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We have determined the density of four pieces of single crystal silicon in terms of universally
accepted standards of mass and length. These four objects will be used as a working density standard
to which all future density work in the United States will be referred. Using these crystals as standards,
NBS can calibrate other objects as density standards for associated laboratories.

The work was accomplished with the assistance of an interferometer, developed especially for
the task, which measures the diameter of commercially available steel balls. From measured diameters
ball volumes are calculated. The volumetric information contained in the balls is transferred to the
silicon crystals in a newly designed hydrostatic weighing experiment.

We have made three independent density determinations on each of the four crystals, and the
presently accepted values of the density of each crystal is the average of the three determinations.
The random component of uncertainty (3 standard deviations) of these four averages is 0.7 ppm. The
systematic error is estimated to be about 0.7 ppm.

Key words: Density standard; hydrostatic weighing; perfect sphere; silicon; spherical interferometer;
spherical volume; volume standard.
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1. Introduction

In the early 1960’s NBS began receiving inquiries
as to the practicability of making density measure-
ments to an uncertainty of a part or two in a million.
This was of particular interest to oceanographers and
crystalographers. Cook, NPL, [1, 2],! had satisfied the

requirements of workers in gas thermodynamics by

! Figures in brackets indicate the literature references at the end of this paper.
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his determination of the density of mercury to about a
part in a million and he had made a generous supply
available to NBS. We made several efforts to transfer
the density information from this mercury into various
objects but this is a difficult experiment and we were
rarely able to achieve reproducibility of independent
measurements to less than three parts per million. We
had some immediate “in house” requirements for
density knowledge to a part per million in the field



of fundamental constants [3, 4] and, as a long range
objective, an improvement of the mass standard.

In 1965 we announced [5] that NBS would undertake
to devise a density measurement procedure and the
necessary associated standards tied directly to the
universally recognized standards of mass and length
so that interested experimenters could make such
density determinations. We had already demonstrated
that the densities of solid objects could be compared
to a precision of 1:107 or better [6] so we stated that
the proposed measurement system would be based
upon a group of solid objects, and we outlined the
procedures we would use in the development. Numer-
ous experimental failures have required us to alter our
techniques and methods, but every experiment has
reinforced our original conclusion that solid density
standards are far more practical than any liquid stand-
ard which has come to our attention.

Section 2 of this paper outlines the laboratory
procedures we used in the development of the system
and the results we obtained.

1.1. Background

All density determinations require two measure-
ments, one to find the mass of the unknown and a
second to find its volume. Mass may be adequately
measured by well understood procedures. Volume may
be calculated from linear measurements, but it is
ordinarily calculated from observed data on buoyant
forces in hydrostatic weighing tests in water of some
tabulated value of density.

Cook’s determination on mercury was in response
to a well-defined problem of very widespread interest,
and NPL expended a great deal of effort in accom-
plishing this excellent measurement to about a part
in a million.

The suggestion has frequently been made that if
NBS would determine the density of well characterized
water from a reproducible source, that other groups
could use this type of water, after preparation by a well-
defined recipe, for 1 ppm density measurements.
Nothing could be further from the truth. While such
a determination by NBS might remove some of the
uncertainty associated with the use of water as a
density standard, no prudent experimenter would claim
such accuracy because such a claim would necessarily
have to be based upon four assumptions—none of
which are subject to proof:

1. That the published value of the density of water
applied without correction to the particular
sample used in his measurement.

2. That the official recipe for preparation of water
contained no hidden errors when applied to his
particular sample.

3. That no blunders were made during preparation

of his sample.

That no contamination occurred between the

preparation and use of his sample.

4.

There are two additional practical reasons for
choosing a solid-based density scale in preference to
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water: (1) It is possible to compare the densities of
two solids to a precision in excess of that which is
achievable in the comparison of a solid with water.
(2) The density of an unknown liquid may be deter-
mined much more easily from a solid standard than
from water.

1.2. Modern Developments

There have been numerous technical developments
in the past two decades which greatly facilitate the
task of developing a solid-based density scale. We
utilized five of these developments:

a. The inexpensive commercial availability of
single-crystal silicon.

The commercial availability at reasonable cost
of steel spheres of near-perfect geometry.

A new type interferometer designed by J. B.
Saunders, NBS [8].

The commercial availability of Lamb dip stabi-
lized lasers and techniques for their ready
calibration with reference to universally recog-
nized spectral standards [7]. This made the
above interferometer configuration practical.

A completely redesigned hydrostatic weighing
experiment.

b.
c.

d.

Due to the enormous requirements of the electronics
industry, single crystal silicon is now mass-produced in
sizes much greater than necessary for practical density
standards. The virtues of this remarkable material as
density standards will be discussed in section 2, but its
primary value in such service is its homogeneity and
density stability.

A major difficulty facing a laboratory about to
embark on a fundamental density measurement is the
fabrication of an object of such geometric perfection
that its volume may be calculated from linear meas-
urements.

We avoided facing this problem directly by using
commercially available steel balls about 6.3 cm in
diameter. The difference between the maximum diam-
eters and the minimum diameters of such spheres is
rarely greater than about 1 ppm.

The virtues of spherical objects have long been
recognized, but there has been no practical method
of measuring spherical diameters without introducing
uncertainties (such as contact deformation) several
times the magnitude of the desirable level of uncer-
tainty. This problem was resolved by the development
of the noncontacting interferometer mentioned above.

Volumes calculated from such measured diameters
are not indefinitely stable because steel balls are easily
damaged by scratches, corrosion, rough handling,
etc., so it was desirable to transfer the volumetric
knowledge irom the spheres to objects of better
stability and homogeneity in density. This transfer is
performed hydrostatically.

The classical hydrostatic weighing experiment is
quite imprecise and most wasteful of density knowl-



edge. In order to get the precision of this operation
below 1 ppm we made four changes:

1. The use of a fluorocarbon instead of water.

2. The use of four comparison objects instead of one.

3. The use of direct reading, damped balances
instead of free swinging instruments.

4. The employment of a measurement procedure
designed for the determination of volumetric
ratios rather than densities.

The foregoing remarks suggest the apparatus and
procedures we used in developing our working density
standard. The work described in this report, outlined
in figure 1, was largely exploratory, and we have found
that equipment and procedural modifications will
provide data of equal or better quality at much less
cost in the future.

2. The Working Standard of Density

Inasmuch as density is defined in terms of mass and
length, both of which are basic in the SI System, it
would be inappropriate to speak of a density standard
in the context in which the word “standard’ is gen-
erally understood. On the other hand, “working”
standards are ordinarily thought of as convenience
items whose accepted values are obtained by calibra-
tion either directly or indirectly against fundamental
standards.

For this reason, we have chosen to refer to our group
of silicon crystals as a ‘“‘working” standard. The
accepted density values of the individual crystals in
this group are not invariantly fixed, but only represent
our best estimate of the true value based upon previous
calibration experience. As additional measurement

Lamb dip stabilized laser whose Three Platinum Resistance Thermometers The United States Platinum-
wavelength was determined by calibrated in IPTS-68 and frequently Iridium Prototype Kilograms
direct comparison to Krypton. checked against triple-point of water. Nos. 4 and 20,

i
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by temperature span
Platinum Thermometers,

monitored by a PRT.
Tables 1 and 2.

Section

Interferometer thermocouple calibrated
established by

and with the
reference end in a temperature

Calibration of the built-in
weights of the single pan
direct reading hydrostatic
i balance.
2.4.2.3,

9

Measurement of the etalon length at
several temperatures in terms of
laser wavelength, Section 2.4.2.4,
Table 3 Figure 4.

|

Y

Measurement of the difference in length
between the etalon and the diameter of

the balls at various temperatures.
Section 2.4.2.5, Table 4. l

Masses of the four
silicon crystals and

o ) . ) the six steel balls,
Determination of the immersed

weights of the four crystals and
six balls as function of tem-
perature, using the hydrostatic
balance. Section 2.5.1,4.

Calculation of ball diameters as a

I

Calculation of the volometric ratios
between the four crystals and six
balls from knowledge of true mass
and immersed weight. Section 2.6,
Table 5.

function of temperature, and ball l
volume at 20 ©C, Table 4.
Calculation of crystal volumes based on
T ratios between crystals and balls and
knowledge of ball volumes, Table 6.
Calculation of the densities
of the four silicon srystals
P from knowledge of mass and
volume. Table 6.
FIGURE 1

Additional work on these crystals and balls will be
performed as a continuing NBS project, and will be
reported on from time to time.

1.3. Dissemination of Density Information

By hydrostatic transfer from our crystals or balls,
we are now in a position to calibrate solid standards
for use by other laboratories.

If other groups choose to enter the field of funda-
mental volumetric (density) measurements (we have
heard of two such organizations), it will be possible to
exchange solid density standards to assure consistency.

The use of solid standards makes comparison of
density scales to assure consistency a practical
procedure.

effort is expended, the accepted values may be slightly
modified. The present accepted values of our crystals
are based upon the average of three independent
determinations.

2.1. Material for Density Standards

The most important characteristics of an artifact
standard of a physical property are:

1. Temporal stability with respect to the physical
property it represents.

2. Adaptability to practical measurement methods.

3. Of such a nature that the response of a measure-
ment system is primarily due to the characteristic
of interest.
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Single crystal silicon meets all of the above require-
ments to a far greater degree than any of the other
materials we considered. It is among the most homoge-
neous materials available so that chipping or abrasion
in use cause equal percentages of loss of mass and
volume (density constant). It has a highly stable surface
in that the oxide film is formed in a minute or so— there-
after changes occur at a rate estimated to be such that
the gross density of the crystal varies by about (worst
case) /10 ppm/year [9]. Its oxide has a density very
nearly equal to that of the parent material. It has
sufficient electrical conductivity so that, with care,
electrostatic charges do not interfere with weighing.
Its temperature coeflicient of expansion is only 2.5
ppm/°C (linear). It is inert in most liquids. It is easily
fabricated into desirable shapes and sizes. There are
many commercial sources of supply at moderate cost.
Inexpensive lightly doped transistor grades are quite
adequate in this application. The pieces of silicon used
in our working standard were cut from a reject boule
given to us by the Fairchild Semiconductor Company.

2.2. Sizes of Crystals

Our working density standard is made up of four
silicon crystals cut from a 2Y2-in diam boule in slices
about 1-in thick. They were ground down to about 205 g
each and then trimmed to about 200 g by HF etching
which exposed the parent crystal lattice surface with
work damage removed.

2.3. Mass Measurements

Our measurements required knowledge of the mass
of three groups of objects:

1. The steel balls

2. The silicon crystals

3. The built-in weights from our direct-reading
balance.

The mass of the balls and crystals were determined
in conventional “4-1" weighing series 2 commencing
with our national standard of mass to which BIPM
had assigned a value. The balance weights were re-
moved from the balance and were worked down from
the national standard in weighing series especially
designed for the purpose. Uncertainty in the mass of
the balls was about 64 u-grams, in the crystals about
45 p-grams, and about 12 w-grams per hundred grams
for the balance weights.

2.4. Verification of Volumes
2.4.1. Objects of Perfect Geometry

While it would have been possible within the
present day state-of-the-art to fabricate our crystals
into perfect geometric forms and calculate their

2 Designs involving measurements of the n(n — 1)/2 distinct differences among n objects
are referred to in this paper as “n — 1" designs.
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volumes from linear measurements, this would have
been prohibitively costly. As pointed out in the
introduction, we intend to continue our program of
mass and volume measurements on our crystals for
an indefinite period. Under these circumstances, if a
crystal became chipped, its geometric perfection would
be destroyed and volumetric surveillance would
necessarily have to stop. The fabrication of any geo-
metrically perfect object is a major undertaking—it
was a real problem for NPL during their mercury
work, BIPM during their work on water and for Hart
and Morgan [10] on silicon.

We were fortunate to discover that nearly perfect
spheres of 52100 steel [11] were available from at least
two companies supplying the needs of groups working
in inertial navigation. These spheres were 6.35 cm in
diameter. Our spherical profile instruments could not
detect lobing down to about 1 ppm of diameter.
Daniel P. Johnson, NBS, has demonstrated (see
companion paper in this issue at NBS J. Res.) that the
true volumes of such spheres differ insignificantly
from the volumes calculated on the basis of the true
average diameter. We attempt to obtain a close
approximation to this true average diameter by
making ‘“‘many” diametric measurements.

We initially obtained four balls, A, B, C, and D.
When the experiment was in progress it became evi-
dent that six balls were desirable. Rather than delay
the experiment while awaiting two additional balls
we used balls A and B a second time in another
density determination. In this second determination
in which balls A and B were employed, we have
referred to them as balls E and F.

Hereafter, in this report, we will refer to six balls,
A, B, C, D, E, and F, although, in fact, there are only
four. This is justified in section 2.6.

2.4.2. Diametric Measurements

The conventional method of measuring spherical
diameters is by comparison with stacks of gage blocks
in mechanical contacting devices. This involves
deformation errors which are directly additive with
gage block and ringing film errors. A most careful
search of the literature did not disclose a convenient
noncontacting interferometer configuration for this
task.

Our interferometer specialist, J. B. Saunders, was
persuaded to delay his retirement until he had devel-
oped such an instrument. In less than 1 year he
presented us with a laboratory device. This configura-
tion is given in detail elsewhere [8], but it will be
briefly described below.

2.4.2.1. The Interferometer Configuration

This instrument is an etalon device whose major
components are laid out as illustrated in figure 2.
Laser light enters face 1 of a conventional beam-splitter
prism where it is split into two beams, L. and R, leaving
the prism through faces 2 and 3 respectively. These
two beams are directed by mirrors into the opposite



LEFT RIGHT
ETALON ETALON
PLATE PLATE
FIGURE 2. A schmetic diagram of principal members of the Saunders

ball and cylinder interferometer

ends of an etalon, the . beam striking the left etalon
plate normally and the R beam striking the right plate.
A ball is placed in the etalon and oriented so that the
two beams are directed toward the center of the ball.
The L. beam and the R beam are used one at a time,
the undesired beam being masked off by a screen
near the prism. With the R beam masked, the [. beam
strikes the left etalon face which reflects part of the
licht back toward the prism. The balance of light passes
through the left etalon plate and strikes the spherical
ball surface, which reflects it back toward the prism.
These two reflected beams interfere with one another
in a bull’s-eye pattern (since one beam is divergent)
which is photographed by a camera placed opposite
face 4 of the prism. When this photo has been taken,
the operator masks off the L. beam and photographs
the pattern caused by interference between R beam
licht reflected from the right etalon plate and the right
side of the ball. This is a fast operation using Y15
second exposures on 35 mm film. For high contrast
interferograms, the two interfering beams should be
of about equal intensity. With one reflected beam com-
ing from a quartz surface and the other from a highly
polished steel surface, this requirement is not met.
Saunders overcame this difficulty by backing the
camera away from the prism. The (approximately
collimated) beam of low intensity reflected from the
quartz etalon plate was about constant in intensity
regardless of the camera position, however, the
(divergent) beam of high intensity reflected from the
highly polished steel spherical surface became

525-013 O - 74 - 2
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attenuated (due to divergence) as the distance between
the prism and camera increased. The photographs
were made with the film placed in the plane of equal
intensity, so the interferograms were of extremely
high contrast. The two interferograms are associated
with distances d; and di on the sketch. It is obvious
that if E is the etalon length, the ball diameter, D, is
given by

D=E—'d|"—dR.

2.4.2.2. The Etalon-Ball Assembly

The etalon consists of two quartz flats about 1-cm
thick separated by an internal distance of 68 mm
(millimeters). The spheres are a maximum of about 63
mm in diameter so they are easily inserted and re-
moved from the etalon. The two flats are held rigidly
by two quartz plates, above and below, by epoxy
cement. Each plate has a 7-cm hole through the center.
The hole through the upper plate allows various
balls to be inserted in the etalon, and the rotating
ball holder comes up from below through the hole in
the lower plate.

The ball rests on three rollers arranged so that it
may be rotated about two axes 90° apart by remote
controls. This makes it possible to measure the diam-
eter through any set of latitudes and longitudes on the
ball surface. In practice we made measurements on
10 diameters (20 photos) normal to the faces of an
inscribed duodecahedron, and gave each measured
diameter equal weight in the calculation of the average.

2.4.2.3. Interferometer Temperature Measurements

Due to the small size of the temperature coefhicients
involved, temperature measurements of adequate
accuracy are easily attainable during etalon measure-
ment tests. Two such coefhicients are of importance —
the temperature coefficient of wavelength, +1 ppm/°C,
and the temperature coefhcient of expansion of the
etalon, about +.5 ppm/°C. Since these coeflicients
have the same algebraic sign, they are opposed in
their effect on the etalon measurement, adding to
about —0.5 ppm/°C to the effective etalon length.

On the other hand, the temperature coefhicient of
expansion of the 52100 steel balls is in excess of 12
ppm/°C (which amounts to 36 ppm/°C in volume), so
that ball temperatures must be measured to the best
possible accuracy.

The etalon assembly, described in the previous
section, is housed in a double wall chamber with
thermostat water circulating in the walls, base, and
cover. There are four thermal leaks in this isothermal
shield. We have 2 windows about 2 ¢m in diameter in
the walls to permit entrance of the two measuring
licht beams. The ball rotation control column enters
through a 5-cm diameter hole in the floor, and the
measuring thermocouple penetrates the shield
through a 2-cm diameter hole in the cover. We initially
hoped that the thermostat shield would be strong
enough to define the temperatures of the steel ball
and etalon to alevel less than 0.01 °C so that a tempera-
ture measurement on the thermostat liquid would
satisfy all requirements. However, in developmental



experiments, we found that the difference between the
ball temperature and the thermostat water varied
randomly over a range of about = 0.02 °C at periods of
1 to 3 minutes.

This required that we measure the ball temperature
directly. We constructed a measuring thermocouple in
the form of a copper-constantan thermopile with six
pairs of junctions. The six reference junctions were
soaked in a temperature well which was monitored by
a platinum resistance thermometer. Each of the six
measuring junctions entered the interferometer
chamber through the hole in the top and were held in
physical contact with the steel ball by the springiness
of the wire leads. Each measuring junction was covered
by a thin layer of epoxy to prevent their electrical
short-circuiting through the ball. Both the lightness
of the physical contact between the ball and the
measuring junctions and the epoxy coating mitigated
against good thermal contact between them.

The indication of a potentiometer-thermocouple
combination is a function of the difference in tempera-
ture between the junctions of the thermocouple. To
make meaningful measurements one must make every
effort to assure that the thermal contact between the
measuring junction and the object of interest is such
that the temperature of the junction is equal to the
temperature of the object of interest. Failing this, an
evaluation must be made of the difference in tempera-
ture if such difference exists.

To calibrate a temperature measuring system of this
type requires two experiments:

1. A determination of the relationship between the
potentiometer output and the difference between
the temperatures of the opposite thermocouple
junctions.

. A determination of the difference in temperature
between the measuring junctions of the thermo-
couple and that of the object of interest as a
function of whatever perturbing influence causes
this difference to depart from zero.

The data from the first experiment, table 1, showed
that the potentiometer output (in mominal millivolts)
was a linear function of the difference in temperature
between the opposite junctions. A line of the form

AT=a (emf)+ 3 was fitted to the data to obtain
a=4.12069 °C/mv (std. dev.= 0.00589)
B=0.000585 °C (std. dev.=0.00149).

During this experiment, the reference junction was
kept in the temperature well employed during the ball
diameter tests, and the measuring junctions were
deeply immersed in a liquid bath. Platinum resistance
thermometers monitored each temperature, and triple
point of water measurements by these two ther-

TABLE 1

Temperature Temperature Potentiometer

Date—time of of AT observation

bath reference well emf

12-15-72 0845 20.053 19.944 0.109 0.026

1230 20.012 19.947 .065 .016

12-18-72 0840 19.806 19.949 (=) .143 (=) .036

1630 20.082 19.819 .263 .066

12-19-72 0835 20.090 19.672 418 .102

0930 20.089 19.670 .419 .103

1105 20.096 19.668 .428 .104

1520 20.093 19.674 419 101

12-20-72 0830 19.467 19.713 (=) .246 (=) .061
0910 19.460 19.714 (=) .254 (=) .0625

1100 21.366 19.720 1.646 .398

1335 21.366 19.734 1.632 .396

1530 21.899 19.742 2.157 .523

12-21-72 0855 21.824 19.756 2.068 .502

This data was taken with good thermal contact between the calibrating ambients and the two ends of the thermocouple. The reference end
was in the temperature well used during measurements, and the working junctions were in a thermostat bath. Both the bath and well were
monitored by platinum resistance thermometers. Triple-point of water measurement histories on the two thermometers indicate that maximum

errors in observed values of AT are no greater than 0.0014 °C.
This data fits a straight line of the form

AT=a(EMF) +
a=4.120693

where

(standard deviation=0.00589)

B=0.000585048 (standard deviation=0.00149).
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mometers indicated that the temperature span in the
thermocouple calibration experiment was defined to
no worse than 0.001 °C.

Having obtained a good measure of the potentiome-
ter output as a function of the difference between
junction temperatures, we turned our attention to
obtaining a measure of the difference between the
true ball temperature and the temperature of the
measuring junction of the thermocouple. This second
experiment was performed on a ball and thermo-
couple nominally identical to those used in the ball
diameter measuring tests. In this experiment the
reference junctions of the thermocouple were ce-
mented to the ball surface with several centimeters
of lead wire held against this surface by insulating
tape—the intent was to insure that the reference junc-
tion was in excellent thermal contact with the ball so
that the junction temperature was equal to the ball
temperature. The thermocouple wires were led away
from the reference junction and passed through the
interferometer wall (into the room) through one of the
windows in the side of the thermostat chamber. The
measuring junctions of this thermocouple were rein-
serted into the interferometer through the opening
in the top cover and held in light contact with the ball
by the springiness of the lead wires in exactly the
same manner as the measuring junctions of the
thermocouple used in ball diameter tests. Assuming
that there were negligible thermal gradients in the
steel ball and that the reference junction was in ade-
quate thermal contact with the ball surface, we con-
cluded that the output of this thermocouple indicated
the difference between the true temperature of the
ball and that of the measuring junction.

The test showed that the temperature of the
measuring junction was higher than the ball tempera-
ture when the room temperature was higher and vice
versa. The data, table 2 and figure 3, were fitted to the
equation

Z=A,q*+Aiq+ A,
where

A,=8.718 X 10—
A;=1.652 X102
Ap=3.038 X19-3

q="The difference in temperature between the room
temperature and the ball temperature

Z =the difference in temperature between the ball
and the measuring junction.
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TABLE 2

AT indicated

by Room Thermostat

Date—time thermocouple | temperature | temperature
11- 2-72 0845| —0.025°C 19.50 °C 21.00
11- 3-72 1155 +.022 19.50 18.40
11- 6-72 0820 +.009 19.49 19.39
11- 7-72 1320 —.025 19.40 21.40
11- 8-72 1315 —.044 19.50 22.81
11- 9-72 1621 .000 19.50 19.63
11-10-72 1100 +.025 20.71 19.68
11-13-72 1500 +.028 20.73 19.40
11-14-72 0836 +.019 20.80 19.70
11-15-72 0834 —.019 20.80 22.10
11-16-72 0814 —.016 20.8 22.1
11-17-72 1534 +.047 20.8 18.41
11-20-72 0840 =203 20.88 23.25
11-21-72 +.050 20.77 18.21
11-24-72 1200 —.031 20.8 23825
11-27-72 0900 —.044 19.4 23.1

This data was taken with the reference junctions of the thermo-
couple held in good thermal contact with a dummy steel ball by
epoxy cement. The measuring junctions were in only moderate
thermal contact (simulating that which existed during the ball
diameter tests).

This data fits a curve of the form

Z :A3q2+A|q+Ao

where
Ao=3.038 263 X 10—
A, =1.652 534 X 10>
A,=8.718 282 + 10—+
Z = Error in thermocouple indication due to
(presumably) lead losses.
q = (Room Temp)—(Thermostat Temp).

During this experiment we used the temperature
of the water in the interferometer walls as the criterion
for judging true ball temperature. It was previously
pointed out that this was false to the extent of about
+0.02 °C but an error of this magnitude has negligible
effect on the coeflicients shown above.

We feel quite certain that the major perturbation
on the ball temperature indicated by the thermocouple
was heat flow in the thermocouple leads, but we do
not understand why there is a slicht quadratic bend in
our data, nor why our data does not pass through zero
(49=0). We believe that heat flow in the ball rotation
control column may cause nonlinear data. Failure of
the data to pass through the origin may indicate some
perturbing influence we have not found.

Ball temperatures reported during the interfero-
metric tests on their diameters were calculated as
follows:

1. The temperature span of the thermocouple was
calculated from A7'=4.12069 (emf)-+ 0.000585.
2. The value of AT, calculated thus, was algebraically
added to the PRT indication of the temperature
inside of the temperature well. This provided us
with the temperature of the measuring junction.
3. The difference between the room temperature
and the temperature of the measuring junction
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FIGURE 3. This is a plot of data taken during measurements on the errors in temper-

ature observations caused by heat

The horizontal axis is labelled ““‘Room temp. minus bal

Aow in the thermocouple leads.

| tem.”. The data is actually based on room temperature

minus thermostat temperature, however, as pointed out in the text, ball temperature and thermostat temperature
do not separate by more than about +.03 °C, so errors in the plot from this assumption are negligible. The dotted

line is only a visual estimate. The coefficients of the quac

was taken to be an adequate indication of ¢
(above), and the temperature of the measuring
junction was corrected by the factor

8.718 X 104 X g2+ 1.652 X 10-2 X g+ 3.038 X 10-3

We believe that the reported ball temperatures are
uncertain by no more than 0.009 °C.

2.4.2.4. Etalon Length Measurements

The detailed procedure for measuring the length
of the etalon is given in Saunder’s paper. It consists of
modifying the basic configuration of the instrument so
that interference occurs between beams of light
reflected from the two etalon surfaces. One beam
results from an internal reflection so that its phase is
shifted by 180°. Our fringe fractions are calculated
from measurements on rings of constructive inter-
ference and we assume that the phase shift in the
shifted beam is a retardation. Under this assumption,
the length of the etalon is given by

ANy —0.316

E= 5
where E is the etalon length, Ng the total fringe count,
integral plus fractional, and A the wavelength of the
laser light. The —0.316 in the numerator is the 180°
phase shift correction mentioned above (A=0.6328u).
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dratic fit are given in the text.

Our Lamb dip stabilized laser has been calibrated
three times as follows:

1970 0.632991408 pm
1971 632991409 pm
1972 632991411 pm

Our measurements were made between the second two
calibrations, and we assume that the vacuum wave-
length was 0.632991410u during ball measurements.

We made six measurements on our etalon length
at six different temperatures. The data is shown in
table 3 and figure 4. It was found to fit a straight
line of slope 0.036259u/ °C. From these tests we
calculate the temperature coefficient of linear expan-
sion to be 0.000 000 537, with a standard deviation of
0.000 000 016. The NBS group specializing in this
work estimated the coefficient of the quartz to be
0.000 000 540 (==.000 000 03).

2.4.2.5. Ball Diameter Measurements

As previously mentioned, the ball diameter, D,
is given by D=FE — d,; — dg, figure 2. The measurement
of £ was discussed in the previous section. We are
concerned here with the measurements of d; and
dg. It is well known that the phase of light reflected
from a steel surface is retarded with respect to light
reflected from an equidistant quartz surface. This
retardation has most recently been measured by
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Resume of raw data taken during Etalon measurements. Tests ET-5 and ET-6 at the
elevated temperature were made for use with the high temperature determination of
ball diameters and volumetric ratios in Determination E-F. Fringes were photographed
with the interfering licht beams travelling in both directions through the interferometer.

TABLE 3

If there is a systematic difference, depending upon light beam direction, it is below our

ability to measure it reliably. When all six observations on etalon length at the various
temperatures are fitted to a straight line, the slope of the line is such that the temperature
coefficient of linear expansion is 0.000 000 537. The six points fit the line to a correlation
coefhicient of 0.998.

Test number ET-1 ET-2 ET-3 ET-4 ET-5 ET-6
Test date 6-27-72 6-29-72 6-30-72 6-30-72 7-11-72 7-12-72
Parameters required for the Calculation of Temperature !
of test: 1
Room temperature 4C 20.88 19.40 19.40 \ 19.40 21.00 21.00
Potentiometer obs’n emf 0.0412 0.0293 0.2955 0.2974 0.5490 0.5940
Plat. res. thermometer HC 20.541 19.171 19.181 19.186 20.560 20.652
Parameters required for the calculation of effective [
wavelength: }
Vacuum wavelength “ .632991410 .632991410 632991410 | .632991410 632991410 632991410
Cale. temp. of test qC 20.706 19.287 20.412 20.414 22.847 23.128
Barometric pressure mm-Hg 748.66 745.26 743.66 743.06 757.61 756.36
Relative humidity % 39.3 48.5 47.5 46.9 38.3 42.5
Effective wavelength (=\) ©w 632822643 632822616 632823649 632823782 1632821898 632822377
Observed fringe fractions:
left-to-right Illegible .561 .366 2292 .216 .076
right-to-left Illegible .560 .343 .307 .185 .078
left-to-right .679 541 .341 .296 .202 .090
right-to-left .701 .551 .338 .280 .201 .074
Total fringe count (=N) 213240.690 213240.553 213240.347 213240.293 213241.201 213241.079
Etalon length at temperature of the test
= ((NX\)—0.316)/2 ® | 67471.610 67471.564 67471.609 67471.606 67471.692 67471.705
Average values used in ball diameter measurements Determination A-B Determination C-D Determination E-F
Etalon length “n 67471.5870 67471.6075 67371.6985
Temperature e 19.996 20.413 22.987
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FIGURE 4. This is a plot of the measurements made on the etalon at various
temperatures.

Raw data are presented in table 3 from the data presented here the temperature coefficient of linear expansion

is indicated to be 0.000 000 537.

Bennet [12] and we have used her value of 22° in
our calculations. Inasmuch as we assume the 180°
phase shift from a quartz reflector to be a retardation,
we must for consistency assume the phase shift from a
steel surface to be 202° (180°+22°) retardation.
This is 0.355 um in the case of light whose wavelength
is 0.6328um.

As pointed out previously we make two interference
photographs, one associated with di, the other with

r. Then

_ (m+L)\—0.355

d :

_ (na+R)\—0.355

dr 5

where n; and n. are the integral orders in the two
interferograms and L and R the fractional orders.
Adding the above two equations and letting n;+n>=Npg
we get

_ (Ny+L+R) A—0.710
2

dl‘ + dR

We have made four diametric measurements on
each of our six balls. Each measurement is the average
of 10 diameters (pairs of interferograms) taken uni-
formly over the spherical surface. The data are shown
in table 4. The values of L, R and L+ R are shown.
The sum, di,+ dg, is the mechanical path difference
(M.P.D.) and average values at average temperatures
are shown in the caption. The temperatures in the
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four measurements are averaged as are the four final
calculated diameters for use in calculating coef. of
expansion and the average values are shown in the
caption. These four diameters at various temperatures
are reduced to values at 20 °C to provide a criterion
for estimating the interferometric precision. The justifi-
cation for the value of the temperature coefficient of
linear expansion used in this reduction is given in the
following section.

From the average diameter at 20 °C the volume of
the ball at 20 °C is calculated. These two average
values are also given in the caption to table 4.

2.4.2.6. The Temperature Coefficients of Linear Expansion of the Balls

In its present form our ball interferometer must be
readjusted whenever its temperature is changed more
than a few tenths of a degree. For this reason, it is
not practical to insert a ball and vary the temperature
to get data for a temperature-diameter slope. We have
tried this, and the calculated slopes are unrealistically
high.

Our interferometer experiment provides us with a
value of M.P.D., that is, the difference between the
length of the etalon and the diameter of the ball at
the temperature of the test. An acceptable estimate
of the coefficient can be obtained by dividing the
diameter-temperature slope (Adia/Atemp) by the
average diameter of the ball over this range, 6.3501
cm. The slope may be calculated from the relationship

(MPD @ ¢,) — (MPD @) + (expansion of etalon)
to — 1y




€¢

TABLE 4a.

Data reduction is based upon an assumed etalon length of 67471.5870 microns at
19.996 °C based upon the average values obtained in Etalon tests ET—1 and ET—2. The
temperature coefficient of linear expansion of the etalon is assumed to be 0.000 000 537

Average test temperature =
Averaged measured diameter =

Resume of raw data taken during interferometric tests on Ball A

20.2375 °C
63500.2966

Averaged measured MPD = 3971.2991 u

and of the steel ball, 0.000 012 272. The values of the diameter of the ball at 20 °C repro-
duce in the four tests to a standard deviation of the mean of 0.0070 microns. Average
Values at 20 °C: Dia 6.350 011 16 cm; Vol. 134.067 062 cm?

Date of test

2-17-72 2-28-72 3-3-72 3-6-72
1st .288 .286 .292
Potentiometer Indication of thermocouple output (milli- 2nd .288 .287 .292
volts nominal) 3rd .288 .286 .292
4th Avg. | .288 Avg. |.286 Avg. |.291 Avg.
5th .2628 | .287 .2878 | .285 .2860 | .291 .2916
Room temperature °C 19.32 19.25 19.30 19.40
Thermocouple span C 1.084 1.187 1.179 1.202
Reference temperature well— PRT °C 19.182 19.017 19.048 19.006
Correction for lead losses {C .012 .012 .011 .010
Temperature of ball diameter test °C 20.278 20.216 20.238 20.218
Barometric pressure °C 748.66 750.01 742.19 755.86
Relative humidity mm-Hg 21.4 252 33.3 14.7
Effective wavelength (A) m .6328 22277 .6328 21958 .6328 23789 .6328 20572
R = Right fraction L = Left fraction IL, R ILARIR 1L R IR IL, R ILar IR I R ILap IR
1st | .872 .238 110 .370 .984 .354 .795 .422 217 .364 921 .285
2nd | .514 .639 .153 .649 .634 .283 .293 .783 .076 .192 .038 .230
3rd | .893 156 .049 .632 .631 .263 .491 .535 .026 .923 194 117
4th | .528 .563 .091 .769 .564 5333 313 .803 116 197 .053 .250
Fringe fractions calculated from measurements made on 5th | .694 453 .147 477 .841 .318 .192 .054 .246 .868 .363 .231
interferometer negatives (constructive interference) 6th 425 .668 .093 .046 276 .322 .103 .068 171 972 .360 .352
7th | 414 .700 114 .286 .014 .300 176 .888 .064 144 110 .254
8th .855 .307 .162 .445 .823 .268 .681 411 .092 .036 .148 .184
9th | .395 .738 33 . . . 211 .894 .105 915 .318 5233
10th | 672 .436 .108 .351 707 .058 .163 .219 .382
Average 116 .305 117 .250
Total fringe count (V) 12552.116 12552.305 12552.117 12552.250
(N X \)—0.710)/2= MPD n 3971.2743 3971.3321 3971.2841 3971.3060
Etalon length at test temperature n 67471.5972 67471.5950 67471.5957 67471.5950
Ball diameter at test temperature m 63500.3229 63500.2629 63500.3116 63500.2890
Ball diameter at 20 °C n 63500.1063 63500.0946 63500.1262 63500.1191




TABLE 4b. Resume of raw data taken during interferometric tests on Ball B

Average test temperature =20.2275 °C
Averaged measured diameter =63500.2614 u
Averaged Measured MPD  =3971.3340 n

Data reduction is based upon an assumed etalon length of 67471.5870 microns at

and of the steel ball, 0.000012272. The values of the diameter of the ball at 20 °C repro-
19.996 °C based upon the average values obtained in Etalon tests ET—1 and ET—2. The

duce in the four tests to a standard deviation of the mean of 0.0040 microns. Average

temperature coefficient of linear expansion of the etalon is assumed to be 0.000 000 537

Values: Dia @ 20 °C=6.350 0084 cm Vol. @ 20 °C=134.066 888 cm?*

Date of test
2-18-72 2-29-72 3-7-72 3-8-72
Potentiometer indication of thermocouple output (milli- 1st 274 .293 .290
volts nominal) 2nd 274 .293 .291
3rd .273 .294 .290
4th Avg. | .274 Avg. |.293 Avg. | .289 Avg.
5th .252 2737 |. 2932 | . .2901
Room temperature °C 19.30 19.30 19.30 19.30
Thermocouple span G 1.042 1.128 1.209 1.196
Reference temperature well - PRT 4 19.194 19.095 18.995 19.006
Correction for lead losses e .012 .011 .011 .011
Temperature of ball diameter test =C 20.248 20.234 20.215 20.213
Barometric pressure mm-Hg 749.56 748.46 751.74 747.09
Relative humidity % 25.5 30.2 20.1 24.5
Effective wavelength (A) " .6328 22081 .6328 22350 .6328 21535 .6328 22612
R=Right fraction L= Left fraction L, R ILarii I R IR IL, R L+R L R L+R
1st 711 .705 416 B .186 .343 .216 174 .390 .645 .780 .425
2nd | .047 .254 .301 .628 .563 191 676 .697 B33 .361 .031 .392
3rd | .443 .808 8251 .934 .316 .250 .128 .039 167 .500 .803 .303
Fringe fractions calculated from Measurements made on 4th | .113 .136 .249 .679 .624 .303 .342 .940 .282 .495 .782 277
interferometer negatives (constructive interference) 5th 393 .852 .205 .043 237 .280 .468 .861 .329 .902 .428 .330
6th | .034 .251 .285 .658 .682 .340 .060 .201 .261 .199 132 .331
7th | 112 123 8235 .264 .995 .259 .058 .281 .339 .557 905 .462
8th | ,798 851 2315 470 778 .248 .293 .091 .384 .622 .826 .448
9th | 975 .297 272 .439 .793 8232 .267 .054 321 $532 717 .249
10th .946 .282 .228 916 .459 375 .362 .948 310 025] .810 .335
Average .276 .282 .316 359
Total fringe count (V) 12552.276 12552.282 12552.316 12552.355
((NXX)—0.710)/2= MPD n 3971.3237 3971.3273 3971.3329 3971.3520
Etalon length at test temperature " 67471.5961 67471.5956 67471.5949 67471.5948
Ball diameter at test temperature I 63500.2724 63500.2683 63500.2620 63500.2428
Ball diameter at 20 °C 7 63500.0792 63500.0860 63500.0945 63500.0769
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TABLE 4ec.

Data reduction is based upon an assumed etalon length of 67471.6075 microns at
20.413 °C based upon the average values obtained in Etalon tests ET-3 and ET-4.
temperature coefficient of linear expansion of the etalon is assumed to be 0.000 000 537

Resume of raw data taken during interferometric tests on Ball C

Average test temperature =
Averaged measured diameter=63500.1918
Averaged Measured MPD =

The

20.2653 °C

3971.4104 p

duce in the four tests to a standard

Values: Dia @ 20 °C=6.349 9985 cm Vol @ 20 °C=134.066 261 cm?

and of the steel ball, 0.0000 12272. The values of the diameter of the ball at 20 °C repro-
deviation of the mean of 00060 micron. Average

Date of test

3-13-72 3-15-72 3-17-72 3-20-72
Potentiometer indication of thermocouple output (milli- Ist | -289 .286 .287 .285
volts nominal) 2nd | -289 .285 .287 .286
3rd | .288 .286 .287 .285
4th |.288 Avg. | .285 Avg. |.287 Avg. |.285 Avg.
5th | . 2885 . 2855011 2870 5 $2852
Room temperature °C 19.30 19.32 19.20 19.30
Thermocouple span °C 1.189 Lt/ 1.183 1.176
Reference temperature well— PRT eE 19.065 19.073 19.066 19.084
Correction for lead losses °C .012 .011 .013 .012
Temperature of ball diameter test ELRY °C 20.266 20.261 20.262 20.272
Barometric pressure mm-Hg 755.14 749.04 732.68 758.36
Relative humidity % 33.4 28.3 35.4 21.3
Effective wavelength () n .6328 208 78 .6328 222 23 .6328 259 67 .6328 200 79
R = Right fraction L= Left fraction L R IL==18 IL; R ILar 7 IL, R LR 1L, R TEHR
Ist | .608 .942 .550 116 .427 .543 .337 157 .534 .393 .163 .556
2nd | .715 .942 .657 402 .095 497 967 .692 .659 .103 2993 .656
3rd | .564 .007 Sl .882 715 .597 .483 .919 .402 .380 .262 642
Fringe fractions calculated from measurements made on 4th .418 .965 .383 .440 .103 .543 132 .804 .536 .866 .928 .794
interferometer negatives (constructive interference) 5th 299 175 .397 017 444 461 146 .328 474 1901 673 .574
6th | .998 504 .502 .890 654 .544 .796 .848 644 .006 .494 .500
7th | .748 .850 .598 1353 .202 2555 .655 .743 .398 .587 .996 .583
8th | .965 .681 .646 .569 833 .702 794 .663 .457 .380 .054 .434
9th | .332 .089 421 .812 .788 .590 171 .319 .490 .353 124 477
10th | .031 .434 .465 .994 20 715 .526 .025 .551 2635 .899 .534
Average .519 ESiS 515 505
Total fringe count (V) 12552.519 1255625575 12552.515 12552!575
((NX\)—0.710)/2= MPD “ 3971.3930 3971.4192 3971.4237 3971.4058
Etalon length at test temperature % 67471.6022 67471.6020 67471.6020 67471.6024
Ball diameter at test temperature 0 63500.2092 63500.1828 63500.1783 63500.1967
Ball diameter at 20 °C n 63500.0019 63499.9795 63499.9741 63499.9848
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TABLE 4d. Resume of raw data taken during interferometric tests on Ball D

Average test temperature
Averaged measured diameter

Averaged Measured MPD

Data reduction is based upon an assumed etalon length 67471.6075 microns at 20.413 °C
based upon the average values obtained in Etalon tests ET—3 and ET—4. The temperature
coefficient of linear expansion of the etalon is assumed to be 0.000 000 537 and of the steel

20.2678 °C

63500.3969 1
3971.2054

ball, 0.0000 12272. The values of the diameter of the ball at 20 °C reproduced in the four
tests to a standard deviation of the mean of 0.004]1 micron. Average Values: Dia @

20 °C=6.350 018 8 cm Vol @ 20 °C=134.067 547 cm?

Date of test

3-14-72 3-16-72 3-21-72 3-22-72
Potentiometer indication of thermocouple output (milli- 1st |.287 .289 .287 .286
volts nominal) 2nd | .287 .289 287 .
3rd | .287 .290 .287
4th | 287 Avg. |.289 Avg. |.286 Avg. Avg.
S5th | .2870 .2893 | . .2867 .286
Room temperature € 19.32 19.30 19.30 19.30
Thermocouple span € 1.183 1.193 1.182 1.179
Reference temperature well— PRT “C 19.071 19.055 19.079 19.081
Correction for lead losses °C 012 012 012 012
Temperature of ball diameter test °C 20.266 20.260 20.273 20.272
Barometric pressure mm-Hg 750.28 744.16 756.01 737.16
Relative humidity % 32.4 29.7 31.9 38.7
Effective wavelength (A) Iz .6328 219 71 .6328 233 35 .6328 206 76 .6328 249 81
R=Right fraction L= Left fraction IL R EEER IL; R IEEHIR Ik, R ISR IL R L+R
Ist | .236 .768 .004 .799 .423 .222 .246 591 .837 .096 .652 .748
2nd | .765 .274 .039 .393 .562 .955 675 .207 .882 .463 .454 917
3rd | .430 .368 .798 .831 .083 914 .806 .142 .948 .011 .753 764
Fringe fractions calculated from measurements made on 4th | .012 .807 .819 -991 .070 .061 2935 2957 .892 .332 .456 .788
interferometer negatives (constructive interference) 5th | .703 .076 779 772 .017 .789 .140 .730 .870 .534 .406 .940
6th | .063 913 .976 .530 .285 .815 .900 .935 £835 .555 8253 .808
7th | .944 .874 .818 .746 .215 961 .675 .258 .933 N22 737 .859
8th | .890 .907 197 794 .178 972 .077 .016 .093 .587 8322 .909
oth | .371 664 .035 .194 .659 .853 .720 .100 .820 .881 .854 2735
10th | .355 .691 .046 .459 .306 .765 .962 .907 .869 .310 .386 .696
Average 911 931 .898 .816
Total Fringe Count (V) 12551.911 12551.931 12551.898 12551.816
((NX\)—0.710)/2= MPD i 3971.2075 3971.2224 3971.1953 3971.1964
Etalon length at test temperature I 67471.6022 67471.6020 67471.6024 67471.6024
Ball diameter at test temperature ® 63500.3947 63500.3796 63500.4071 63500.4060
Ball diameter at 20 °C I 63500.1874 63500.1770 63500.1944 63500.1941
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TABLE 4e.

Resume of raw data taken during interferometric tests on Ball E

Average test temperature
Averaged measured diameter
Averaged Measured MPD

Data reduction is based upon an assumed etalon length of 67471.6985 microns at
22.987 °C based upon the average values obtained in Etalon tests ET—5 and ET—6. The
temperature coefficient of linear expansion of the etalon is assumed to be 0.000 000 537

([ [

22.8835 °C

63502.3533
3969.3415 u

and of the steel ball, 0.000012272. The values of the diameter of the ball at 20 °C repro-
duce in the four tests to a standard deviation of the mean of 0.0054 microns. Average
Values: Dia @ 20 °C=6.350 010 6 cm Vol @ 20 °C=134.067 028 cm*

Date of test

5-3-72 5-8-72 5-11-72 5-11-72
Potentiometer indication of thermocouple output (milli- 1st | .614 .615 .598 .594
volts nominal) 2nd | .614 614 .599 .595
3rd | .615 .614 .599 .595
4th | .614 Avg.| .614 Avg. | .599 Avg. | .594 Avg.
5th | . .6142 6142 | . .5987 .5945
Room temperature (C 20.60 20.50 20.58 20.60
Thermocouple span “C 21532 2532 2.468 2.450
Reference temperature well—PRT T 20.379 20.361 20.341 20.351
Correction for lead losses hE .0630 .032 .029 .029
Temperature of ball diameter test 1 22.941 22,925 22.838 22.830
Barometric pressure mm-Hg 745.61 747.91 759.11 758.66
Relative humidity % 42.2 41.7 23.9 22.4
Effective wavelength (A) [ .6328 24672 .6328 24143 .6328 21449 .6328 21534
R=Right fraction L= Left fraction IL, R ILarli 1L R ILAm i L R L+R it R L+R
Ist | 505 .316 .821 .946 .992 .938 .989 N[I55 144 .230 .988 .218
2nd | .708 I .823 .992 .795 .787 .666 .520 .186 .544 .569 113
3rd | .064 .723 .787 .699 .193 .892 917 273 .190 .807 .348 155
Fringe fractions calculated from Measurements made on 4th | .225 .563 .788 .690 .239 1929 .825 .320 145 .982 116 .098
interferometer negatives (constructive interference) 5th | .954 .838 792 1131 .749 .880 414 .720 134 .178 1993 171
6th | .054 .752 .806 .614 .280 .894 .321 .859 .180 .935 .199 134
7th | .534 .200 134 .824 .106 .930 .650 .448 .098 .853 317 170
8th | .290 .451 .741 .758 172 .930 .653 .557 .210 .565 .566 131
9th | .874 .894 .768 .682 .209 .891 .868 .244 112 .359 .790 .149
10th | .246 .458 .704 .094 .782 .876 .290 .863 .153 .183 .982 .165
Average 776 .895 .156 150
Total fringe count (N) 12545.776 12545.895 12546.156 12546.150
((NX A)—0.710)/2= MPD “w 3969.2833 3969.3176 3969.3833 3969.3819
Etalon length at test temperature m 67471.6969 67471.6963 67471.6931 67471.6928
Bal] diameter at test tempera[ure 2 635024136 63502.3787 63502.3098 63502.3109
Ball diameter at 20°C “ 63500.1217 63500.0993 63500.0982 63500.1055




TABLE 4f. Resume of raw data taken during interferometric tests on Ball F

Average test temperature = 22.9153 °C
Averaged measured diameter=63502.3682
Averaged Measured MPD  =3969.3278 u

and of the steel ball, .0000 12272. The values of the diameter of the ball of 20 °C repro-
duce in the four tests to a standard deviation of the mean of 0.0064 microns. Average

Values: Dia @ 20 °C =6.350 0096 cm Vol @ 20 °C =134.066 966 cm?

Data reduction is based upon an assumed etalon length of 67471.6985 microns at
22.987 °C based upon the average values obtained in Etalon tests ET—5 and ET—6. The
temperature coefficient of linear expansion of the etalon is assumed to be .000 000 537

8¢

Date of test
o217 5210 5-4-72 5= 10=72
Potentiometer indication of thermocouple output (milli- 1st | .604 .604 .616 .596
volts nominal) 2nd | .604 .604 .616 .596
3rd | .605 .604 .616 .596
4th | .604 Avg. |.604 Avg. | .616 Avg. |.596 Avg.
5th | . .6042 6040 | . .6160 .5960
Room temperature °C 20.70 20.70 20.50 20.60
Thermocouple span 2E 2.490 2.489 2.539 2.456
Reference temperature well — PRT °C 20.421 20.421 20.369 20.357
Correction for lead losses °C .029 .029 .032 .029
Temperature of ball diameter test °C 22.940 22.939 22.940 22.842
Barometric pressure mm-Hg 748.21 748.11 746.98 754.06
Relative humidity % 42.3 41.6 36.5 32.0
Effective wavelength (A) m .6328 24089 .6328 24106 .6328 24321 6328 22643
R= Right fraction [.= Left fraction IL, R I.+R I R [L+R L R L+R I R [.+R
st 747 .183 1930 .609 224 .833 .595 337 927 477 N2 .249
2nd .139 g .866 .796 107 .903 .054 .848 1902 .482 744 .226
3rd 441 432 .873 .293 .521 814 465 .365 .830 077 .086 .163
Fringe fractions calculated from measurements made on 4th 285 527 812 401 475 876 969 951 920 663 523 186
interferometer negatives (constructive interference) S5th | 947 .853 800 535 223 758 .853 013 .866 201 980 181
6th .126 .579 .705 .280 .591 871 901 .006 .907 .632 .582 214
Tth 244 .47 791 379 .395 774 .130 A2l .851 .150 941 .091
8th .090 .866 .956 .560 .207 767 .689 A3 .862 .834 1409 .243
9th 658 .166 .824 1960 .964 .924 331 .490 .841 910 .189 .099
10th | 866 .011 .877 424 .388 812 .341 .388 .929 .002 102 104
Average .843 .833 .884 .176
Total fringe count (V) 12545.843 12545.833 12545.884 12546.176
((NXA)—0.710)/2=MPD " 3969.3008 3969.2978 3969.3153 3969.3971
Etalon length at test temperature " 67471.6968 67471.6968 67471.6968 67471.6933
Ball diameter at test temperature m 63502.3960 63502.3990 63502.3815 63502.2962
Ball diameter at 20°C m 63500.1050 63500.1086 63500.0904 63500.0814




where t; is the lower temperature and ¢ the higher.
We have measured the MPD of balls A and B at about
20.2 °C and (under the names E and F) at about 23
°C and presented the data in table 4. By this pro-
cedure we estimate the coefficient of A to be 0.000
012 220 and B to be 0.000 012 324.

The manufacturer believes the coefficients of the
balls (whatever their magnitude) to be about equal
because they were from the same metallurgical
stock, subjected to the same heat treatment and same
mechanical surface work. Accordingly, we have
averaged the above two values and applied this

average, 000 012 272 to all balls.

2.5. Hydrostatic Transfer of Volumetric Information
from the Spheres to the Crystals

Several years ago, BIPM circulated a one-kilogram
metal object among the major national metrology
laboratories for a density determination. The spread
of data among this very sophisticated group amounted
to about 14 ppm. Although part of this spread could
most certainly be ascribed to differences in density of
the water samples used, we have always believed
(without proof) that this was another demonstration
of the basic imprecision of the classical hydrostatic
weighing experiment. In spite of the shortcomings of
this experiment, nobody has suggested a more precise
procedure for routine density comparisons. Although
the thermal Cartesian Diver of Spaepen [13] and the
pressure Cartesian Diver of Bowman and Schoonover
[6] are about two orders more precise than ordinary
hydrostatic weighing, the complexity of such systems

immediately eliminates them from the ‘‘routine”
category.
The volumetric information contained in our

spheres was too dear to us to dissipate unnecessarily
in the imprecision of a classical hydrostatic transfer
experiment, so we had previously devoted a great deal
of effort to improving this precision. We have found it
expedient to modify both the hydrostatic system and
the experimental philosophy.

2.5.1. The Hydrostatic System

There are four components of the hydrostatic weigh-
ing system: (1) the suspension, (2) the liquid, (3) the
immersed pan loading assembly, and (4) the hydro-
static balance. Each component contributes to impre-
cision; but if choices are made with care, total
variability may be restricted to reasonable bounds.

2.5.1.1. The Hydrostatic Suspension

This is the member which delivers the load from
the immersed structure to the balance. Its most
critical component is the suspension wire which passes
through the air-liquid interface. Inasmuch as we have
already published [14] a procedure for reducing
variability from this source to a few micrograms it
will not be commented upon here.

2.5.1.2. The Hydrostatic Liquid

The intent of the hydrostatic weighing experiment
is accomplished by observing the buoyant force exerted

on the object of interest by the liquid. The liquid
exerts two independent effects on the precision of the
experiment. The greater its density, the greater is the
magnitude of the buoyant force exerted by the liquid,
and the easier it is to measure in the presence of many
small perturbing forces. The liquid we have chosen is
a fluorocarbon whose density (1.8g/cm?®) is almost
twice that of water so that precision is almost doubled.
This substance has been used in this service for many
years by atomic reactor experimenters and it has
proved to be an excellent choice.

One of the major perturbing forces associated with
the use of water arises from its large and variable
surface tension. The penetration wire minimizes most
of these effects when it is skillfully prepared. The
fluorocarbon we use has a surface tension only about
one fifth that of water (15 versus 75 dyn/cm) which
has the effect of improving wire performance even if
incorrectly or sloppily prepared.

An additional major advantage of this liquid is its
vast appetite for absorbing gas. This gives a great deal
of protection against variability associated with sur-
face bound tiny bubbles on immersed loads.

2.5.1.3. The Immersed Pan Loading Assembly — Redundancy

A time honored technique for minimizing random
variability in a process is to make “‘many” inde-
pendent observations.

In comparing two quantities the experimenter has
available only one comparison combination. In working
with three quantities he has only three combinations.
When he works with four quantities he has six com-
binations, and under these circumstances he has the
redundancy necessary to make a meaningful reduction
in random variability.

Figure 5 is a schematic sketch of our immersed pan
loading assembly, from which it is obvious that we

SUSPENSION WIRE

LIQUID SURFACE

PAIR OF SILICON DISCS
WAITING TO BE HYDROSTATICALLY
WEIGHED

PAN

-SUPPORT PEG FOR FLAT
SURFACE OBJECTS

— STEEL SPHERE WAITING TO BE
HYDROSTATICALLY WEIGHED

.]
L}\‘THIS COLUMN ROTATES AND SLIDES

VERTICALLY IN ORDER TO EXCHANGE
LOADS ON IMMERSED PAN

STEEL SPHERE RESTING IN CONCAVE CUP
OF IMMERSED PAN BEING WEIGHED

FIGURE 5. Immersed pan loading mechanism.
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are able to compare four different loads in a single
experiment. The sketch shows two of the loading
trays carrying two silicon crystals each, a third tray
carrying ball B and the fourth tray (which normally
carries ball A) empty, inasmuch as ball A is on the
immersed pan.

With the apparatus loaded as illustrated we may
compare the four loads (two balls and two pairs of
silicon crystals) in all six combinations. This com-
parison format is called a 4—1 series and is the format
used throughout this work. It should be noted that by
varying the combinations of loading that many differ-
ent 4—1 series may be conducted on the same two balls
and four crystals. We utilized the four combinations
shown below:

TRAY 1 TRAY 2 TRAY 3 TRAY 4
BALL A BALL B X2+ X3 X4+ X5
BALL A BALL B X2+ X4 X3+ X5
BALL A BALL B X2+ X5 X3+ X4
X2 X3 X4 X5

2.5.1.4. The Hydrostatic Balance and Its Calibration

Other factors being equal, the data spread among
independently measured densities decreases with
increasing sample size. In our 1967 paper on hydro-
static weighing in water, we demonstrated that a single-
pan, damped, direct-reading balance would provide
density values spreading by 3 ppm (worse case) for
10 cubic centimeter samples. This was significantly
better than our previous work using a free-swinging,
equal-arm balance. For this reason, and others men-
tioned in that paper, we abandoned the conventional
balance, and since that time, all critical density work
at NBS has been performed on single-pan, direct-
reading instruments.

In 1967 we recommended the single-pan direct-
reading balance as the best available instrument and,
to date, we have found no evidence to suggest a change
in this position. We have used two balances of this type
in the work reported here. In the earlier paper we
speculated upon the ideal hydrostatic balance (servo-
driven-to-null) and we have commenced development
of such a device. We feel confident that this balance
will improve the hydrostatic experiment by about an
order of magnitude. Until this device is complete we
shall continue use of the simple instrument.

In informal and unreported experiments on conventional free-
swinging equal-arm balances we found several modifications which
would improve their hydrostatic precision. The application of
strong vertical temperature gradients in the balance case as de-
scribed by Macurdy, NBS, [15] reduced random variability. The
application of external damping was even more effective. Reducing
sensitivity (by lowering the gravity knob) to the point where read-
ability and reproducibility were about equal actually improved the
latter. The use of a large-volume hydrostatic chamber appeared to
give higher precision data than small chambers.

We believe that the vertical oscillations ot an immersed load
suspended from a free-swinging balance are damped by the viscous
action of the liquid on the load. During this process, momentum is
transferred from the oscillating system to the liquid where it mani-

fests itself as turbulence. This turbulence results in faulty “turning
point” data. We believe that system damping should be such that
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momentum is removed completely from the hydrostatic system such
as is true for damping by air or magnetic eddy currents and the
heavier this damping, up to near critical, the better because the
quicker the oscillations are damped to zero, the less the turbulence
in the liquid.

We believe that by the judicious use of the techniques mentioned
above and perhaps some others, hydrostatic work on the free
swinging balance could be significantly improved. Considering the
relative ease of achieving ppm results with a direct-reading bal-
ance, it is questionable whether the required expenditure of effort
would be justified.

In the single-arm direct-reading damped balance,
the maximum vertical motion of the suspension is
about 3 millimeters, and the motion is quickly damped
externally to near zero. In a balance of this type,
built-in balance weights may be added to or removed
from the suspension by remote control dials which
cause only slight motion being induced in the bath.

Commercially available single-pan direct-reading
balances are intended for use in the air weighings
mode, and in such service they satisfy most weighing
requirements. When they are put to use in the hydro-
static mode it is necessary that the direct-reading
data be interpreted in a slightly different manner in
the data reduction process. The data are obtained from
the balance by means of two devices—the numbers
engraved on the weight changing dial(s) and the num-
bers projected on a screen from a highly magnified
view of a small reticle attached to the beam counter-
weight system.

1. SCREEN READINGS. The manufacturer of the
balance assigns mass designations to the screen read-
ings which are appropriate for use in the air weighing
mode. These designations are based upon assumptions
regarding the density of the objects to be weighed and
that the only screen-related force in the system is
associated with beam-angle moments. In the hydro-
static mode there must necessarily be a wire penetrat-
ing the liquid surface. The dip section of this wire (the
section which is sometimes immersed in the bath and
sometimes exposed to air) exerts two forces on the
suspension system—a constant force and also a force
which is directly proportional to the screen reading.
Although neither of these forces have to be evaluated
independently, as will be shown in the section follow-
ing, the screen-related force demands that we interpret
the screen readings merely as numbers indicating the
angle of the beam counterweight system. This inter-
pretation satisfies all requirements of the double
substitution force comparison solution given in the
next section.

2. THE DIAL READINGS. The numbers engraved on
the weight manipulation dials are intended for use in
direct-weighing in air of loads placed on the weighing
pan. In the air weighing situation they indicate (in
units of apparent mass versus brass [16]) the mass of
balance weights removed from the suspension. In the
calibration procedure it is necessary to determine the
true mass of weights actually loading the suspension
for each dial reading to make a true comparison be-
tween the forces associated with an immersed load
and those associated with the built-in balance weights
(in air). There are two methods of obtaining a calibra-
tion. The easiest is by weighing standard weights on



the pan of the balance. This was discussed in our 1967
paper. The other technique is to remove the weights
from the balance and calibrate them in the same
manner that one would use in the calibration of any
other standard weight.

A requirement of a direct-reading balance to be used
in hydrostatic work is that the major weights of the
balance have densities equal to a few parts in 10
Most manufacturers meet this requirement. We
verified by experiment that this requirement was
satisfied in the balances used in our work.

When the hydrostatic balance is to be used in the
most critical work, the built-in weights should be
calibrated in two steps:

1. All weights should be removed from the balance
and the total mass (of the summation) should be deter-
mined. Out of this test we obtain a value of the correc-
tion to the nominal value of the summation and an
estimate of the uncertainty in this value.

2. The balance weights should then be intercom-
pared in combinations which permit a calculation of
the fraction of the summation mass contained in each
individual balance weight.

2.5.2. Hydrostatic Weighing on a Direct-Reading Balance

Our objective in hydrostatically weighing an object
is to obtain a value of I, defined as

I=M—p.V

where M and V' are the mass and volume respectively
of the object and p, the density of the liquid.

For several years we have determined I from a
double substitution comparison between the (unknown)
force associated with the immersed load and the
(known) force associated with the built-in weights of a
single-arm direct-reading balance. The format which
we use in making this comparison consists of five
balance observations under various load conditions.
The entire comparison requires four minutes because,
we have found, results are most reproducible when
there is a one minute interval between observations.
The five load conditions are:

1.
2

With the immersed pan empty

With the immersed pan loaded by the object of
interest

3. With the sensitivity weight added (in air)

4. With the load removed from the immersed pan
5. With the sensitivity weight removed —the first
and fifth load conditions are the same.

Each observation requires the recording of two data
(1) the dial reading which indicates the combination
of the built-in balance weights which are in place and
loading the suspension, (2) the screen reading which
is taken as a number indicating the beam-counter-
weight angle with respect to some fixed reference. As
pointed out in the previous section, this is not the
interpretation placed on direct-reading balance data
in the ordinary weighing situation.
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In the first, fourth and fifth observations, taken
with the immersed pan empty, the dial readings will
be the same (D;=D,), and in the second and third,
with the immersed pan loaded (D;=D,). The five
screen readings, s; to ss, are usually different. The
balance data are therefore of the form

Du, S
Dl., S2
Dl,, S3
Do, Sa
Du., S5

In our 1967 paper [14] on hydrostatic weighing we
presented a detailed discussion of the linearity be-
tween the beam angle and changes in the total suspen-
sion force. We described how the linearity may be
evaluated in a simple experiment and how to correct
observed data if linearity was judged to be inadequate.
Since the date of that paper, we have evaluated
several single-arm, direct-reading balances, and we
have not found any to be inadequately linear for
hydrostatic work.

Subject to the following assumptions, we may write
equations associated with suspension forces under
each of the five load conditions listed above:

1. That the beam angle, as defined by screen read-
ings, is a linear indicator of the difference between
the total suspension force and a fixed reference force
associated with the counter-weight system.

2. That prior calibration effort has provided us with
knowledge of the true mass and density of each of the
three balance weights involved in the double-substitu-
tion comparison. These three weights are:

a. Do—the combination of balance weights loading
the suspension when the dial reads D,.

D, —the combination of balance weights loading
the suspension when the dial reads D;.
S —the sensitivity weight.

b.
c.

3. That the density, pgs, of these three weights is
equal.

4. That the following parameters are constant during
the four minute observation interval:

a. The air density, p4, in the balance case.
b. The bath density, p.
c. The volume and density of the meniscus.

5. That there are no perturbing turbulent forces.

6. That the drift in the system is linear with time.

The five observation equations to be written consist
of various combinations of forces. With the exception
of the unknown force exerted by the immersed load,
Ig (where g is the acceleration due to gravity at the
immersed pan level) these forces fall into three classes:

1. Forces which are constant over the observation
interval. These forces need not be evaluated because
they are eliminated during the solution of the system



of observation equations. They may be added directly
and the value of C assigned to their sum. These forces
are:

The force exerted by the portion of the suspension
which is never immersed in the bath.

The forces exerted by the portion of the suspen-
sion which is always immersed.

The constant component of force exerted by the
dip section of the suspension wire.

The reference force.

The meniscus force.

a.
b.

C.

d.

e.

2. Forces which are linearily related to the beam
angle (and hence the screen reading). There are two
such forces:

a. K;si, where K, is the proportionality constant
between the screen reading, s;, and the difference
between the constant reference force and the total
suspension force.

b. K.si, where K, is the proportionality constant
between the screen reading, s;, and the com-
ponent of force exerted by the dip section of the
suspension wire which is screen related.

These two forces need not be previously evaluated
because they are added together as

KS,:K185+KzSi

and are evaluated (as a sum) during the solution of the
system of observation equations.

3. The forces which are exerted by the three balance
weights involved in the comparison. These three forces
are:

Fpo=Mpo |1 = 81
L PB

Fp.=Mp, — 81
L PB

Fs=Mg _E—‘gl
L PB

where g, is the acceleration due to gravity at the
vertical level in the balance case in which the balance
weights are loaded on the suspension.

The five observation equations and a method of
solving them for the value of I are as follows:

1. C+F1)o =S1K
2. C+Fp,+1g =s,K
3. C+Fp,+Ig+Fs=s3K
4. C+Fpo+Fs =s4K
5. C+Fno =55K

Subtracting eq (1) from eq (2) gives us a value of Ig in
terms of K. Subtracting eq (2) from eq (3) provides us

32

with a value of K so that we may write our first value
of Ig from the double substitution force comparison

S2 — 81]

S3— 82 '

A similar manipulation of eqs (3), (4), and (5) gives us
the second value

I’ngno—Fm,""Fsl:

-S

4
S$4— S5

§3 7 84

I"g=Fpo— Fl)l+FS[

Letting
S2— 381
e
_S37 82 847 S5

2

we may write the average value of Ig which is used
during data reduction

I'g+1'"g
2

Replacing the right member force terms by their cali-
bration data gives us the numerical value of I which
the experiment is designed to provide

]

PB

S

An adequate value of g; is obtained from geometric
measurements on the system and assumed values of
g and the vertical gradient in g. As pointed out in the
previous section, there are two methods of calibrating
a direct-reading balance. If the weights are removed
from the balance for calibration, g; is the value of the
acceleration due to gravity at the level in the suspen-
sion where the weights actually load it. On the other
hand, if the weights are calibrated in place by weigh-
ing standard weights on the load pan of the balance,
the effective level at which g; should be calculated is
the level of the load pan in the weighing chamber of
the balance.

In the foregoing solution for I, we initially obtain
two values of Ig, namely I'g and I"g. These two values
should be very nearly equal. A wide separation of the
two values probably indicates failure to meet the six
assumptions upon which the solution depends. We
believe the I'¢—I"g may be an excellent quality
control signal, but we have not yet had the long ex-
perience with our system which is necessary to eval-
uate it as such.

Ig= =Fpo—Fp,+ Fss.

-

I=[Mpo—Mp, + Mgss] [1— 7

2.5.3. Hydrostatic Weighing Format —The 4-1 Ratio Series

The equation
IA = MA - PLVA

where the subscript A indicates that object A is under
test, is classically solved for ¥, based upon measured
values of I, and M, and a tabulated value of p;.



This is not our intent. By use of the immersed pan
loading assembly, 2.5.1.3, we remove object A from
the immersed pan and replace it with object B. This
results in violent turbulence in the bath, so we wait
10 minutes for the bath motion to subside, after which
we perform the 5 observations required to obtain a
value of

Iy=Mg—piVs

These two equations may be combined to provide
us with a value of the volumetric ratio of object A to
object B

Va_Ma—ly
VB MB_IB

Combining the hydrostatically measured values of
I, and Iy with previously determined values of M,
and My yields a numerical value of the volumetric
ratio at the temperature of the experiment. The validity
of the ratio is primarily limited by the nonlinear drift
in the system. The linear component is accounted for
by performing the hydrostatic weighings in a time-
symmetrical A—B—A format.

Inasmluch as our immersed pan loading assembly
will manipulate 4 objects, we may compare them in six
combinations. This requires 15 hydrostatic weighings
taken if the following order:

A-B-A-C-A-D-A-B-C-B-D-B-C-D-C.

Thi¢# is not a perfectly balanced series because
object D is weighed only three times while all other
objects are weighed four times; however it is adequate
to define the six ratios in A=B—A type formats.

A 4—1 series ordinarily provides us with six differ-
ences. In the case at hand we obtain six ratios, and in
this case, the series is referred to as a 4—1 ratio series.

The 15 weighings to be performed are then calculated
as six 1=2—1 comparisons of volumes.

A—B—A gives us the volumetric ratio
A—C—A gives us the volumetric ratio
A—D—A gives us the volumetric ratio
B-C—B gives us the volumetric ratio

B—D—B gives us the volumetric ratio

DI TSI QI Ol Ol W

C—D—C gives us the volumetric ratio

This procedure may be interrupted at any time
between 1-2—1 comparisons, however this usually
requires one additional observation to maintain the
time symmetrical properties of each comparison.
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In actual practice, all 15 tests which make up the
4-1 ratio series are conducted at slightly different
temperatures. Unless the objects under volumetric
comparison have the same temperature coefhcients of
expansion, their ratio will be a function of the tempera-
ture of observation. Therefore, before proceeding with
the least-squares adjustment of this series, we reduce
the observed ratio at the temperature of the test to the
ratio which would exist at 20 °C by appropriate applica-
tion of the temperature coefficients of expansion of the
objects.

We use the method of Connor and Youden, NBS, [17]
for least-squares adjustment. They noted that the
products of the observed ratios
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as well as some four-ratio-products would be exactly
equal to unity if the series were performed without
error. These observed ratios may be adjusted by least
squares to values which actually do have unity products
by their formula of the form

e

where the overlined values, eg., =, are adjusted ratios.
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The absolute sum of the six residual differences be-
tween the observed and adjusted ratios is a measure
of the precision of the conduct of the 4—1 ratio series.

As pointed out in 2.5.1.3 we are able to conduct four
different 4—1 ratio series on the two standard balls
and four crystals. The observed ratios, 24 in all, are
presented in tables 5. Also shown in the table are the
ratios reduced to 20 °C, their adjusted values from the
Connor-Youden procedure, and the sum of the
residuals.

In 2.5.2 it was shown that the mass of the objects
enters the calculation of the volumetric ratios, so the
assumed values of the masses and coefficients of
expansion of the six objects are given in the caption
to the tables 5.

2.6. Final Calculation of Crystal Volumes and Densities

The 24 ratios shown in the last column of table 5
may each be used in writing an equation expressing
the relative volume between various members of the



TABLE 5a

This table presents the volumetric ratios between the four silicon crystals and the two steel balls employed in Determination AB. As
pointed out in the test the “ratios at test temperature” are calculated from the previously measured mass value and the weight in liquid
measured hydrostatically. The ratios at 20 °C involve assumed values of temperature coefficients of expansion. These assumed masses and
coefficients are given below. These ratios at 20 °C are submitted (in groups of six) to the Connor-Youden least square adjustment procedure,
and the adjusted ratios are given in the last column with the sum of residuals.

Measured mass (grams) Lin. coef. exp.

Ball A 1043. 352 056 0.000 012 272

Ball B 1043. 482 802 .000 012 272
X2 200. 420 689 .000 002 56
X3 199. 763 734 .000 002 56
X4 200. 010 795 .000 002 56
X5 199. 932 675 000 002 56

Sum of volumes of the 2 balls = 268.073 950 cm® at 20 °C.

Test Ratio under test | Avg test temp | Observed ratio Ratio reduced | L.S. adjusted ratio
No. at test temp to 20 °C

1 A:B 20.3187 1.0000028601 1.0000028442 1.0000028767
2 A:X2+X3 20.3183 .7802953318 .7802881037 .7802877510
3 A:X4+X5 20.3168 .7807629276 .7807556860 .7807560134
4 B:X2+X3 20.3194 .7802923978 .1802851145 .7802855064
5 B:X4+X5 20.3205 .7807614394 .7807541343 .7807537675
6 X2 +X3:X4+X5 20.3176 1.0006000685 1.0006000647 1.0006001151
Absolute sum of residuals = .00000515217

7 A:B 20.3361 1.0000023160 1.0000023107 1.0000014007
8 A:X2+X4 20.3370 .7798135876 .7798059447 7798063201
9 A:X3+X5 20.3370 .7812466828 .7812390037 .7812393385
10 B:X2 + X4 20.3359 .7798135609 .7798059199 7798052278
11 B:X3 +X5 20.3346 .7812458895 .7812382618 .7812382442
12 X2 +X4:X3 +X5 20.3336 1.0018380683 1.0018380664 1.0018376594
Absolute sum of residuals = .0000027368

13 A:B 20.3533 1.0000013838 1.0000014360 1.0000004250
14 A:X2+X5 20.3519 7799632731 .7799553009 .7799560148
15 A:X3+X4 20.3501 7810926282 .7810846634 .7810847381
16 B:X2 +X5 20.3482 .7799633471 7799554589 7799556833
17 B:X3 +X4 20.3470 .7810933265 .7810854207 .7810844062
18 X2 +X5:X3 + X4 20.3474 1.0014459694 1.0014459580 1.0014471628
Absolute sum of residuals = .0000042435

19 X2:X3 20.3157 1.0032860536 1.0032860446 1.0032863403
20 X2:X4 20.3168 1.0020459883 1.0020459770 1.0020468304
21 X2:X5 20.3169 1.0024388963 1.0024388959 1.0024377467
22 X3:X4 20.3186 .9987632820 .9987632796 .9987645502
23 X3:X5 20.3163 9991551669 19991551626 9991541860
24 X4:X5 20.3170 1.0003879913 1.0003879932 1.0003901178
Absolute sum of residuals = .0000066700
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TABLE 5b

This table presents the volumetric ratios between the four silicon crystals and the two steel balls employed in Determination CD. As
pointed out in the text the “ratios at test temperature” are calculated from the previously measured mass value and the weight in liquid
measured hydrostatically. The ratios at 20 “C involve assumed values of temperature coefficients of expansion. These assumed masses and
coefficients are given below. These ratios at 20 °C are submitted (in groups of six) to the Connor-Youden least square adjustment procedure,
and the adjusted ratios are given in the last column with the sum of residuals.

Measured mass (grams) Lin. coef. exp.
Ball C 1043. 941 406 0.000 012 272
Ball D 1042. 909 214 .000 012 272
X2 200. 420 653 .000 002 56
X3 199. 763 663 .000 002 56
X4 200. 010 763 .000 002 56
X5 199. 932 620 .000 002 56
Sum of volumes of the 2 balls= 268.073 808 cm® at 20 °C.
Test Ratio under Avg test Observed ratio Ratio reduced L.S. adjusted
No. test temp at test temp to 20 °C ratio
1 (CslD) 19.1941 0.9999902719 0.9999903218 0.9999899545
2 C:X2+ X3 19.1931 .7802638204 .7802821681 .7802820581
8 GREIXACEIXS 19.1925 .7807321977 1807505575 7807509544
4 D:X2+ X3 19.1933 7802711575 .7802895033 .7802898965
5] D:X4+ X5 19.1928 .7807411148 7807594778 .7807587975
6 X2+ X3:X4+ X5 19.1913 1.0006005705 1.0006005686 1.0006009318
Absolute sum of residuals= 0.0000023109
7 C:D 19.1742 19999902037 0.9999902105 19999903037
8 C:X2+ X4 19.1748 7797814847 1798002324 7798001020
9 C:X3+X5 19.1758 .7812152264 .7812340008 .7812340586
10 D:X2+ X4 19.1770 7797887982 1798074949 7798076632
11 D:X3+ X5 19.1781 .7812230169 .1812417295 .7812416338
12 X2+ X4:X3+ X5 19.1774 1.0018388271 1.0018388285 1.0018388772
Absolute sum of residuals = 0.0000005943
1'3 (Ciglh) 19.1771 0.9999898783 0.9999898601 19999899070
14 C: X2+ X5 19.1764 7799335893 1799523068 7799524297
15 C:X3+ X4 19.1763 7810629297 71810816678 7810815082
16 D:X2+ X5 19.1753 7799418941 .7799606345 7799603018
17 D:X3+ X4 19.1755 .7810702651 .7810890220 .7810893917
18 X2+ X5: X3+ X4 19.1754 1.0014478970 1.0014478942 1.0014476248
Absolute sum of residuals= 0.0000013011
19 X2:X3 19.1674 1.0032889403 1.0032889517 1.0032884305
20 X2:X4 19.1661 1.0020461432 1.0020461603 1.0020461508
21 X2:X5 19.1669 1.0024379242 1.0024379280 1.0024384582
2 X3:X4 19.1703 0.9987618535 0.9987618281 0.9987617920
23 X3:X5 19.1687 19991533078 9991532965 19991528136
24 X4:X5 19.1701 1.0003915491 1.0003915520 1.0003915063
Absolute sum of residuals = 0.0000016255
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TABLE 5¢

This table presents the volumetric ratios between the four silicon crystals and the two steel balls employed in Determination EF. As
pointed out in the text the “ratios at test temperature” are calculated from the previously measured mass value and the weight in liquid
measured hydrostatically. The ratios at 20 °C involve assumed values of temperature coefficients of expansion. These assumed masses and
coeflicients are given below. These ratios at 20 °C are submitted (in groups of six) to the Connor-Youden least square adjustment procedure,
and the adjusted ratios are given in the last column with the sum of residuals.

Measured mass (grams)

Lin. coef. exp.

X5
Sum of volumes of the

199.932 659

Ball E 1043.351 968 0.000 012 272
Ball F 1043.482 847 .000 012 272
X2 200.420 679 .000 002 56
X3 199.763 687 .000 002 56
X4 200.010 802 .000 002 56

.000 002 56

e 2 balls = 134.073 994 cm® at 20 °C.

Test Ratio under Avg test Observed ratio Ratio reduced L.S. adjusted
No. test temp at test temp to 20°C ratio
1 E:F 23.4340 1.0000017166 1.0000016894 1.0000012132
2 E : X2+ X3 23.4346 0.7803650384 0.7802869637 0.7802869783
3 E : X4+ X5 23.4336 .7808337796 7807556737 7807560308
4 F:X2+X3 23.4304 .7803630492 7802850701 7802860317
o) F : X4+ X5 23.4291 7808344232 7807564176 7807550837
6 X2+ X3 : X4+ X5 23.4303 1.0005998798 1.0005998765 1.0006011283
Absolute sum of residuals = .0000043952
7 E:F 23.4300 1.0000007342 1.0000007115 1.0000010387
8 E : X2+ X4 23.4296 0.7798820731 0.7798041460 0.7798046139
9 E : X3+ X5 23.4313 .7813169195 7812388476 .7812381233
10 F: X2+ X4 23.4307 7798821909 7798041925 .7798038039
11 F: X3+ X5 23.4312 7813147650 7812366668 7812373118
12 X2+ X4 : X3+ X5 23.4313 1.0018381973 1.0018381912 1.0018382930
Absolute sum of residuals = .0000026549
13 E:F 23.4300 1.0000013369 1.0000012869 1.0000013539
14 E : X2+ X5 23.4289 0.7800351105 0.7799571782 0.7799574605
15 E : X3+ X4 23.4220 7811638859 7810859896 .7810856546
16 F: X2+ X5 23.4278 7800351625 1799572923 7799564044
17 F: X3+ X4 23.4267 .7811616473 7810836555 7810845970
18 X2+ X5 : X3+ X4 23.4266 1.0014472596 1.0014472591 1.0014464816
Absolute sum of residuals = .0000032913
19 X2:X3 23.3973 1.0032875312 1.0032875421 1.0032877488
20 X2 : X4 23.3970 1.0020470576 1.0020470528 1.0020463889
21 X2 :X5 23.3951 1.0024373288 1.0024373259 1.0024377836
22 X3 : X4 23.3969 0.9987618333 0.9987618238 0.9987627079
23 X3 : X5 23.3977 19991535001 19991534986 19991528200
24 X4 : X5 23.3963 1.0003903684 1.0003903727 1.0003905954
Absolute sum of residuals = .0000031138

six objects (four crystals and two balls) used in the
hydrostatic tests. For example, the first three equations
are:

1;—4=1.ooo 002 8767
A 0780 287 7510
X24+X3
A _0.780 756 0134
X4+ X5 ete.

These 24 equations all express relative volumetric
information. To this system of equations we add a 25th
which expresses absolute volumetric information —
namely the sum of the volumes of the two steel balls
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used in the tests. This sum is obtained by adding the
values of the two ball volumes at 20 °C given in the
captions to tables 4 which are based upon direct
interferometric measurement.

These 25 equations are solved for six unknowns,
namely the volumes of four crystals and two balls, by
the method of least squares. Two possible criticisms
may be raised to the calculation of volumes by this
method:

1. The data have been smoothed twice, once within
the six ratios, and again in the 4 sets of ratios,

2. the observed data appear in the coefficients of
the observational equations rather than as a
separate term.

We have not evaluated the effect of the above, but have
calculated the volumes in another way for comparison.



Treating each set of six adjusted ratios separately
with the sum of volumes of steel balls, we calculate,
for example, the volumes of X2+ X3 and X4+ X5.
Then the individual volumes are solved by adding two
appropriate measured ratios of the crystals in the
fourth set. Thus three sets of volumes are obtained for
each set of ball-temperature combinations.

The differences in volumes from the two methods of
computation are found to be negligible, and we decided
to use values resulting from least squares fitting. The
least squares estimate of the volumes of each of the
four crystals and two balls are given in table 6. This
table has four columns. The first three columns show
the six volumes obtained in each of the three determi-
nations and the fourth column shows the average
values which (until additional work is done) will be our
presently accepted values of the crystal densities.

their associated temperatures are averaged to
provide one value of etalon length at some partic-
ular temperature.

b. Four measurements on the average diameter of
each of two balls. Each diametric measurement is
the average of ten observations as explained in
2.4.2.5. The four average diameters along with
their associated temperatures are averaged to
provide a single value of the average diameter at
some particular temperature. The assumed etalon
length employed in this step is obtained from the
step a above, and appropriately adjusted by the
application of our assumed value of the temper-
ature coefficient of expansion of the etalon.

c. A group of mass measurements on each of the
two balls.

TABLE 6

The results of the least squares solution for the volumes of the crystals and the balls are given in this table. Also presented are the
assumed mass values of the four crystals used in each determination. At the bottom, the quotient of the assumed mass divided by the
least squares estimate of volume (i.e. density) is given for each crystal and each determination. The average density value is the presently

“accepted” value.

Determination AB Determination CD Determination EF | Average value of density and
standard  deviation of the
Silicon crystal volumes (cm?) average. This is the accepted
X2 86.049 744 86.049 821 86.049 800 value as explained in the
X3 85.767 873 85.767 793 85.767 886 text.
X4 85.874 004 85.874 036 85.874 058
X5 85.840 520 85.840 466 85.840 488
Steel ball volumes (cm?)
First Ball Ball A Ball C Ball E
Least square estimate 134.067 080 134.066 237 134.067 078
Measured value 134.067 062 134.066 261 134.067 028
Difference — 0.000 018 + 0.000 024 —0.000 050
Second Ball Ball B Ball D Ball F
Least square estimate 134.066 870 134.067 571 134.066 916
Measured value 134.066 888 134.067 547 134.066 966
Difference +0.000 018 — 0.000 024 + 0.000 050
Crystall mass (grams
X2 200.420 689 200.420 653 200. 420 679
X3 199.763 734 199.763 663 199.763 687
X4 200.010 795 200.010 763 200.010 802
X5 199.932 675 199.932 620 199.932 659
Crystal densities (g/cm®)
X2 2.329 1259 2.329 1234 2.329 1243 2.329 1245
0.000 0007
X3 2.329 1208 2.329 1221 2.329 1199 2.329 1209
0.000 0006
X4 2.329 1192 2.329 1180 2.329 1179 2.329 1184
0.000 0004
X5 2.329 1177 2.329 1185 2.329 1184 2.329 1182
0.000 0003

2.6.1. Precision and Estimate of System Errors

A single determination on the volumes of our four
silicon crystals requires the following measurements.
a. Two measurements on the length of the etalon
as described in 2.4.2.4. These two lengths and
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d. A group of mass measurements on each of the
four silicon crystals.

e. Twenty-four hydrostatic comparisons (in four 4-1
ratio series) between the volumes of the two balls
and various combinations of the four crystals.



During the winter of 1970-1 we worked on our re-
dundant hydrostatic weighing process. To check the
process precision, we performed the complete hydro-
static comparison between balls A and B and the four
silicon crystals at a temperature of about 23.4 °C. We
were aware of the crudeness of our knowledge of the
temperature coefficients of expansion involved (there
is no “good” way to measure a ball’s coefhicient), and
we had no intention of using this experiment in a real
volumetric determination—we considered this only as
a precision test.

In 1971-2 we performed determinations A-B and
C-D at temperatures within one degree of 20 °C. At
this time it was pointed out to us by H. H. Ku of our
Applied Mathematics Division that our experiments
over this very limited temperature range were highly
nonrealistic, and that we should make every effort
to achieve a determination at a temperature at least
21/2 °C away from 20.

Our interferometer was designed to operate at a
maximum temperature of 22 °C, however we found
that, at the sacrifice of some thermostat stability, we
could operate marginally at a temperature of 23 °C.
Accordingly, we made etalon tests ET-5 and ET-6 at
23 °C and also measured the diameters of balls A and
B at this temperature. Additional mass measurements
were made. These new data at 23 °C were combined
with the early hydrostatic work at 23.4 °C and new
crystal volumes were calculated. Although balls A
and B were employed, in this high temperature de-
termination we have referred to them as balls E and
F. Inasmuch as this work on E and F contains all the
elements of a single determination as defined above,
we feel justified in claiming three independent deter-
minations.

Our presently ‘“‘accepted” values of the crystal
densities are the average of the three determinations.
As stated above, as additional work is done on these
four crystals our accepted values will be modified.
The standard deviations of these average values of
crystal volume are given in table 6. These standard
deviations are indicative of the reproducibility of our
system in the determination of such volumes.

As pointed out in the previous section, the data
presented in table 6 are obtained from a least-squares
solution of 25 equations—24 relating the relative
volumes of crystals and balls and the 25th stating our
best estimate of the sum of the volumes of the two balls.
Out of the least squares solution we obtain an estimate
of the volumes of each of the four crystals as well as
an estimate of the volumes of each of the two balls. A
comparison between the least square estimates of the
individual ball volumes and our measured values (used
in calculating the sum) is indicative of the inconsist-
ency between our interferometric tests and our hydro-
static tests. These differences are shown in table 6.

An examination of the three sets of density values
did not reveal any discernible pattern in rank. Statis-
tical analysis of the volume and density data for three
sets also supported the contention that a between-set
component of error, if any, was negligible. The meas-
ured masses of the four silicon crystals, on the other
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hand, did show that the A-B set was on the average
50 mg, 0.25 ppm, higher than the C-D set, but the
effect of this discrepancy on densities was not obvious.
A possible explanation could be that these values of
masses were used first in the computation of volume
ratios and then in the computation of densities. The
correlation between the numerator and denominator
of the density computation would tend to decrease the
effect of any systematic error present in the mass on
the density values. Since these measured mass values
were assigned to the sets of volume ratio calculations
by date, an alternate way of computation could be to
use the averages of the three sets of mass values in all
density calculations. We will, however, adhere to the
present scheme of calculation so that the random
component of error can be computed from the three
sets of final results as planned.

The standard deviation of density values of each
determination was computed to be 0.97 wg/cm? with
8 degrees of freedom. The random component of un-
certainty of the averages of density values of three
determinations is taken as three standard deviations
of these averages, 1.68 ng/cm?, or 0.72 ppm.

To the extent that the same array of apparatus and
instruments is used in all three determinations, the
three determinations are not entirely independent.
There are residual uncertainties in the calibrations
of such instruments, and when these calibration un-
certainties exert the same effect on the crystal densities
calculated in each determination, they do not increase
the data spread shown in table 6, so they are not in-
cluded in the standard deviation of the mean given in
that table.

The major sources of such uncertainties going into
each determination are listed in table 7. Alongside of
each item of source data (which may be an instrument
such as a thermocouple or a process such as a weighing
experiment to determine mass) is our estimated bound
to the systematic uncertainty in that item.

Also shown is the effect of the error on the calcu-
lated crystal density obtained in each of the three
determinations. It is noted that the effects of such
errors on calculated densities classify the errors into
two groups:

a. When the effect of the error on the volumetric
calculation is the same in each of the three deter-
minations. This group of errors must be assigned
to the systematic category.

b. When the effect of the error on the volumetric
calculation is different in each of three deter-
minations. This group consists of errors, the
effects of which are temperature dependent. In-
asmuch as the temperature pattern in the various
tests was grossly different, this group of errors
need not be classed as systematic because their
effect is present in the spread of data shown in
figure 6.

We have no basis for assigning a value of uncertainty
to the 22° phase shift used in interferometer calcula-



TABLE 7

Estimated
magnitude

Source data .
of error in

Effect of estimated error on calculated values of
crystal densities (g/cm?)

source data Determination AB | Determination CD Determination EF
Data items in which errors exert the same effect
in all three determinations and are therefore
systematic
1. Temperature measurement system used
inside interferometer on etalon and
steel balls...........cccoooviiiiiiiiiii 0.0092 °C 7.89 X107
2. Calibration errors in system used to cal-
culate effective wavelength of inter-
ferometer illumination........................... 25X 10% u 2.67 X107
3. Fringe fraction calculated from photo-
graphic system .........cocooiiiiiiiiin, 0.001 0.18 X107
4. Hydrostatic bath temperature.................... 0.0015°C 1.02 X10-7
5. Mass of one steel ball ...................c..eeen. 0.000 064 g 6.25 X107
6. Mass of two silicon crystals....................... 0.000 090 g 1.62 X10-7
7. Calibration errors in hydrostatic balance ..... 13u1g/100 g 9.28 X107
Absolute sum of systematic errors (Worst Case)..... |........ccevueenernennennns 28.91xX10 ~7=1.25 ppm
Realsitic estimate (square root of sum of squares). 14.10X10 -7=0.60 ppm
Data items which are temperature dependent
and therefore contribute to random component
8. Expansion coefficient of etalon................... 3x10°#® —0.63 X107 +0.33 X107 +0.10x10-7
9. Expansion coefficient of balls .................... 5X10-8 —1.40Xx10-7 +3.75X 107 SIN2P3 O
10. Expansion coefficient of crystals ................ 9x10-8 +0.67 X107 —1.69 X107 +7.20 X107
MEASURED DENSITY : G oo : ,
o2 o D 3 SRS tions. Additionally our estimate of item 9 may be weak.
P i X The square root of the sum of the squares of items 1 to
2.329 125[» A-8 T 7 indicates a systematic of 0.6 ppm. We believe that
| opm i 0.7 ppm is a justified and conservative estimate of the
124 |- CRYSTAL X2 ppm in X . X
IN DENSITY total systematics in this work.
123} 3=
c-0
122 -
121 |- c-D
2.329 120 |— A-B® CRYSTAL X3 The density program described in this report has
s involved numerous scientists in various divisions of
E-F NBS. The following individuals have given generously
s - a-e of their time and talents. D. P. Johnson has been our
nrlk CRYSTALX4 lcp  E-F primary theoretical consultant. He worked out the data
Eacl CRYSTAL X5 . . .
A-8 taking and reduction procedures for the interfero-
"er metric part of the experiment on the etalon and balls.
2.329 115 [— He calculated the volumetric uncertainty associated
LINEAR POSITION ON BOULE FROM WHICH CRYSTAL WAS CUT with ball imperfections (given in a companion paper).

FIGURE 6. This figure illustrates the spread of density data for each
crystal among its three determinations.

We have made several previous attempts to measure the density gradient in single
crystal silicon boules. This graph is the best display of the existence of such a gradient
which has come to our attention. We deeply regret that a particularly well-remembered
day in history marked the beginning of our utilization of Crystal X1 for the fabrication of
fractional-gram silicon weights.
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R. D. Deslattes provided us with adequate values of
laser wavelengths and suggested the use of single
crystal silicon as a working density standard. J. B.
Saunders developed the spherical interferometer at
our request. W. H. Gallagher assisted in working out
adequate hydrostatic procedures. H. H. Ku played a
major role in experiment design and he worked out



the hydrostatic data reduction format. J. L. Riddle gave
us guidance in building and evaluating our interferom-
eter temperature measurement system. Geraldine
Hailes wrote many computer programs for us especially
in the early stages of development when numerical
techniques were only hazy ideas.
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