accessible. Rather the measurements yield the breadth, 
which is the sum of two tangential radii. Therefore it 
is important to consider the important class of objects 
whic h exhibit odd lobing, with a valley opposite a hill. 
(c) The local radius near the hilltops is systematically 
less than the mean radius. We have assumed that they 
are approximately equal so that the difference leads to 
errors of a higher order than the second. (d) We can 
expect the gradient 'Vp to approximate 'Vr, but at thi s 
time have no good basis for estimating its magnitude. 
(e) In order for the terms of the first order to vanish , 
it is necessary to have a good average value of p experi­
mentally as well as mathematically. 
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1.2. Description of an Object in Terms of Tangent Planes 

We have reached the expression, eq (4), for the 
volume of an approximate sphere from a description 
in terms of the usual polar coordinates , r, 0, <1>. Un­
fortunately the radius and its derivative with respect to 
the central angle are not directly measurable. To make 
the analysis correspond more closely to the measured 
quantities, we will look at a description of an object as 
the "enve lope" of a set of tangent planes. The ana­
lytical description was developed by Meissn e r [4] 
in a study of obj ects of constant breadth. Equivale nt 
graphical methods are used in the design of gears and 
cams, for example [5,6]. More recent work has been 
published by Goldbe rg [7]. 

2. Area of an Approximate Circle 

Before undertaking the more co mplex problem of 
the approximate sphere, le t us examine tha t of the 
a rea of a plane fi gure bounde d by the curve 5 in 
fi gure 1. The lines TP and T.P. are two tangents to 
the curve, which intersect at the point Q be tween the 
points of tangency. Let OP and OP. be the perpendi c­
ulars from the origin to the two tangents . Let the 
tangenti al radius p be expressed as an analytic func-

tion of the polar angle O. Th en the di stance OP=p(O), 
Op, = p (0+ /::"0), where POP. = PQPI = /::"0. From the 

o 

FIGURE 1. :iection normal to a plane tangent to a surface. 



fi gure it will be seen that the distances P. Q . t:.0 < t:.p 
- --

= OP . - OP < PQ . t:.0. Divide throu gh by t:.o and le t 
t:.e~ 0: P.Q~ PQ~ t:.p/t:.O~ dp/dO == p'. Also the 
intersection Q of the two tange nts becomes the point 
of tangency. Thus , the distance from the foot of the 
perpe ndicular to the point of tangency equals the 
derivative of p with respect to the angle at the origin. 
Returning to figure 1, we have two tangents PT and 
P.T., with perpendiculars from the origin OP and OP •. 
Let us project onto PT the vectors leading from 0 to T. 
by way of P and P •. We have OP. sin t:.0+ P.T. 
cos t:.O = PT'=PT+TT'. Let the length lW=p(O), 
OP.=p(O+t:.O); we have already shown thatPT= 
p'(O), and P.T.=p'(O+t:.O) . Making these substitu­
tions we obtain 

~= (0 AO) p'( O+t:.O) cos t:.O-p '( O) 
. p +u + . AO ' sm t:.0 sm u 

and as t:.0 ~ 0, TT' ~dS, the element of arc , so that 

dS / dO = p + p". 

The area A enclosed by the curve is given by 

( e1T (21T 
2A = Js PdS=Jo p2dO+Jo pp"dO. 

Substitute p = po+ op, where Po is the mean value of 
p, and integrate the las t term by parts. 

or, since 121T op = O 

A = 7T[p~ + (J"~ - (J"~,] (5) 

where (J"~ and (J"~ , are mean square values of p - Po 

andp' . 

There is no proble m with the integration if the boundary 
curve is e verywhere convex and free of steps and 
corners. With these res trictions it is possible to re pre· 
sent p (0) by a Fourier series 

P=Po+2:Cnsin (nO+a,,) 

" 
whence 

and the area will be 
7T 

A = 7Tp 2 +- '" (1 - n 2) C2 o· 2 L.. n' (6) 

The "topography error" in the area is of the second 
order. Displacement of the origin c hanges the value of 
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the constants for n = 1; because of th e factor (l-n~), 
the area is unc hanged. 

3. Volume of an Approximate Sphere 

The problem of the a pproximate sphere is much more 
tedious than that of the approximate circle. The reader 
who is not inte rested in following the details of the 
analysis may wish to skip most of this section , stopping 
only to compare eqs (15) and (5) and eqs (20) and (6), 
and then to look at the calculation of volume. 

The logic is similar to that of the approximate circle: 
(a) The shape of the object can be described in terms of 
a set of tangent planes. The position of each plane is 
defin ed by a vec tor p from the origin to the plane and 
normal to it. (b) The le ngth p of the normal vector is a 
fun ction of the polar coordinates 0 and cp. Note that 
these coordinates do not refe r directly to a point on 
or within the object but to th e coordinates of a ref· 
erence sphere with its ce nter at the ori gi n of p. If the 
object has no sharp edges or verti ces, each point on 
its surface defines a single ta ngent plane and therefore 
a single point (0, cp), on th e reference sphere. If the 
objec t is everywhere convex, each point on the ref· 
ere nce sphere corresponds to a s ingle point of ta ngency 
on the object. (c) We will first determin e th e vector 
from the origin to th e point of contact be tween the 
tangent plane and th e s urface of the object. Th en we 
will map out the ele ment of the surface which corres­
ponds to the inc re me nts dO a nd dcp, and write the 
express ion for the ele ment of vo lume. (d) In the 
analytical discussion we will use a series of spherical 
harmonics, which play the same part on the sphere as 
does the Fourier series on the circle. The volume 
integral will contain terms of the first , second , a nd 
hi gher orders in the spherical coo rdinates. As the 
firs t order terms integrate to zero, the main correction 
for topograph y will be found in the seco nd order terms, 
which contain squares and products of the s pherical 
ha rmonics. A sa mple calcula tion will show the magni · 
tude of the seco nd order terms. 

3.1. Element of Volume 

Figure 2 represents the plane tangent to the object 
at T and normal to the vector p(O , cp) whic h terminates 
at P. The projections of all meridians of the reference 
sphere meet at the pole, 0 = O. The intersec tion with 
the plane of the equator, 0= 90°, form s the base of the 
triangle. The projection from the origin of the s mall 
circle of constant polar di s tance 0 is a cone; its inter· 
section with the tangent plane is symmetrical with 
respect to the meridian through P. The plane through 
P , orthogonal to the tangent and meridian planes, 
intersec ts the reference sphere in a great ci rcle tangent 
to the small circle of cons tant O. The angle tf; is meas­
ured along thi s circle. 

Let fi gure 1 represent a meridian plane which con­
tains the normals OP and OP. of two planes tangent to 
the object. T and T. are the perpendicular projections 
onto the plane of the fi gure of the two points of tan­
gency. The argument proceeds as before, and the pro· 
jection ofPT on the tange nt plane is equaltoap/a8 == pu. 
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FIGURE 2. Plane tangent to a surface. 

Now we relabel fi gure 1, re pl acing 8 with 1jJ and let 
it represe nt projections on the pla ne norm al to the 
me ridian . The projection of PT on thi s plan e is dp/dljJ 
== P >jJ. Since the norm al plane is tangent to the cone of 
constant pola r an gle 0, we can set d1jJ = sin ()d,p , and 
thi s co mponent of PT, P ~I = Pd> csc 8. 

R eturning to fi gure 2 we have th e sum of the vectors 
P o, par allel to the me ridi an , and P 'P = P <I> csc () , per­
pendicula r to it , connecting the point P to the point 
of tangency T be tween the plane and the surface of 
the obj ec t. Then , corresponding to an ele ment L18L1,p 
of the reference s phe re, the re is on th e surface of the 
objec t an eleme nt whose edges a re th e vec tors T oL1() 
and T >jJ L1,p . The volum e ele me nt will be a pyramid with 
thi s as the base and the origin as the vertex. 

Now, le t us defin e three orthogonal unit vectors, 
whi ch move with the tangential radius vector. In 
te rms of cartesian coordinates as sociate d with the 
reference sphere [8 = 90°, ,p = 0; 8 = 90°, ¢ = 90°; 
() = 0°] the compone nts of these are 

U == (sin8 cos,p , sin8 sin,p , cos8) along the radius vector, 

v = (cos8 cos,p , cos8 sin,p , - sinO) in the meridian plane, 

W== (- sin,p , cos,p , 0) normal to the meridian plane. 

By differentiation of the components the following can 
be verified: 

Uo= v vo=-U w o=O 

Ud> = W sinO v<l> = W cos8 W<I> =- U sin() - v cos() 
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The n the tangenti al radius vector will be P = P U and 
the vec tor to the corres ponding point on th e objec t 
will be: 

t = pu + Pov + Pd> csc 8 w. 

In differentiating these vectors we must con side r 
changes in both direction and magnitude: 

to = (p + poo) v+ (P d> O- p <I>c tn8) csc() W 

Since no compon ent in the U direction appe ars in the 
expression for t o and t <l>, the derivative vec tor s in the 
surface of the object also lie in the tangent plane. 

The volum e e le ment can be expressed in t erms of 
the de terminant of the components of t, t o and t <b 

P Po P<I> csc8 

dV= O P+Poo (P <b li-pd>ctn())cscO 
dOdp 

3 

0 Pd>o-p<I>ctnO (p sinO+ pocosO+ Pd><I>csc()) 
(10) 



3.2. Volume Integral 

Let Po be th e ave rage value of P (47Tpo = lpdD ), 

and le t Y be the rela tively small deviation from th e 
ave rage value, so that p = Po + Y. Later we will express 
Y as a lin ear co mbination of sphe rical harmoni cs. Now 
let p = Po + Y where Y is a linear combinati on of s ph er· 
ica l ha rm onics. No w we expand the de te rminant , sort 
o ut terms, a nd s tart the integrati on: 

rad iu s p as a fun ction of the angular coordinates. A 
given profile is likely to sample some regions of 
relatively high relief and other regions of low relief. 
Therefore one or more profiles , in various orie nta tions , 
will provide an estim ate of the mean sq uare value of 
the rate of cha nge. If a is th e azimuth at a point (0, cp), 
the rate of change q will be 

q = Pocos a + csc OP<bsin a, 

47TpJj3 + (pij/3) If, [Yuo + Y octnO + Y",,,,csc20+3Y] sinOdOdcp 

f, [2Y oo + 2YoctnO + 2Yc/>4) csc28 + 3Y] Y s in8dOdcp 

+ po 
3 

+ If, cos8(YooYodO)dcp+ If, (Yoocsc8) (Y'b",dcp) d8 
(11) V= -If, Y O<bY<bocscOd8dcp + I r Yo",Y",c tn 8csc8d8dcp 

+ If, ctn8csc8(Y",oT",d8)dcp-I f, Y~ctn 2 8cscOdOdcp 
+ I Is [f3 etc] sin8d8dcp /3 

From the outcome of the problem of the a pproximate 
c ircle we expect that the integral of the first order 
terms in Y will vanish. If the maximum value of Y is 
small compared to po the term s of the third order in 
Y will be s mall compa red to those of the second , and 
may be neglected. In order to get the second order 
term s into more manageable form we will ma ke a 
numbe r of integrations by parts, starting with the 
first te rm in the second line. With U = cosO, dV 
= YooYodO, integrate by parts , obtaining for the in· 
t egrand + O /2)(Yo sin 8) (Yod8)dcp. Again integrate 
by parts, obtaining- O /2)(Yoe + Yoctn8)YsinOdOdcp. 
Integrate the next term by parts, obtaining as inte­
grand, - YOOd,y <bcscOdcpd8. This co mbines with the 
terms in the third line, to form - d(Yo<bY",csc8)dcp. 
Integrate by parts the first term of the last line and 
co mbine with the final te rm to obtain 0 /2) (Y", csc8) X 
(Y ", dcp) d8. Integrate this by parts to obtain - (1/2) 
X (Y <b<b Y csc 8dOdcp. Equation (11) now boils down to 

V =47Tp&!3 + (p~ /3) I Is [Yoo + YoctnO + Y"'<bcsc28 

+3Y] sinOdOdcp + (po/2) I Is [Yoo + YectnO + Y<b",csc28) 

+ 2Y]Ysin8dOdcp (12) 

together with six " UV" terms. Later, when Y is ex­
panded in spherical harmonics, we will be able to show 
that the terms of the first order in Y and the "UV" 
terms reduce to zero. 

The record of the radial profilometer is a polar plot 
of the variation s in radius. The amplification , which 
may be as high as 20000 , can be chosen to provide a 
vivid display of the rate of change q of the tangential 
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and the value of q in the direc tion of it s maximum 
increase is that of the gradient , 

'Vp = vpo + W csc OP<b. 

At any point on the sphere the value of q2 averaged 
with respect to azimuth is 

The average valu e over the s phere is give n by 

47T(T,i= Is (fdD = 0 /2) I Is YosinO(YodO)dcp 

+ 0 /2) I J, Y<b csc 8 (y",dcp)d8 
(13) 

Integration by parts, with the integrands divided as 
shown, gives 

47T<T2q- 0 /2) f{ (Yoo+ Yo ctn O 

+ Y"'<bCSC2 8) Y sinOdOdcp + (14) 

Two "UY" terms will be evaluated late r. If we de fine 
the mean square variation of p by 

47T(Tt= I I yz sinOdOdcp, 

we get for the a pproximate sphere 

V=47TP~ /3 + 47Tpo ((Tt-(T~)· (15) 

l 



Comparison with eq (2) for the volume based on 
deviations from the mean radius shows that the mean 
breadth is slightly larger than the radius, 

ro = Po (1- a-~ /p~) 1/2 . 

3 .3. Representation in Spherical Harmonics 

At this point we will express Y as the sum of s pherical 
harmonics Yn of degree n. It will then be possible to 
compute the volume for specific shapes, to evaluate 
the first order terms in eq (12) and to show that the 
"UV" terms of eqs (12) and (14) reduce to zero. An 
object as smooth as a ball bearing easily meets the 
requirements for convergence of a series of spherical 
harmonics. Summaries of the theory of spherical 
harmonics will be found in [8] or [9]. We will make use 
of the following properti es: 

Each s pherical harmoni c can be expressed as a 
linear co mbination of Laplace fun ctions which are 
products of Legendre polynomials in cos 8 and sines 
or cosines of mcf>. 

Y = 2: Yn= 2: 2: [An ,m cos mcf> 
I/. It m 

+B", lIlsinmcf>]P;;'(cos8). (16) 

The Y" satisfy Legendre's differential equation: 

(Yn)oo+ (Y,,)o ctno+ (Y,,) ci>ci> csc~=- n(n+ 1) Y". 

(17) 
Also, 

J l Y" sin 8d8dcf> = 0, J l YnY". sin 8d8dcf> = 0 if n o;f k. 

Letting x=coso, we can define the Legendre poly· 
nomials of degree n and order m: 

P,, = P~= (2" n!) - I (d/dx )n(x2-1)" 

P,:'// = 0_x2)m/2 (d/dx)lIIP". 

If the shape of an object can be represented by a 
single spherical harmonic Y", the radial profile on the 
section of greatest relief will show n lobes. The zonal 
harmonics P n describe n lobed figures of revolution 
symmetrical about the polar axis. The sectoral har­
monics P:: cos ncf> describe figures with maximum relief 
along the equator , and with nodal lines along meridians. 
If n is odd, a valley will be found at the antipodes of 
every hill, while if n is even a hill will be opposite a hill 
and a valley opposite a valley. 

Any distribution of lobes over the sphere can be 
described with spherical harmonics. A few examples 
will illustrate the possibilities: 

Pi cos 2cf> = (3.75) (cos 8 - cos 38) cos 2cf> 
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has lobes in the directions of the vertices of a tetra­
hedron oriented so that the polar axis passes through 
the midpoint of two opposite sides. 

has octahedral symmetry with a lobe at each pole and 
four on the equator. 

P 6 + 0 /3960) P~ cos 5cf> 

has lobes in the direction of the normals to faces of a 
dodecahedron_ 

Let AP cos mcf> be a sample term in the series expan­
sion of Y [if m=O, P==P,,; ifmo;fO , P==P;~]. Since 
the variables are separated , the "UV" terms from 
eq (11) can be written: 

PoA 2 
{ 1 I"" J 21T -3- 0/2) P~ cos 8 0 0 cos2 mcf>dcf> 

(m 2/2) 1 p2 ctn 8 esc 8 I: L21T sin2 mcf>dcf> 

+ (m/2) 1 sin m<f> cos mcf> I:"" Lp2 esc (Jd8 }. 

If m = o only the first two terms appear. Since P == P" 
is a polynomial in cos (J, Po = - sin (J P ~. Therefore, 
both the terms contain the factor sin2 8 which is zero 
at the limits (J=O and 8=7r. 

If m= 1, P == P", sin 8P(J=P'n cos (J-P';, sin 2 8, and 
Poo=-P;, sin 8-3P;; sin (J cos (J+P~ sin3 (J. For the 

two terms which contain 1 sin mcf> cos mcf> I:"" = 0, it is 

sufficient to note that both P 00 and P contain sin (J as a 
factor, so that the integrals with respect to 8 are finite. 
For the other four terms the cP integrals equal 7T. For 
these, retaining only the part which is significant at 
the limits, we have: 

7TpoA2 {I 11T 1 I"" -3- 0 /2 ) (P')2cos 3 (J 0 + 1/2 (P')2sin 2 (Jcos8 0 

For m > 1, all terms contain sin 8 in the numerator 
and reduce to zero at both limits. 



The "UTI" terms from the integration of eq (13) are 

both of which occurred in the integration of eq (11) 
and were shown to vanish for all values of m. 

Ha ving justified the omission of the "UV" terms from 
eq (12), let us expand Y in a series of spherical har· 
monies, then use Legendre's differential equation 
(17) to eliminate the derivatives of Ylt. The result is 

+ (p~ /3rL (3-n-n 2 ) 12Tr f Y"sinOdOdcp 
" 0 0 

+ (Po /2) L L (2 - n - n,2) en (n YnY" sin OdOdcp. 
1/ I~' )0 Jo 

(18) 

The integrals of Y/I and of the cross products YIlY k , 

n 01= k, vanish and we have 

V = 47Tpg/3- (po/2) L (n - l) (n+2) 

i27l" f Y,~ sin Od8d¢. (19) 

If the standard deviation (J /I of the spherical harmonic 
of degree n is given by 

(20) 

3.4. Calculation of Volume 

As an example, let us calculate the topography 
correction for a ball bearing of a type which is produced 
in quantity by centerless grinding. The radial profiles 
usually show three or five lobes. The balls are graded 
on the basis of the tolerance for the difference in diam· 
eter of circles inscribed and circumscribed on the lobe 
pattern. 2.5-inch balls with a 100 microinch tolerance 
can be bought in small quantities for about $25. The 
shape of one of these balls might be represented by the 
formula: 

p =Po+A (cos O-cos3 0) cos 2¢ 

=Po+ (A/15)P; cos 2¢ 

where A is the tolerance and po is the half width. This 
ball would have tetrahedral symmetry, and the radial 

profile would have three lobes. The standard deviation 
of p is given by 

f21T J" 47T(T~ = A2 0 cos 2 2¢d¢ 0 (cos O-cos 3 0)2 sin Od8 

or 

CT~ = 4A 2/105. 

The volume is 

v = 47Tpg13 - 27Tpo(3 - })(3 + 2)CT~ 

= (47TPg/3) (1 -4A2/7P5) 

For A = 10- 4 inch and Po = 1.25 inch the correction to 
the volume is about 4 parts in 109• 

4. Measurement of Mean Breadth 

In measuring the object it is desirable to have as 
large a number of independent observations as 
practicable , to provide estimates of precision and of 
topographic variations. There are some advantages in 
having the directions of measurement distributed 
systematically so that each can be associated with the 
same sol id angle and the refore have equal weight. It is 
possible to do this by measuring in directions normal 
to the faces of a regular polygon. Three orthogonal 
directions are normal to the faces of a c ube , four direc­
tions are normal to the faces of an octahedron , six 
are determined by a dodecahedron and ten by an 
icosahedron. 

Mapped on a sphere , latitudes and longitude s of 
these sets of directions can be as folJows: 

Set of three 

N. Latitude . . . 90° 0° 0° 
Longitude . ... - 0° 90° 

Set of four 

N. Latitude .. . 35.264° 35.264°= tan - I(Yz/2 ) 
Longitude . . .. ±45° ± 135° 

Set of six 

N. Latitude .. . 90° 26.565° 26 .565° 1 26.5650= tan- I (l /2) 
Longitude .... - ±36° ± 108° 180° 

Set of ten 

Longitude . .. . 0 ± 72° ± 144° 
N. Latitude ... 52.623° 52 .623° 52.623°= tan - 1 (3 + ~/4 
N. Latitude .. . ]0.812° 10 .812° 10.812°= tan - 1 (3- 5) /4 

These orientations are chosen so that each direction 
of the set of four directions is towards the centroid of 
a spherical triangle (an octant) determined by the set 
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of three. Similarly, each direction of the set of 10 is 
toward the centroid of three adjacent directions of the 
set of six. 

The set of six or the set of 10 directions each 
corresponds to the locations of the lobes of one of the 
spherical harmonics of degree six. If the lobe pattern 
of the hall is represented by spherical harmonics of 
degree less than six, the observations of either set are 
distributed over hills and valleys so as to average out 
the lobe pattern exactly, and thus give a correct mean 
width. 

If the ball had lobes di stributed like the vertices of 
a dodecahedron and is oriented just right, it would be 
possible for the observations of the set of six to fall in 
the low spots or for those of the set of 10 to fall on the 
high spots. Either set would yield an erroneous result. 

What is more likely is for the ball to have a single 
feature , such as a dent or abraded patch, coverin g 
one or two percent of its surface. Th en there would be 
a chance that this feature would be missed in a set of 
observations. In this experiment the chance of missing 
an isolated feature was reduced by making four series 
of observations in ten directions with the ball relocated 
at random betwee n series. 

An estimate of the magnitude of the even spherical 
harmonics can be made on the basis of the inter· 
ferometri c measurements. However, this information is 
incomplete on two counts. First, the breadth is not 
affected by the odd spherical harmonics, but the vol· 
ume is. Second, the expression for the volume contain s 
the square of the degree n, and the interferometer 
provides no information on the number of lobes. 

Observations with the radial profilometer are essen· 
tial in estimating the error due to topography. The 
profiles show the odd as well as the even harmonics. 
If a single harmonic dominates the topography the 
number n of lobes can be counted. If the pattern is 
irregular, a radial profile provides a sample from which 
to estimate a mean square rate of change of radius 
((T~ in eq (15)). The angular resolution of the trace is 
of the order of a degree, so that the chance of finding a 
small defect is improved. 

5. Summary 

We have evaluated the topography correction for 
the difference between the volume of an approximate 
sphere and that of a true sphere of the same average 
breadth. It is of second order in the variations in 
tangential radius , and therefore much smaller than the 
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random and systematic errors of the measureme nts 
which can be made on the object. For example, a 
commercially available ball bearing of moderate cost 
can be expected to have a topography correction of a 
few parts in 1O H• Its mean breadth can be measured to 
a part in 10 6 corresponding to a few parts in a million 
in its volume. 

In order to have no question as to the integral part 
of the order of interferen ce, Bowman [1] used balls of 
much better quality. The manufacturer's nominal 
tolerances were one or two microinches. The radial 
profiles appeared to be elliptical (n = 2) with a differ· 
ence betwee n the major and minor axes less than one 
part in a million. Harmonics of degree greater than two 
were too small to detect. In sixteen sets of inter· 
ferometri c measurements , the greatest and least 
breadths of a ball in a set of ten differed by less than 
two parts in a million. If all of this difference resulted 
from a spherical harmonic of degree two , the correc· 
tion to the volume would be a few parts in 10 12 • The 
effect of harmonics of higher degree and smaller 
amplitude might be comparable. In any case the topog· 
graphy corrections are several orders of magnitude 
smaller than the uncertainties inherent in the inter· 
ferometer. 
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