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Expressions are derived for the volume of an approximate sphere in terms of measured breadth,
the distance between parallel planes tangent to opposite sides. The difference in volume of a ball
and a true sphere of the same average breadth is shown to be of second order, and much smaller than
the random and systematic errors in the measurements of the dimension. Thus, a ball commercially
available at moderate cost can be used for absolute density measurements of high accuracy. Similar
expressions are given for the area of an approximate circle.
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1. Introduction

The establishment of an absolute density standard,
as is described by Bowman et al. in the companion
article [1],' requires the determination of the volume of
some object from its dimensions. The shapes that first
come to mind are the cube or rectangular prism used
by Cook [2] in the determination of the density of
mercury, and the sphere. The latter is attractive
because of its symmetry, and its relatively low cost
in the form of ball bearings. Of course, no ball is a
perfect sphere, and the question is immediately raised
as to the importance of the topographic deviations
from sphericity. In the following we will examine the
determination of the volume from measurable quanti-
ties. The discussion will be restricted to objects which
are everywhere convex, and free of sharp edges or
corners.” Commercial ball bearings meet these require-
ments easily. We will be particularly concerned with
features which occupy more than one percent of the
surface. Irregularities smaller than a millimeter in
extent would produce conspicuous distortions in the
interference patterns. The method of measuring the
interferograms averages over the irregularities
associated with the texture of the surface. The observa-
tions with the profilometer and the homogeneous ap-
pearance of the ball as an optical surface make it
improbable that a significant defect of intermediate
size would escape detection. In the following we will
show that the correction for asphericity is of the second
order, given a good average for the diameter or the
breadth of the object, and therefore smaller than first

! Figures in brackets indicate the literature references at the end of this paper.
2 This requires that the shape can be described by functions which are single valued and
continuous, with single valued and finite first and second derivatives.

order uncertainties in the measurement. Then we
will look at sampling schemes for obtaining that
average.

1.1. Description of an Object in Terms of Spherical
Coordinates

The volume V of an object is given by the integral,
V lfr“ 1Q) 1)
=—| ri
Bk (

where 7 is the distance from the origin to the surface
element, which subtends a solid angle d€) at the origin,
and the integration is performed over the full solid
angle of 47 steradians. Let ro be the mean radius so
that r=ro+ 8. Then

V=4nr}/3+r3 f 8dﬂ+r(,f52dﬂ+f85‘d()/3.

Since the mean value of & is zero, and that of &° is
very small, we have

= 47T[rf,‘/3+r‘,o";f] (2)

where 02 is the mean square variation of the radius.
Thus, the correction for irregularities is of the second
order. If o,/ro=10"* the correction is only 3 parts
in 108,

But things are not this simple. Measurements with
many metrological instruments, from the mechanic’s
micrometer to the Saunders interferometer [3], do not
yield the diameter. Instead, they determine the
breadth, that is, the separation of parallel planes
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tangent to opposite sides of the object. Since the
breadth favors the high spots, its average value will
be somewhat greater than that of the diameter. In
ficure 1 let R be a point on a surface, and O be the
origin. In general, the tangent plane PT which is normal
to OR will not pass through R, but the point of tangency
will be at the top of a nearby high spot. The tangential
radius p= OP is given approximately by

p=r+(Vr)?2R, 3)

V4
where r is the distance OR; R, =CT the local radius
of curvature in the region which includes R and the
point of tangency; Vr is the gradient, or the change of
r with respect to the angle subtended at the origin in
the direction of most rapid increase, i.e., towards the
top of the hill. In the objects of present interest,
R~ ro, and the gradient is so small that the difference
between sine, angle, and tangent can be neglected.
Let p=po+Ap where po is the mean value of p,

s

J- Ap dQ =0, and 470} :J’ (Ap)2 dQ).

Then
r=po+ Ap —pj (Vr)*2R,
r3 = p{+ 3p3 Ap + 3po (Ap)* — 1.5 p§ (Vr)*/R..

Then the volume would be given by

1 p :
V= 3 f r3dQ) = 47'rpg/3+ 477])0[0';— 0'%7’/2] (4)
where

47T0'%r=pof (VTZ/RL)dQ

S

As before, the topography correction to the volume is
of the second order, this time involving the mean
square of the gradient Vr as well as that of the varia-
tion in breadth.

In the above we have passed rapidly over several
points which require closer examination. (a) It is not
obvious that the expression for the volume is in-
dependent of the choice of the origin. (b) Equation (4)
is in terms of the tangential radius, which cannot be
measured since the center of a solid object is not
accessible. Rather the measurements yield the breadth,
which is the sum of two tangential radii. Therefore it
is important to consider the important class of objects
which exhibit odd lobing, with a valley opposite a hill.
(c) The local radius near the hilltops is systematically
less than the mean radius. We have assumed that they
are approximately equal so that the difference leads to
errors of a higher order than the second. (d) We can
expect the gradient Vp to approximate Vr, but at this
time have no good basis for estimating its magnitude.
(e) In order for the terms of the first order to vanish,
it is necessary to have a good average value of p experi-
mentally as well as mathematically.
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1.2. Description of an Object in Terms of Tangent Planes

We have reached the expression, eq (4), for the
volume of an approximate sphere from a description
in terms of the usual polar coordinates, r, 0, ¢. Un-
fortunately the radius and its derivative with respect to
the central angle are not directly measurable. To make
the analysis correspond more closely to the measured
quantities, we will look at a description of an object as
the “envelope” of a set of tangent planes. The ana-
lytical description was developed by Meissner [4]
in a study of objects of constant breadth. Equivalent
graphical methods are used in the design of gears and

cams, for example [5, 6]. More recent work has been
published by Goldberg [7].

2. Area of an Approximate Circle

Before undertaking the more complex problem of
the approximate sphere, let us examine that of the
area of a plane figure bounded by the curve S in
figure 1. The lines TP and TiP; are two tangents to
the curve, which intersect at the point Q between the
points of tangency. Let OP and OP; be the perpendic-
ulars from the origin to the two tangents. Let the
tangential radius p be expressed as an analytic func-

tion of the polar angle 6. Then the distance@=p(()),
OP;=p(6+ AB), where POP, =PQP,=A6. From the

0

FIGURE 1. Section normal to a plane tangent to a surface.



figure it will be seen that the distances m A6 < Ap
=O0P;—O0OP < PQ - A6. Divide through by Af# and let
A0— 0: P,Q— PQ— Ap/A0— dp/do=p'. Also the
intersection Q of the two tangents becomes the point
of tangency. Thus, the distance from the foot of the
perpendicular to the point of tangency equals the
derivative of p with respect to the angle at the origin.
Returning to figure 1, we have two tangents PT and
P,T,, with perpendiculars from the origin OP and OP;.
Let us project onto PT the vectors leading from O to Ty
by way of P and P,. We have OP; sin A9+ PiT,
cos AG=PT'=PT+TT'. Let the length OP=p(9),
OP,=p(6+A0); we have already shown that PT=
p'(0), and P,\Ty=p' (6+ AB). Making these substitu-

tions we obtain
TT'
sin A6

p' (0+A6) cos AO—p'(6)
sin A6 ’

=p(6+A0) +

and as A9 — 0, TT' —dS, the element of arc, so that
dS/dé=p+p".

The area A enclosed by the curve is given by
2m 2T
2A=f pdS=f p2d9+f pp"de.
s 0 0

Substitute p= po+ 8p, where po is the mean value of
p, and integrate the last term by parts.

24 =f- [p?+2pedp+ (8p)*— (p')%1dO+ | pp' 3"
0

or, since J’~ op=0
0

A=7T[p§+0'l2,—(r:,] (5)

o?, are mean square values of p—po

where o? and pd

»
andp’.

There is no problem with the integration if the boundary
curve is everywhere convex and free of steps and
corners. With these restrictions it is possible to repre-
sent p (0) by a Fourier series

DA=ID 0kt E C, sin (n6 + «ay)

n

whence
o2=YC32, 05 =" n*C%2
and the area will be

A=wp§,+gz(1—n2)(];§. (6)

The “topography error” in the area is of the second
order. Displacement of the origin changes the value of

the constants for n = 1; because of the factor (1—n?)
the area is unchanged.

’

3. Volume of an Approximate Sphere

The problem of the approximate sphere is much more
tedious than that of the approximate circle. The reader
who is not interested in following the details of the
analysis may wish to skip most of this section, stopping
only to compare eqs (15) and (5) and eqs (20) and (6),
and then to look at the calculation of volume.

The logic is similar to that of the approximate circle:
(a) The shape of the object can be described in terms of
a set of tangent planes. The position of each plane is
defined by a vector p from the origin to the plane and
normal to it. (b) The length p of the normal vector is a
function of the polar coordinates € and ¢. Note that
these coordinates do not refer directly to a point on
or within the object but to the coordinates of a ref-
erence sphere with its center at the origin of p. If the
object has no sharp edges or vertices, each point on
its surface defines a single tangent plane and therefore
a single point (6, ¢), on the reference sphere. If the
object is everywhere convex, each point on the ref-
erence sphere corresponds to a single point of tangency
on the object. (¢) We will first determine the vector
from the origin to the point of contact between the
tangent plane and the surface of the object. Then we
will map out the element of the surface which corres-
ponds to the increments df and d¢, and write the
expression for the element of volume. (d) In the
analytical discussion we will use a series of spherical
harmonics, which play the same part on the sphere as
does the Fourier series on the circle. The volume
integral will contain terms of the first, second, and
higher orders in the spherical coordinates. As the
first order terms integrate to zero, the main correction
for topography will be found in the second order terms,
which contain squares and products of the spherical
harmonics. A sample calculation will show the magni-
tude of the second order terms.

3.1. Element of Volume

Figure 2 represents the plane tangent to the object
at T and normal to the vector p(f, ¢) which terminates
at P. The projections of all meridians of the reference
sphere meet at the pole, #=0. The intersection with
the plane of the equator, 6=90°, forms the base of the
triangle. The projection from the origin of the small
circle of constant polar distance 6 is a cone; its inter-
section with the tangent plane is symmetrical with
respect to the meridian through P. The plane through
P, orthogonal to the tangent and meridian planes,
intersects the reference sphere in a great circle tangent
to the small circle of constant 6. The angle { is meas-
ured along this circle.

Let figure 1 represent a meridian plane which con-
tains the normals OP and OP; of two planes tangent to
the object. T and T'; are the perpendicular projections
onto the plane of the figure of the two points of tan-
gency. The argument proceeds as before, and the pro-
jection of PT on the tangent plane is equal to dp/d0 = p,.
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FIGURE 2.

Now we relabel figure 1, replacing 6 with ¥ and let
it represent projections on the plane normal to the
meridian. The projection of PT on this plane is dp/diys
= py. Since the normal plane is tangent to the cone of
constant polar angle 6, we can set d)= sin fd¢, and
this component of PT, py=pg cscé.

Returning to figure 2 we have the sum of the vectors
po, parallel to the meridian, and py=ps cscf, per-
pendicular to it, connecting the point £ to the point
of tangency T between the plane and the surface of
the object. Then, corresponding to an element AGA¢
of the reference sphere, there is on the surface of the
object an element whose edges are the vectors TyA#
and TyAc. The volume element will be a pyramid with
this as the base and the origin as the vertex.

Now, let us define three orthogonal unit vectors,
which move with the tangential radius vector. In
terms of cartesian coordinates associated with the
reference sphere [0 = 90°, ¢ = 0; 6 = 90°, ¢ = 90°;
6=0°] the components of these are

u = (sinf cos@, sinf sing, cosh) along the radius vector,

v =(cost cose, cosb sinp,—sinf) in the meridian plane,

w= (—sing, cosd, 0)

normal to the meridian plane.

By differentiation of the components the following can
be verified:

Uy = v Vop=——nu W0:O

W =—u sinf— v cosf
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uy = w sinf V¢ = W cosf

Plane tangent to a surface.

Then the tangential radius vector will be p=p u and
the vector to the corresponding point on the object
will be:

t=pu—+ pyv—+py cscl w.

In differentiating these vectors we must consider
changes in both direction and magnitude:

to=(p+pos) v+ (Pso—Ppsctnb) cscld w
te= (Pos—Ppoctnd) v+ (psinf+pocosd+peos csch) w.

Since no component in the u direction appears in the
expression for tg and te, the derivative vectors in the
surface of the object also lie in the tangent plane.
The volume element can be expressed in terms of
the determinant of the components of t, ts and ty

D Do Do csch
dV=0 p-+peg (Pgo—poctnb)csch %‘é
0 pos—poctnd (psinf@+pocosf+Ppescsch)
(10)



3.2. Volume Integral

Let po be the average value of p (4771)<|:J’[)(1Q),

and let Y be the relatively small deviation from the
average value, so that p=po+Y. Later we will express
Y as a linear combination of spherical harmonics. Now
let p=po+Y where Y is a linear combination of spher-
ical harmonics. Now we expand the determinant, sort
out terms, and start the integration:

Po
3

+ff [Y? etc] sinfdOdd |3

From the outcome of the problem of the approximate
circle we expect that the integral of the first order
terms in Y will vanish. If the maximum value of Y is
small compared to py the terms of the third order in
Y will be small compared to those of the second, and
may be neglected. In order to get the second order
terms into more manageable form we will make a
number of integrations by parts, starting with the
first term in the second line. With U=cosf, dV
= YpeYod0, integrate by parts, obtaining for the in-
tegrand + (1/2)(Yysin 0) (YodO)ddp. Again integrate
by parts, obtaining — (1/2) (Ye9 + Yectn6)Y sin0d6de.
Integrate the next term by parts, obtaining as inte-
grand,— YgpsYscscOdpdf. This combines with the
terms in the third line, to form — d(Yy4YscscOd)do.
Integrate by parts the first term of the last line and
combine with the final term to obtain (1/2) (Y4 csc) X
(Ysdd)do. Integrate this by parts to obtain — (1/2)
X (Y40 Y cscdOdd. Equation (11) now boils down to

V=Admp3[3+ (1)?,/3)][ [YVoo+ YoctnO+Yy4csc2h
+3Y]sinfdOdep + (po/2) ff [Yoo+ YoctnO+Y44csc2B)

+ 2YYsin6dOdd (12)
together with six “UV”’ terms. Later, when Y is ex-
panded in spherical harmonics, we will be able to show
that the terms of the first order in Y and the “UV”’
terms reduce to zero.

The record of the radial profilometer is a polar plot
of the variations in radius. The amplification, which
may be as high as 20000, can be chosen to provide a
vivid display of the rate of change ¢ of the tangential
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Ampi/3+ (p5/3) j[ [Yoo+Yoctn0+Y44csc20+3Y] sinfdOdd
ff [2Y o+ 2YgctnO+ 2Y g4 csc20+ 3Y | YsinfdOdp

+ff C()SH(YHHYﬁ(IZO)d(b'Fff. (Y(N)(‘S(‘()) (Y(;,(bd(b)d@

—fj Ym/)ydm('sc()(l()(ltb-i-ff YH(I;Yd)(‘,Il]9(‘,509(19(1(1)

+ff ctnf)('scf)(Y(;,HT(bd(’)dd)—Jf Yictn?0cscOdOdd

radius p as a function of the angular coordinates. A
given profile is likely to sample some regions of
relatively high relief and other regions of low relief.
Therefore one or more profiles, in various orientations,
will provide an estimate of the mean square value of
the rate of change. If « is the azimuth at a point (0, ¢),
the rate of change ¢ will be

q = pygcos a + csclpgsin a,

—

and the value of ¢ in the direction of its maximum
increase is that of the gradient,

Vp = vps + w csclpg.

At any point on the sphere the value of ¢ averaged
with respect to azimuth is

4

5 (Vp)?

— |
Q2= 5 iz = cscipz] =

The average value over the sphere is given by

o= [ o= 2) [[ Yusind (vudo) o
4 13
+12) [[ Yaesco(vuds)do L

Integration by parts, with the integrands divided as
shown, gives

477027_(1/2) ff (Yoo+ Ygctnb

+Ygpcse? ) Y sinfddp+ . . .. (14)

Two “UV” terms will be evaluated later. If we define
the mean square variation of p by

47TO',';=ff Y2 sinfd6dd,
we get for the approximate sphere

V=4mp? [3+4mp, (0';-’0';12). (15)



Comparison with eq (2) for the volume based on
deviations from the mean radius shows that the mean
breadth is slightly larger than the radius,

ro=po (1= 02/p2) 2.

3.3. Representation in Spherical Harmonics

At this point we will express Y as the sum of spherical
harmonics Y, of degree n. It will then be possible to
compute the volume for specific shapes, to evaluate
the first order terms in eq (12) and to show that the
“UV” terms of eqs (12) and (14) reduce to zero. An
object as smooth as a ball bearing easily meets the
requirements for convergence of a series of spherical
harmonics. Summaries of the theory of spherical
harmonics will be found in [8] or [9]. We will make use
of the following properties:

Each spherical harmonic can be expressed as a
linear combination of Laplace functions which are
products of Legendre polynomials in cos @ and sines
or cosines of ma.

Y= E Y,= E E [An,m cos mep

+ By, m sin m¢] P::’ (C()S 9) . (].6)

The Y, satisfy Legendre’s differential equation:
(YII)HH+ (Yn ) g ctng+ (Yn ) b CSC%Z‘ n(n aF 1) Yn.

(17)
Also,

ff Y, sin 0d0dp =0, ff Y. Y sin 0d0dp=0 if n # k.

Letting x=cosg, we can define the Legendre poly-
nomials of degree n and order m:

P,=P0=(2"n!) -1 (d/dx)"(x>*—1)"
Pm o (l _xz) m/2 (d/dx) mP".

m

If the shape of an object can be represented by a
single spherical harmonic Y,, the radial profile on the
section of greatest relief will show n lobes. The zonal
harmonics P, describe n lobed figures of revolution
symmetrical about the polar axis. The sectoral har-
monics P} cos n¢ describe figures with maximum relief
along the equator, and with nodal lines along meridians.
If n is odd, a valley will be found at the antipodes of
every hill, while if n is even a hill will be opposite a hill
and a valley opposite a valley.

Any distribution of lobes over the sphere can be
described with spherical harmonics. A few examples
will illustrate the possibilities:

P2 cos 2¢p= (3.75) (cos 6 — cos 360) cos 2¢
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has lobes in the directions of the vertices of a tetra-
hedron oriented so that the polar axis passes through
the midpoint of two opposite sides.

P4+ (1/168) P# cos 4¢

has octahedral symmetry with a lobe at each pole and
four on the equator.

P+ (1/3960) P} cos 5¢

has lobes in the direction of the normals to faces of a
dodecahedron.

Let AP cos m¢ be a sample term in the series expan-
sion of Y [if m=0, P=P,; if m# 0, P=Pm"]. Since
the variables are separated, the “UV” terms from
eq (11) can be written:

%{ (1/2) ‘ P2 cos 0 !

2m
f cos® m¢pde
0

0

+ (1/2) ’ PP sin 6

T 2
f cos®> mpdd
0 Jo

+m

2w m
f PooP CscC 0d0
0 0

sin m¢ cos mg

m™ 2
PyP csc 6 f sin? m¢dd
0Jo

—m?

(m2/2) l P2 ctn 0 csc 6

m 2m
f sin? m¢pdd
0o Jo

2m T
+ (m/2) | sin m¢ cos me fPZ csc 6do }
0 0

If m = 0 only the first two terms appear. Since P = P,
is a polynomial in cos 6, Pg=—sin 6 P,. Therefore,
both the terms contain the factor sin? 6 which is zero
at the limits =0 and §=1r.

If m=1, P=P,, sin 0Py=P’, cos 6 —P", sin> 6, and
Pog=—P, sin 6—3P;, sin @ cos 6+ P, sin® 0. For the
2m

=0, it is

two terms which contain | sin m¢ cos m¢

sufficient to note that both Pgy and P contain sin 6 as a
factor, so that the integrals with respect to 6 are finite.
For the other four terms the ¢ integrals equal 7. For
these, retaining only the part which is significant at
the limits, we have:

o

poA?

3

{(1/2) ‘ (P")2cos®0

+1/2 ‘ (P")2sin%26cos 0
0

0

o
0

For m >1, all terms contain sin 6 in the numerator
and reduce to zero at both limits.

—‘ (P')chSO) +1/21 (P')2cos 0
0




The “UV”’ terms from the integration of eq (13) are

1/2 f
0

both of which occurred in the integration of eq (11)
and were shown to vanish for all values of m.

Having justified the omission of the “U}V”’ terms from
eq (12), let us expand Y in a series of spherical har-
monics, then use Legendre’s differential equation
(17) to eliminate the derivatives of Y,. The result is

2m

do

0

YyY sin 6 YoV csc 6

" dd—1/2 f'"
) 0

(

V=4mp}|3

2 T
+([)(“-:/3)E (3—11—112)f f Y, sin 0dOdd¢
0 0

‘ 2—n—n2) [ [ YaYusin0dods.
+(1)(./Z)ZE( D=7 )fo f" x sin 0dOddp

n k

(18)

The integrals of Y, and of the cross products Y,Y,
n # k, vanish and we have

V=4mp}/3 — (po/2) 2 (n—1)(n+2)

2w T

f j Y;’ sin 0dfdd. (19)
0 0

If the standard deviation o, of the spherical harmonic

of degree n is given by

2 ™
dmro? :f f Y2sin 0d0dd,
0 (

)

V:477pg/3—277[)02 (n—l)(n+2)o','-:. (20)

3.4. Calculation of Volume

As an example, let us calculate the topography
correction for a ball bearing of a type which is produced
in quantity by centerless grinding. The radial profiles
usually show three or five lobes. The balls are graded
on the basis of the tolerance for the difference in diam-
eter of circles inscribed and circumscribed on the lobe
pattern. 2.5-inch balls with a 100 microinch tolerance
can be bought in small quantities for about $25. The
shape of one of these balls might be represented by the
formula:

p=po+A(cos @ —cos® 6) cos 2¢
=po+ (A/15)P? cos 2¢

where A is the tolerance and py is the half width. This
ball would have tetrahedral symmetry, and the radial

profile would have three lobes. The standard deviation
of p is given by

2m

47r(r;-’,=/42 f cos? 2ddd f (cos O —cos® 0)% sin 0d6
0

0

or
o2=44%/105.

The volume is

V=A4mp}|3 —2mpo(3—1)(3+ 2)0’3

= (4mpy/3) (1 —44%[7py)

For A=10-* inch and py,=1.25 inch the correction to
the volume is about 4 parts in 10°.

4. Measurement of Mean Breadth

In measuring the object it is desirable to have as
large a number of independent observations as
practicable, to provide estimates of precision and of
topographic variations. There are some advantages in
having the directions of measurement distributed
systematically so that each can be associated with the
same solid angle and therefore have equal weight. It is
possible to do this by measuring in directions normal
to the faces of a regular polygon. Three orthogonal
directions are normal to the faces of a cube, four direc-
tions are normal to the faces of an octahedron, six
are determined by a dodecahedron and ten by an
icosahedron.

Mapped on a sphere, latitudes and longitudes of
these sets of directions can be as follows:

Set of three
N. Latitude... 90° 0° 0°
Longitude. ... = 0° 90°
Set of four
N. Latitude...| 35.264° 35.264°=tan~'(\/2/2)
Longitude....| =+45° +135°
Set of six
N. Latitude... 90° 26.565° 26.565° | 26.565°=tan"!(1/2)
Longitude. ... == =+ 36° +108° 180°
Set of ten
Longitude. ... 0 SR +144°
N. Latitude...| 52.623° | 52.623° | 52.623°=tan~'(3+ \/\/@ /4
N. Latitude...| 10.812° 10.812° 10.812°=tan~!(3— V5)/4

These orientations are chosen so that each direction
of the set of four directions is towards the centroid of
a spherical triangle (an octant) determined by the set
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of three. Similarly, each direction of the set of 10 is
toward the centroid of three adjacent directions of the
set of six.

The set of six or the set of 10 directions each
corresponds to the locations of the lobes of one of the
spherical harmonics of degree six. If the lobe pattern
of the ball is represented by spherical harmonics of
degree less than six, the observations of either set are
distributed over hills and valleys so as to average out
the lobe pattern exactly, and thus give a correct mean
width.

If the ball had lobes distributed like the vertices of
a dodecahedron and is oriented just right, it would be
possible for the observations of the set of six to fall in
the low spots or for those of the set of 10 to fall on the
high spots. Either set would yield an erroneous result.

What is more likely is for the ball to have a single
feature, such as a dent or abraded patch, covering
one or two percent of its surface. Then there would be
a chance that this feature would be missed in a set of
observations. In this experiment the chance of missing
an isolated feature was reduced by making four series
of observations in ten directions with the ball relocated
at random between series.

An estimate of the magnitude of the even spherical
harmonics can be made on the basis of the inter-
ferometric measurements. However, this information is
incomplete on two counts. First, the breadth is not
affected by the odd spherical harmonics, but the vol-
ume is. Second, the expression for the volume contains
the square of the degree n, and the interferometer
provides no information on the number of lobes.

Observations with the radial profilometer are essen-
tial in estimating the error due to topography. The
profiles show the odd as well as the even harmonics.
If a single harmonic dominates the topography the
number n of lobes can be counted. If the pattern is
irregular, a radial profile provides a sample from which
to estimate a mean square rate of change of radius
(02 in eq (15)). The angular resolution of the trace is
of the order of a degree, so that the chance of finding a
small defect is improved.

5. Summary

We have evaluated the topography correction for
the difference between the volume of an approximate
sphere and that of a true sphere of the same average
breadth. It is of second order in the variations in
tangential radius, and therefore much smaller than the
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random and systematic errors of the measurements
which can be made on the object. For example, a
commercially available ball bearing of moderate cost
can be expected to have a topography correction of a
few parts in 10*. Its mean breadth can be measured to
a part in 109 corresponding to a few parts in a million
in its volume.

In order to have no question as to the integral part
of the order of interference, Bowman [1] used balls of
much better quality. The manufacturer’s nominal
tolerances were one or two microinches. The radial
profiles appeared to be elliptical (n=2) with a differ-
ence between the major and minor axes less than one
part in a million. Harmonics of degree greater than two
were too small to detect. In sixteen sets of inter-
ferometric measurements, the greatest and least
breadths of a ball in a set of ten differed by less than
two parts in a million. If all of this difference resulted
from a spherical harmonic of degree two, the correc-
tion to the volume would be a few parts in 10'2. The
effect of harmonics of higher degree and smaller
amplitude might be comparable. In any case the topog-
graphy corrections are several orders of magnitude
smaller than the uncertainties inherent in the inter-
ferometer.
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