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We have dete rmin ed the de ns ity of four pi eces of s ingle crystal s ili co n in te rm s of unive rsa lly 
acce pted s tand a rds of mass and length. These four objects will be used as a workin g de ns ity stand a rd 
to which a ll future dens it y work in th e Unit ed S tates will be re fe rred. Us in g these c rys tal s as s tandards, 
NBS can ca librate othe r objec ts as dens it y stand a rds for assoc iated labora tori es. 

Th e work was acco mpli shed with the ass istance of a n interferometer, developed especia ll y for 
th e task , which measures the diame te r of co mm ercia ll y ava ilabl e s tee l balls . From measured diamete rs 
ba ll volumes a re ca lc ul a ted. The volumetri c information cont ain ed in the balls is transfe rred to the 
s ilicon c rystal s in a ne wl y des igned hydros ta ti c weighin g e xpe rim ent. 

We have made three inde pendent de nsity dete rmin a tions on each of the four c rys ta ls, a nd the 
prese ntly acce pted values of th e dens ity of each c rys ta l is the average of the three de terminations. 
The random component of unce rtainty (3 s ta nda rd de viations) of these four ave rages is 0. 7 pplll . The 
syste ma ti c e rror is es tim a ted to be about 0.7 ppm. 

Key word s : De nsity s tanda rd ; hydros tati c we ighin g; perfect sphe re; sili con; sphe ri ca l inte rfe rome te r; 
s phe ri cal volum e; volume s tanda rd. 
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In the early 1960's NBS began recelvJl1g inqumes 
as to the practi cability of making density measure­
ments to an uncertainty of a part or two in a million . 
This was of partic ular interest to oceanographers and 
crystalographers. Cook, NPL , [1, 2],1 had satisfied the 
require ments of workers in gas thermodynamics by 

I Figures in brac kets indicate th e lit e rature refe rences a t the end of thi s pape r. 

his determination of the density of merc ury to about a 
part in a million and he had made a generous supply 
available to NBS. We made several efforts to transfer 
the density information from this mercury into various 
objects but this is a difficult experiment and we were 
rarely able to achieve reproducibility of independent 
measurements to less than three parts per million. We 
had some immediate "in house" requirements for 
de nsity knowledge to a part per million in the fi eld 
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of fundamental constants [3, 4] and, as a long range 
objective, an improvement of the mass standard. 

In 1965 we announced [5] that NBS would undertake 
to devise a density measurement procedure and the 
necessary associated standards tied directly to the 
universally recognized standards of mass and length 
so that interested experimenters could make such 
density determinations. We had already demonstrated 
that the densities of solid objects could be compared 
to a precision of 1: 107 or better [6] so we stated that 
the proposed measurement system would be based 
upon a group of solid objects, and we outlined the 
procedures we would use in the development. Numer­
ous experimental failures have required us to alter our 
techniques and methods, but every experiment has 
reinforced our original conclusion that solid density 
standards are far more practical than any liquid stand­
ard which has come to our attention. 

Section 2 of this paper outlines the laboratory 
procedures we used in the development of the system 
and the results we obtained. 

1.1. Background 

All density determinations require two measure­
ments, one to find the mass of the unknown and a 
second to find its volume. Mass may be adequately 
measured by well understood procedures. Volume may 
be calculated from linear measurements, but it is 
ordinarily calculated from observed data on buoyant 
forces in hydrostatic weighing tests in water of some 
t.abulated value of density. 

Cook's determination on mercury was in response 
to a well-defined problem of very widespread interest, 
and NPL expended a great deal of effort in accom­
plishing this excellent measurement to about a part 
in a million. 

The suggestion has frequently been made that if 
NBS would determine the density of well characterized 
water from a reproducible source, that other groups 
could use this type of water, after preparation by a well­
defined recipe, for 1 ppm density measurements. 
Nothing could be further from the truth. While such 
a determination by NBS might remove some of the 
uncertainty associated with the use of water as a 
density standard, no prudent experimenter would claim 
such accuracy because such a claim would necessarily 
have to be based upon four assumptions - none of 
which are subject to proof: 

1. That the published value of the density of water 
applied without correction to the particular 
sample used in his measurement. 

2. That the official recipe for preparation of water 
contained no hidden errors when applied to his 
particular sample. 

3. That no blunders were made during preparation 
of his sample. 

4. That no contamination occurred between the 
preparation and use of his sample. 

There are two additional practical reasons for 
choosing a solid-based density scale in preference to 
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water: (1) It is possible to compare the densities of 
two solids to a precision in excess of that which is 
achievable in the comparison of a solid with water. 
(2) The density of an unknown liquid may be deter­
mined much more easily from a solid standard than 
from water. 

1.2. Modern Developments 

There have been numerous technical developments 
in the past two decades which greatly facilitate the 
task of developing a solid-based density scale. We 
utilized five of these developments: 

a. The inexpensive commercial availability of 
single-crystal silicon. 

b. The commercial availability at reasonable cost 
of steel spheres of near-perfect geometry. 

c . A new type interferometer designed by J. B. 
Saunders, NBS [8]. 

d. The commercial availability of Lamb dip stabi­
lized lasers and techniques for their ready 
calibration with reference to universally recog­
nized spectral standards [7]. This made the 
above interferometer configuration practical. 

e. A completely redesigned hydrostatic weighing 
experiment. 

Due to the enormous requirements of the electronics 
industry , single crystal silicon is now mass-produced in 
sizes much greater than necessary for practical density 
standards. The virtues of this remarkable material as 
density standards will be discussed in section 2, but its 
primary value in such service is its homogeneity and 
density stability. 

A major difficulty facing a laboratory about to 
embark on a fundamental density measurement is the 
fabrication of an object of such geometric perfection 
that its volume may be calculated from linear meas­
urements. 

We avoided facing this problem directly by using 
commercially available steel balls about 6.3 cm in 
diameter. The difference between the maximum diam­
eters and the minimum diameters of such spheres is 
rarely greater than about 1 ppm. 

The virtues of spherical objects have long been 
recognized, but there has been no practical method 
of measuring spherical diameters without introducing 
uncertainties (such as contact deformation) several 
times the magnitude of the desirable level of uncer­
tainty. This problem was resolved by the development 
of the noncontacting interferometer mentioned above. 

Volumes calculated from such measured diameters 
are not indefinitely stable because steel balls are easily 
damaged by scratches, corrosion, rough handling, 
etc., so it was desirable to transfer the volumetric 
knowledge from the spheres to objects of better 
stability and homogeneity in density. This transfer is 
performed hydrostatically. 

The classical hydrostatic weighing experiment is 
quite imprecise and most wasteful of density knowl-



edge. In order to get the preCISIOn of this operation 
below 1 ppm we made four changes : 

1. The use of a fluorocarbon instead of water. 
2. The use of four comparison objects instead of one. 
3. The use of direct reading, damped balances 

instead of free swinging instruments. 
4. The employment of a measurement procedure 

designed for the determination of volumetric 
ratios rather than densities. 

The foregoing remarks suggest the apparatus and 
procedures we used in developing our working density 
standard. The work described in this report, outlined 
in figure 1, was largely exploratory, and we have found 
that equipment and procedural modifications will 
provide data of equal or better quality at much less 
cost in the future. 

2 . The Working Standard of Density 

Inasmuch as density is defined in terms of mass and 
length , both of which are basic in the SI System, it 
would be inappropriate to speak of a density standard 
in the context in which the word "standard" is gen· 
erally understood. On the other hand, "working" 
standards are ordinarily thought of as con venience 
items whose accepted values are obtained by calibra· 
tion either directly or indirectly against fundamental 
standards. 

For this reason , we have chosen to refer to our group 
of silicon crystals as a "working" standard. The 
accepted density values of the individual crystals in 
this group are not invariantly fixed, but only represent 
our best estimate of the true value based upon previous 
calibration experience. As additional measurement 

I 
Lamb dip s tabilized laser whose I Th~ce Plati,:um Resistance ThermometerS' II T~e.united St.ates Pl.atinum- I 
waveleng th was de t ermined by cahbr a ted 10 IPTS-68 and frequently Indlum Prototype Ktlograms 
direc t comparison to Krypton. checked against triple - point of water. Nos , 4 a nd 20 . 

~ ________ t~ ____ ~ ~ 
Ca libr ation of the built - in 
weigh t s of the single pan 
direct reading hydrostatic 
balance. 

In terferometer thermocouple calib r a t ed 
by temperature span established by 
Platinum Thermometers , and with the 
reference end in a temperature well 
monitored by a PRT . Sec ti on 2.4.2.3 , 
Table s 1 and Z. 1 

J r------'--- --L------, I ~i~~::: C~~5t~: f~~~ I 
Measurement of the etalon length at De t ermination of the immersed the six steel ba ll s . 
several temperatures in terms of weights of th e four crystals and 
laser wavelength . Section 2 . 4 . 2 . 4, six balls as function of tem -
Table 3 Figure 4. 

Measurement of the dIfference In length I 
between the etalon and the dlameter of 14-----:-----' 
the balls at various temperatures. 1 
Section 2.4 . 2.5 , Table 4 . 

Y Calculation of ball diameters as a I 
function of temperature , and ball 
volume at 20 0c. Table 4. 

pe r a ture, using the hydrostatic 
balance. Section 2 . 5 .1. 4 . 

l 
Calculation of the volometric ratios 
between the four crystals and six 
balls from knowledge of true mass 
and i mmersed weight. Section 2. b, 
Table 5 . 

JCalCUlatiOn of crystal volumes based on 
'--________ ~ ratios between crystals and balls and 

-I knowledge of ball volumes. Table b . 

1 I Calculation of the densities I 
of the four silicon srystals 

'-----..I~I from knowledge of mass and 
I volume . Table 6. 

FIGURE I 

Additional work on these crystals and balls will be 
performed as a continuing NBS project , and will be 
reported on from time to time. 

1.3. Dissemination of Densii'y Information 

By hydrostatic transfer from our crystals or balls, 
we are now in a position to calibrate solid s tandards 
for use by other laboratories. 

If other groups choose to enter the field of funda­
mental volumetric (density) measurements (we have 
heard of two such organizations), it will be possible to 
exchange solid density standards to assure consistency. 

The use of solid standards makes comparison of 
density scales to assure consistency a practi cal 
procedure. 
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effort is expended, the accepted values may be slightly 
modified. The present accepted values of our crystals 
are based upon the average of three independent 
determinations. 

2.1. Material for Density Standards 

The most important characteristics of an artifact 
standard of a physical property are: 

1. Temporal stability with respect to the physical 
property it represents. 

2. Adaptability to practical measurement methods. 
3. Of such a nature that the response of a measure· 

ment system is primarily due to the characteristic 
of interest. 



Single crystal silicon meets all of the above require­
ments to a far greater degree than any of the other 
materials we considered. It is among the most homoge­
neous materials available so that chipping or abrasion 
in use cause equal percentages of loss of mass and 
volume (density constant). It has a highly stable surface 
in that the oxide film is formed in a minute or so- there­
after changes occur at a rate estimated to be such that 
the gross density of the crystal varies by about (worst 
case) l/}O ppm/year [9]. Its oxide has a density very 
nearly equal to that of the parent material. It has 
sufficient electrical conductivity so that, with care, 
electrostatic charges do not interfere with weighing. 
Its temperature coefficient of expansion is only 2.5 
ppm;oC (linear). It is inert in most liquids. It is easily 
fabricated into desirable shapes and sizes. There are 
many commercial sources of supply at moderate cost. 
Inexpensive lightly doped transistor grades are quite 
adequate in this application. The pieces of silicon used 
in our working standard were cut from a reject boule 
given to us by the Fairchild Semiconductor Company. 

2.2. Sizes of Crystals 

Our working density standard is made up of four 
silicon crystals cut from a 21f2-in diam boule in slices 
about I-in thick. They were ground down to about 205 g 
each and then trimmed to about 200 g by HF etching 
which exposed the parent crystal lattice surface with 
work damage removed. 

2.3. Mass Measurements 

Our measurements required knowledge of the mass 
of three groups of objects: 

1. The steel balls 
2. The silicon crystals 
3. The built-in weights from our direct-reading 

balance. 

The mass of the balls and crystals were determined 
in conventional "4-1" weighing series 2 commencing 
with our national standard of mass to which BIPM 
had assigned a value. The balance weights were re­
moved from the balance and were worke d down from 
the national standard in weighing series especially 
designed for the purpose. Uncertainty in the mass of 
the balls was about 64 fL-grams, in the c rystals about 
45 fL -grams , and about 12 fL-grams per hundred grams 
for the balance weights. 

2.4. Verification of Volumes 

2.4.1. Objects of Perfect Geometry 

While it would have been possible within the 
present day state-of-the-art to fabricate our crystals 
into perfect geometric forms and calculate their 

t Designs involving measurements of the n{n - 1 ) /2 distinct djffe rences amung: n objects 
are referred to in this paper as " n - 1" desi{!ll s. 
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volumes from linear measurements, this would have 
been prohibitively costly. As pointed out in the 
introduction , we intend to continue our program of 
mass and volume measurements on our crystals for 
an indefinite period. Under these circumstances, if a 
crystal became chipped, its geometric perfection would 
be destroyed and volumetric surveillance would 
necessarily have to stop. The fabrication of any geo­
metrically perfect object is a major undertaking- it 
was a real problem for NPL during their mercury 
work, BIPM during their work on water and for Hart 
and Morgan [10] on silicon . 

We were fortunate to discover that nearly perfect 
spheres of 52100 steel [11] were available from at least 
two companies supplying the needs of groups working 
in inertial navigation. These spheres were 6.35 cm in 
diameter. Our spherical profile instruments could not 
detect lobing down to about 1 ppm of diameter. 
Dani el P. Johnson , NBS, has demonstrated (see 
co mpanion paper in this issue at NBS]. Res.) that the 
true volumes of such spheres differ insignificantly 
from the volumes calculated on the basis of the true 
average diameter. We attempt to obtain a close 
approximation to this true average diameter by 
making "many" diametric measurements. 

We initially obtained four balls, A, B, C, and D. 
When the experiment was in progress it became evi­
dent that six balls were desirable. Rather than delay 
the experiment while awaiting two additional balls 
we used balls A and B a second time in another 
density determination. In this second determination 
in which balls A and B we re employed, we have 
referred to them as balls E and F. 

Hereafter, in this report , we will refer to six balls, 
A, B, C, D, E , and F, although, in fact, there are on ly 
four. This is justified in section 2.6. 

2.4.2 . Diametric Measurements 

The conventional method of measuring spherical 
diameters is by comparison with stacks of gage blocks 
in mechanical contacting devices. This involves 
deformation errors which are directly additive with 
gage block and ringing film errors. A most careful 
search of the literature did not disclose a convenient 
non contacting interferometer configuration for this 
task. 

Our interferometer specialist, J. B. Saunders, was 
persuaded to delay his retirement until he had devel­
oped such an instrument. In less than 1 year he 
presented us with a laboratory device. This configura­
tion is given in detail elsewhere [8] , but it will be 
briefly described below. 

2.4.2.1. The Interferometer Confil!uration 

This instrument is an etalon device whose major 
components are laid out as illustrated in figure 2. 
Laser light enters face 1 of a conventional beam-splitter 
prism where it is split into two beams, Land R , leaving 
the prism through faces 2 and 3 respectively. These 
two beams are directed by mirrors into the opposite 
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FIGURE 2. A schmetic di agram of principal members of the Saunders 
ball and cylinder interfe rometer 

ends of an etalon , the L bea m s triking the left e talon 
pl ate n ormall y and th e R beam striking the right pl ate. 
A ball is placed in the etalon and ori ented so that the 
two beams are directed toward the cente r of the ball. 
The L bea m and th e R beam are used one a t a tim e, 
the undes ired be am being masked off by a sc reen 
near the pri sm. With the R beam masked , the L bea m 
s trikes the left etalon face whi ch re Aects pa rt of the 
light back toward the pri sm. The bala nce of light passes 
through the left e talon pla te and strikes the spheri cal 
ball surface, whic h re Aects it back toward the prism. 
These two r e Aected beams interfere with one another 
in a bull 's·eye pattern (since one beam is di vergent) 
which is photographed by a camera placed oppos ite 
face 4 of the pris m. When thi s photo has been take n, 
the operator mas ks off the L beam and photographs 
the pa ttern caused by interfere nce between R beam 
light re Rected from the right e talon plate and the right 
side of the ball. This is a fast operation using 1lts 
second exposures on 35 mm film. For high contrast 
interferogra ms , the two int~rferin g beams should be 
of about equal inte nsity. With one reRected beam com­
ing fro m a quartz surface and the other from a highly 
poushed steel surface, thi s require me nt is not me t. 
Saunde rs overcame thi s diffi c ulty by backing the 
camera away from the prism. The (approximate ly 
collim ated) beam of low intensity reRected from the 
qua rtz etalon pla te was about constant in intensity 
regardless of the camera position , howeve r, the 
(divergent) beam of high inte nsity reRected from the 
highly poushed steel s pherical surface became 
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attenuated (due to divergence) as the di sta nce between 
the pris m and camera increased. The photogra phs 
were made with the film placed in the pl ane of equ al 
intensity , so the interferograms were of extre me ly 
high contrast. The two interferograms are associa ted 
with di stances d L and d R on the s ke tch. It is obvious 
th at if E is the e talon length , the ba ll di a mete r, D, is 
given by 

2 .4. 2 .2 . The Etalon-Ball Assembly 

The e talon consists of two quartz Rats about l -c m 
thick separated by an inte rnal dis tance of 68 mm 
(millimeters) . The spheres are a maximum of about 63 
mm in diameter so th ey are easily in se rted a nd re­
moved from the etalon. The two Rats are held rigidl y 
by two quartz pla tes, above and below, by e poxy 
ce me nt. Each pl a te has a 7-c m hole through the ce nte r. 
The hole through the uppe r plate allows va ri ous 
ba ll s to be in se rted in the e ta lon, a nd the rotating 
ba ll hold er co mes up from be low through the hole in 
the lowe r pl ate. 

The ba ll res ts on three roll e rs arra nged so th at it 
may be rotated abo ut two axes 90° a pa rt by re mote 
co ntrols. This makes it poss ible to meas ure th e di a m­
eter through a ny set of latitud es and longitudes on the 
ba ll s urface. In prac ti ce we made measure me nts on 
10 di a meters (20 photos) norm al to the faces of a n 
in sc ribed duodecahedron, and gave eac h meas ured 
di a meter equ al weight in th e ca lc ul ati on of th e average. 

2 ,4 . 2.:_~ . Inl c l' fc l'o lll e h ' ,' T e ml'Cl'Ulure i\1"as ure m c lIl s 

Due to th e s mall s ize of the te mperature coeffi cie nt s 
involved , te mpe rature measure me nts of adequ ate 
accuracy a re eas il y atta in a ble during e ta lon measure­
me nt tes ts. T wo s uch coeffi c ie nts a re of import a nce ­
the te mperature coe ffi c ie nt of wave le ngth , + 1 ppmrC, 
and the te mperature coeffi c ient of ex pa nsion of the 
etalon, about +.5 pp mrC. S ince these coeffi cie nts 
ha ve the sa me a lgeb raic s ign, th ey are opposed 111 

th eir effect on th e e ta lon meas ure ment , addin g to 
about - 0. 5 ppmrC to the effec tive e talon le ngth . 

On th e othe r ha nd , the te mperature coeffi c ien t of 
ex pa nsion of the 52100 s tee l ba ll s is in excess of 12 
ppmrC (whic h a mounts to 36 ppmrC in volume), so 
that ba ll te mperatures mu st be meas ured to the bes t 
possible accuracy. 

The e talon assembl y, described in the pre vi ous 
section , is housed in a double wa ll c hamber with 
thermos tat water circulating in the walls, base, and 
cover. There are four thermal leaks in thi s isoth erm al 
shield. We have 2 windows about 2 c m in diameter in 
the walls to permit entra nce of the two measuring 
light beams. The ball rotation control co lumn e nters 
through a 5-c m diamet e r hole in the Aoor , and the 
measuring thermocou ple penetra tes the shield 
through a 2-cm diameter hole in the cover. W e initially 
hoped that the thermostat shield would be strong 
enough to defin e the te mperatures of the s teel ball 
and e talon to a level less than 0.01 °C so that a tempera­
ture measure ment on the thermostat liquid would 
satisfy all requirements. However , in developmental 



experiments, we found that the difference between the 
ball temperature and the thermostat water varied 
randomly over a range of about ± 0.02 °C at periods of 
1 to 3 minutes. 

To calibrate a temperature measuring system of this 
type requires two experiments: 

1. A determination of the relationship between the 
potentiometer output and the difference between 
the temperatures of the opposite thermocouple 
junctions. 

2. A determination of the difference in temperature 
between the measuring junctions of the thermo­
couple and that of the object of interest as a 
function of whatever perturbing influence causes 
this difference to depart from zero. 

This required that we measure the ball temperature 
directly. We constructed a measuring thermocouple in 
the form of a copper-constantan thermopile with six 
pairs of junctions. The six reference junctions were 
soaked in a temperature well which was monitored by 
a platinum resistance thermometer. Each of the six 
measuring junctions entered the interferometer 
chamber through the hole in the top and were held in 
physical contact with the steel ball by the springiness 
of the wire leads. Each measuring junction was covered 
by a thin layer of epoxy to prevent their electrical 
short-circuiting through the ball. Both the lightness 
of the physical contact between the ball and the 
measuring junctions and the epoxy coating mitigated 
against good thermal contact between the m. 

The data from the first experiment, table 1, showed 
that the potentiometer output (in nominal millivolts) 
was a linear function of the difference in temperature 
between the opposite junctions. A line of the form 

tlT= a (emf) + f3 was fitted to the data to obtain 
0.=4.12069 °C/mv (std. dev. =0.00589) 
f3=0.OOO585 °C (std. dev. =0.00149). 

The indication of a potentiometer-thermocouple 
combination is a function of the difference in tempera­
ture between the junctions of the thermocouple. To 
make me aningful measurements one must make e very 
e ffort to ass ure that the thermal contact between the 
measuring junction and the object of interest is suc h 
that the te mperature of the junction is equal to the 
temperature of the object of interest. Failing this , an 
evaluation must be made of the difference in tempera­
ture if such difference exists. 

During this experiment, the reference junction was 
ke pt in the temperature well employed during the ball 
diameter tests, and the measuring junctions were 
deeply immersed in a liquid bath. Platinum resistance 
thermometers monitored each temperature, and triple 
point of water measurements by these two ther-

TABLE 1 

Te mperature Temperature Potentiometer 
Date-time of of t.T observatio n 

bath refe re nce well emf 

12-15-72 0845 20.053 19.944 0.109 0.026 
1230 20.012 19.947 .065 .016 

12-18-72 0840 19.806 19.949 (-) .143 (-) .036 
1630 20.082 19.819 .263 .066 

12-19-72 0835 20.090 19.672 .418 .102 
0930 20. 089 19.670 .419 .103 
ll05 20.096 19.668 .428 .104 
1520 20.093 19.674 .419 .101 

12-20-72 0830 19.467 19.71 3 (-) .246 (-) .061 
0910 19.460 19.714 (-) .254 (-) .0625 
llOO 21.366 19.720 1.646 .398 
1335 21.366 19.734 1.632 .396 
1530 21.899 19.742 2.157 .523 

12-21-72 0855 21.824 19.756 2.068 .502 

This data was taken with good thermal contact between the calibrating ambients and the two ends of the thermocouple. The refere nce end 
was in the temperature well used during measurements, and the working iunctions were in a thermostat bat h. Both the bath and well were 
monitored by platinum resistance thermometers. Triple-point of water measure ment histories on the two thermometers indicate that maximum 
errors in observed values of t.T are no greater than 0.0014 °c. 

This data fits a s traight line of the form 

where 
t.T= a(EMF) + f3 

a = 4.120693 (standard deviation = 0.00589) 
f3 = 0.000585048 (standard deviation= 0.00149) . 
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mometers indicated that the temperature span in the 
thermocouple calibration experiment was defined to 
no worse than 0.001 0c. 

Having obtained a good measure of the potentiome­
ter output as a function of the difference between 
junction temperatures, we turned our attention to 
obtaining a measure of the difference between the 
true ball temperature and the temperature of the 
measuring junction of the thermocouple. This second 
experiment was performed on a ball and thermo­
couple nominally identical to those used in the ball 
diameter measuring tests. In this experiment the 
reference junctions of the thermocouple were ce­
mented to the ball surface with several centimeters 
of lead wire held against this surface by insulating 
tape-the intent was to insure that the referencejunc­
tion was in excellent thermal contact with the ball so 
that the junction temperature was equal to the ball 
temperature. The thermocouple wires were led away 
from the reference junction and passed through the 
interferometer wall (into the room) through one of the 
windows in the s ide of the the rmostat chamber. The 
measuring junctions of this thermocouple were rein­
serted into the interferometer through the opening 
in the top cover and held in light contact with the ball 
by the springiness of the lead wires in exactly the 
same manner as the measuring junctions of the 
thermocouple used in ball diameter tests. Assuming 
that there were negligible thermal gradients in the 
steel ball and that the reference junction was in ade­
quate thermal contact with the ball surface, we con­
cluded that the output of this thermocouple indicated 
the difference between the true temperature of the 
ball and that of the measuring junction. 

The test showed that the temperature of the 
measuring junction was higher than the ball tempera­
ture when the room temperature was higher and vice 
versa. The data, table 2 and figure 3, were fitted to the 
equation 

where 

A2 = 8.718 X 10- 4 

AI = 1.652 X 10- 2 

Ao= 3.038 X 19-:3 

q = The difference in temperature between the room 
temperature and the ball temperature 

Z = the difference in temperature between the ball 
and the measuring junction. 
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TABLE 2 

/j.T indica ted 
by Roo m Thermos ta t 

Date-t ime the rmocouple temperature tempe rature 

11- 2- 72 0845 -0.025 °C 19.50 °C 21.00 
11- 3- 72 1155 +.022 19.50 18.40 
11- 6- 72 0820 +.009 19.49 19 .39 
11- 7- 72 1320 -.025 19.40 21.40 
11- 8-72 1315 -.044 19.50 22 .81 
11- 9- 72 1621 .000 19.50 19.63 
11-10- 72 1100 +.025 20.71 19.68 
11-13- 72 1500 +.028 20.73 19.40 
11-14- 72 0836 +.019 20.80 19.70 
11-15-72 0834 -.019 20.80 22.10 
11-16-72 0814 -.016 20.8 22 .1 
11-17- 72 1534 +.047 20.8 18.41 
11-20- 72 0840 -.031 20.88 23.25 
11-21- 72 +.050 20.77 18.21 
11-24- 72 1200 -.031 20.8 23.25 
11-27- 72 0900 - .044 19.4 23.1 

This data was ta ken with the refe rence iunctions of the thermo· 
couple held in good thermal contac t with a dummy steel ball by 
e poxy cement. The measurin g junctions were in only moderate 
the rm al contac t (s imulating tha t whic h existed during the ba ll 
diameter tes ts). 

This data fit s a c urve of the form 

where 

Ao = 3.038 263 X 10-" 
A I = 1.652 534 X 10-" 
A z = 8.718 282 + 10- ' 
Z = Error in the rmocouple indi cation due to 

(pres um ably) lead losses. 
q = (Roo m T emp)-(The rmostat T e mp). 

During this experiment we used the tem perature 
of the water in the interfero mete r walls as the crite rion 
for judging tru e ball temperature . It was previously 
pointed out that this was false to the extent of about 
± 0.02 °C but an error of this magnitude has negligible 
effec t on the coefficients shown above. 

We feel quite certain that the major perturbation 
on the ball temperature indicated by the the rmocouple 
was heat flow in the thermocouple leads, but we do 
not understand why there is a slight quadratic bend in 
our data, nor why our data does not pass through zero 
(Ao=O). We believe that heat flow in the ball rotation 
control column may cause nonlinear data. Failure of 
the data to pass through the origin may indicate some 
perturbing influen ce we have not found. 

Ball temperatures reported during the interfero­
metric tests on their diameters were calculated as 
follows: 

1. The temperature span of the thermocouple was 
calculated from LlT= 4.12069 (emf) + 0.000585. 

2. The value of LlT, calculated thus, was algebraically 
added to the PRT indication of the temperature 
inside of the temperature well. This provided us 
with the temperature of the measuring junction. 

3. The difference between the room temperature 
and the temperature of the measuring junction 
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FIGURE 3. This is a plot of data taken during measurements on the errors in temper· 
ature observations caused by heat flow in the thermocouple leads. 

Th e horizontal axis is labe ll ed "Room temp. minus ball lem," , The data is actually based on rOHm tem perature 
minus the rmosta t temperat ure. however. as pointed out in the te xt, balliemperature and thermostallcmperature 
do not separat e by more than about ± .03 ° C. so errors in the plot from this assumption are negligible. The dotted 
line is only a visual estimate. The coefficie nts of the Quadrati c fit are given in Ihl' kxl. 

was taken to be an adequate indication of q 
(above), and the temperature of the measuring 
junction was corrected by the factor 

8.718 X 10- 4 X q2+ 1.652 X 10- 2 X q+3.038 X 10- 3 

We believe that the reported ball temperatures are 
uncertain by no more than 0.009 0c. 

2.4 .2.4. Etalon Length Measurements 

The detailed procedure for measuring the length 
of the etalon is given in Saunder's paper. It consists of 
modifying the basic configuration of the instrument so 
that interference occurs between beams of light 
reflected from the two etalon surfaces. One beam 
results from an internal reflection so that its phase is 
shifted by 180°. Our fringe fractions are calculated 
from measurements on rings of constructive inter­
ference and we assume that the phase shift in the 
shifted beam is a retardation. Under this assumption, 
the length of the etalon is given by 

E= ANE -0.316 
2 

where E is the etalon length , N E the total fringe count, 
integral plus fractional, and A the wavelen gth of the 
laser light. The - 0.316 in the numerator is the 180° 
phase shift correction mentioned above (A = 0.6328fL). 
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Our Lamb dip stabilized laser has been calibrated 
three times as follows: 

1970 0.632991408 J.Lm 
1971 .632991409 J.Lm 
1972 .632991411 J.Lm 

Our measurements were made between the second two 
calibrations, and we assume that the vacuum wave· 
length was 0.63299141OJ.L during ball measurements. 

We made six measurements on our etalon length 
at six different temperatures. The data is shown in 
table 3 and figure 4. It was found to fit a straight 
line of slope 0.036259J.L1 0c. From these tests we 
calculate the temperature coefficient of linear expan· 
sion to be 0.000 000 537, with a standard deviation of 
0.000 000 016. The NBS group specializing in this 
work estimated the coefficient of the quartz to be 
0.000000540 (± .000 000 03). 

2.4.2.5. Ball Diameter Measurements 

As previously mentioned, the ball diameter, D, 
is given by D=E - d L - dR , figure 2. The measurement 
of E was discussed in the previous section. Weare 
concerned here with the measurements of d L and 
dR . It is well known that the phase of light reflected 
from a steel surface is retarded with respect to light 
reflected from an equidistant quartz surface. This 
retardation has most recently been measured by 
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TABLE 3 

Resu me of raw data taken during Etalon measurements. Tests ET - 5 and ET -6 at the 
elevated temperature were made for use with the high tempe rature determ inat ion of 
ball diameters and volumetric ratios in Determination E-F. Fringes were photographed 
with the interfering light beams travelling in both directions through the interferometer. 
If there is a systematic difference, depending upon light bea m direction, it is below our 

abilit y to measure it rel iably. When all s ix observations on etalon length at the various 
te mperatures are fitted to a s t ra ight line, the slope of the line is such that the temperature 
coe ffi cient of lin ear expansion is 0.000 000 537. The six points fit the line to a co rrelat ion 
coefficient of 0.998. 

Test number 
Test date 

Parameters required for the Calculation of Temperature 
of test : 

Room temperature °C 
Potentiometer obs 'n emf 
Plat. res. thermometer °C 

Parameters required for 
wavelength: 

Vacuum wavelength 
Calc. temp. of tes t 
Barometric pressure 
Relative humidity 

Effective wavelength (= A) 

Observed fringe fractions : 
left-to- right 
right-to-Ieft 
left-to-right 
right-to- left 

Total fringe count (= N) 

the calculation of effecti ve 

/.L 
°C 

mm-Hg 
% 
/.L 

ET-l 
6-27- 72 

20.88 
0.0412 

20.541 

.632991410 
20.706 

748.66 
39.3 

.632822643 

Illegible 
Illegib le 

.679 
.70] 

213240.690 

ET- 2 
6- 29-72 

19.40 
0.0293 

19.171 

.632991410 
19.287 

745.26 
48.5 

.632822616 

.561 

.560 

.541 
.551 

213240.553 

Etalon length at teml?erature of the tes t 
= ((Nx A) -0.316) /2 /.L I 67471.610 67471.564 

Average values used in ball diameter measurements 
Etalon length /.L 
Temperature °C 

Determination A-B 
67471.5870 

19.996 

ET-3 
6- 30- 72 

19.40 
0.2955 

19.181 

.632991410 
20.412 

743.66 
47.5 

.632823649 

.366 
.343 
.341 
.338 

213240.347 

67471.609 

ET-4 
6-30-72 

19.40 
0.2974 

19.186 

.632991410 
20.414 

743.06 
46.9 

.632823782 

.292 
.307 
.296 
.280 

213240.293 

67471.606 

Determination C-D 
67471.6075 

20.413 

ET-5 
7-11-72 

21.00 
0.5490 

20.560 

.632991410 
22.847 

757.61 
38.3 

.632821898 

.216 

.185 

.202 

.201 
213241.201 

67471.692 

ET- 6 
7-12-72 

21.00 
0.5940 

20.652 

.632991410 
23. 128 

756.36 
42.5 

.632822377 

.076 

.078 

.090 

.074 
213241.079 

67471.705 

Determination E-F 
67371.6985 

22.987 
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FIGURE 4. This is a plot of the measurements made on the etalon. at various 
temperatures . 

Raw data are prese nted in table 3 from the data presented here the te mperature coefficient of linear expansion 
is indicated to be 0.000 000 537. 

Bennet [12] and we have used her value of 22° in 
our calculations. Inasmuch as we assume the 180° 
phase shift from a quartz reRector to be a retardation, 
we must for consistency assume the phase shift from a 
steel surface to be 202° (180° + 22°) retardation. 
This is 0.355 J.Lm in the case of light whose wavelength 
is 0.6328J.Lm. 

As pointed out previously we make two interference 
photographs, one associated with dL , the other with 
dR. Then 

dR = (n2 + R) ';.. - 0.355 
2 

where n) and n2 are the integral orders in the two 
interferograms and Land R the fractional orders. 
Adding the above two equations and letting n) + n2= N B 

we get 

d + d = (NB+L+R) ';..-0.710 
L R 2 . 

We have made four diametric measurements on 
each of our six balls. Each measurement is the average 
of 10 diameters (pairs of interferograms) taken uni­
formly over the spherical surface. The data are shown 
in table 4. The values of L, Rand L + R are shown. 
The sum, d L + dR, is the mechanical path difference 
(M.P.D.) and average values at average temperatures 
are shown in the caption. The temperatures in the 
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four measurements are averaged as are the four final 
calculated diameters for use in calculating coef. of 
expansion and the average values are shown in the 
caption. These four diameters at various temperatures 
are reduced to values at 20°C to provide a criterion 
for estimating the interferometric precision. The justifi­
cation for the value of the temperature coefficient of 
linear expansion used in this reduction is given in the 
following section. 

From the average diameter at 20 °C the volume of 
the ball at 20°C is calculated. These two average 
values are also given in the caption to table 4. 

2.4.2.6. The Temperature Coefficie nts of Linear Expansion of the Bulls 

In its present form our ball interferometer must be 
readjusted whenever its temperature is changed more 
than a few tenths of a degree. For this reason, it is 
not practical to insert a ball and vary the temperature 
to get data for a temperature-diameter slope. We have 
tried this, and the calculated slopes are unrealistically 
high. 

Our interferometer experiment provides us with a 
value of M.P.D. , that is, the difference between the 
length of the etalon and the diameter of the ball at 
the temperature of the test. An acceptable estimate 
of the coefficient can be obtained by dividing the 
diameter-temperature slope (lldia/lltemp) by the 
average diameter of the ball over this range, 6.3501 
cm. The slope may be calculated from the relationship 

(MPD @ t)) - (MPD @ tz) + (expansion of etalon) 
t2- l l 
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TABLE 4a. Resume of raw data taken during interferometric tests on Ball A 

Average test temperature = 20.2375°C 
Avere.ged measured diameter = 63500.2966/J-

Averaged meas ured MPD = 3971.2991 /.L 

Data reduction is based upon an assumed etalon length of 67471.5870 microns at 
19.996 °C based upon the average values obtained in Etalon tests ET-l and ET-2. The 
temperature coefficient of linear expansion of the etalon is assumed to be 0.000 000 537 

and of the steel ball , 0.000 012 272. The valu ~s of the diameter of the ball at 20°C repro· 
duce in the four tes ts to a standard deviation of the mean of 0.0070 microns. Average 
Values at 20°C: Dia 6.350 011 16 cm; Vol. 134.067 062 cm" 

Date of tes t 

2- l"t'-72 2-28- 72 3-3-72 3- 6- 72 

1st .288 .286 .292 
Potentiometer Indication of thermocouple output (milli· 2nd .288 .287 .292 

volts nominal) 3rd .288 .286 .292 
4th Avg. .288 Avg. .286 Avg. .291 Avg . 
5th .2628 .287 . 2878 .285 .2860 .291 .2916 

Room temperature °C 19.32 19.25 19.30 19.40 
Thermocouple span °C 1.084 1.187 1.179 1.202 
Reference temperature well - PRT °C 19.182 19.017 19.048 19.006 
Correction for lead losses °C .012 .012 .011 .010 
Temperature of ball diameter tes t °C 20.278 20.216 20.238 20.218 
Barometric pressure °C 748. 66 750.01 742 .19 755.86 
Relative humidity mm·Hg 21.4 25 .2 33 .3 14.7 
Effective wavelength (A) /J- .6328 22277 .6328 21958 .6328 23789 .6328 20572 

R = Right fraction L = Left fraction L R L+R L R L+R L R L + R L R L+R 

1 st .872 .238 .1l0 .370 .984 .354 .795 .422 .217 .364 .921 .285 
2nd .514 .639 .153 .649 .634 .283 .293 .783 .076 .192 .038 .230 
3rd .893 .156 .049 .632 .631 .263 .491 .535 .026 .923 .194 .1l7 
4th .528 .563 .091 .769 .564 .333 .313 .803 .1l6 .197 .053 .250 

Fringe fractions calculated from measurements made on 5th .694 .453 .147 .477 .841 .318 .192 .054 .246 .868 .363 .231 
interferometer negatives (constructive interference) 6th .425 .668 .093 .046 .276 .322 .103 .068 .171 .972 .360 .332 

7th .414 .700 .1l4 .286 .014 .300 .176 .888 .064 .144 .1l0 .254 
8th .855 .307 .162 .445 .823 .268 .681 .411 .092 .036 .148 .184 
9th .395 .738 .133 .211 .894 .105 .915 .318 .233 

10th .672 .436 .108 .351 .707 .058 .163 .219 .382 

Average .1l6 .305 .1l7 .250 

Total fringe count (N) 12552 .116 12552.305 12552.117 12552.250 
((N X A) - 0.710)/2 = MPD J1. 3971.2743 3971.3321 3971.2841 3971.3060 
Etalon length at tes t temperature /J- 67471.5972 67471. 5950 67471.5957 67471. 5950 
Ball diameter at tes t tem perature /J- 63500.3229 63500.2629 63500.3116 63500.2890 
Ball diameter at 20 °C /J- 63500.1063 63500.0946 63500.1262 63500.1191 

----
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TABLE 4b. Resume of raw data taken during interferometric tests on Ball B 

Average tes t temperature = 20.2275 O( 
Averaged measured diameter=63500.2614 /J-
Averaged Measured MPD = 3971.3340 /J-

Data reductio.n is based UPo.n an assumed etalo.n length o.f 67471.5870 micro. ns at 
19.996 O( based UPo.n the average values o.btained in Etalo.n tests ET-l and ET-2. The 
temperature co.efficient o.f linear expansio.n o.f the etalo.n is assumed to. be 0.000 000 537 

and o.f the steel ball, 0.000012272. The values o.f the diameter o.f the ball at 20 O( repro.· 
duce in the fQur tests to. a standard deviatiQn o.f the mean o.f 0.0040 mi crQns. Average 
Values: Dia @ 20 °( =6.350 0084 cm VQI. @ 20 0( = 134.066 888 cm" 

Date o.f test 

2-18-72 2-29-72 3-7-72 3-8-72 

Po.tenti o. meter indicati o.n o.f thermo.co.uple o.utput (milli· 1st .274 .293 .290 
Vo.lts nQminal) 2nd .274 .293 .291 

3rd .273 .294 .290 
4th Avg. .274 Avg. . 293 Avg. .289 Avg . 
5th .2526 .2737 .2932 .2900 

RQQm temperature O( 19.30 19.30 19.30 19.30 
Thermo.cQuple span O( 1.042 1.128 1.209 1.196 
Reference temperature well- PRT O( 19.194 19.095 18.995 19.006 
(o.rrectiQn fo.r lead lo.sses O( .012 .Oll .Oll .Oll 
Temperature o.f ball diameter tes t O( 20.248 20.234 20.215 20.213 
Barometric pressure mm·Hg 749 .56 748.46 751.74 747. 09 
Relative humidity % 25.5 30.2 20.1 24.5 
Effective wavelength (A) /J- .6328 22081 .6328 22350 .6328 21535 .6328 22612 

R = Right fractio.n L = Left fracti o.n L R L + R L R L+R L R L + R L R L+R 

1st .711 .705 .416 .157 .186 .343 .216 .174 .390 .645 .780 .425 
2nd .047 .254 .301 .628 .563 .191 .676 .697 .373 .361 .031 .392 
3rd .443 .808 .251 .934 .316 .250 .128 .039 .167 .500 .803 .303 

Fringe fractio.ns calculated frQm Measurements made o.n 4th .1l3 .136 .249 .679 .624 .303 .342 .940 .282 .495 .782 .277 
interferometer negatives (co.nstructive interference) 5th .353 .852 .205 .043 .237 .280 .468 .861 .329 .902 .428 .330 

6th .034 .251 .285 .658 .682 .340 .060 .201 .261 .199 .132 .331 
7th .1l2 .123 .235 .264 .995 .259 .058 .281 .339 .557 .905 .462 
8th .798 .517 .315 .470 .778 .248 .293 .091 .384 .622 .826 .448 
9th .975 .297 .272 .439 .793 .232 .267 .054 .321 .532 .717 .249 

10th .946 .282 .228 .916 .459 .375 .362 .948 .310 .525 .810 .335 

Average .276 .282 .316 .355 

To.tal fringe co.unt (N) 12552.276 12552.282 12552.316 12552 .355 
((Nx A) -0.710) /2= MPD /J- 3971.3237 3971.3273 3971.3329 3971.3520 
Etalo.n length at test te mperature /J- 67471.5961 67471.5956 67471.5949 67471.5948 
Ball diameter at test temperature /J- 63500.2724 63500.2683 63500 .2620 63500.2428 
Ball diameter at 20 O( /J- 63500.0792 63500.0860 63500.0945 63500.0769 

- ----- -- -_ .. _ -- ----
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TABLE 4c. Resume of raw data taken during interferometric tests on Ball C 

Average test temperature 20.2653°( 
Averaged measured diameter= 63500. 1918 JL 
Averaged :vIeasured MPD = 3971.4104 JL 

Data reduction is based upon an assumed eta Ion length of 67471.6075 microns at 
20.413 O( based upon the average values obtained in Etalon tests ET-3 and ET- 4. The 
te mperature coeffic ient of linear expansion of the eta lon is assumed to be 0.000 000 537 

and of the steel ball, 0.0000 12272. The values of the diameter of the ball at 20 O( repro· 
du ce in the four tests to a standard deviation of the mean of 0.0060 micron. Average 
Values: Dia @ 20 O( = 6.349 9985 cm Vol @ 20 ° (= 134.066 261 cm" 

Date of tes t 

3-13-72 3-15-72 3-17-72 3-20-72 

Potent iometer indication of thermocouple output (milli· 1st .289 .286 .287 .285 
volts nominal) 2nd .289 .285 .287 .286 

3rd .288 .286 .287 .285 
4th .288 Avg. .285 Avg. .287 Av g. .285 Avg . 
5th .2885 . 2855 .2870 .2852 

Room temperatu re O( 19.30 19.32 19.20 19.30 
Thermocouple span O( 1.189 1.177 1.183 1.176 
Re£erence temperature well- PRT O( 19.065 19.073 19.066 19.084 
(orrection for lead losses O( .012 .011 .013 .012 
Tempera ture of ball diameter test :H\.1 O( 20.266 20.261 20.262 20.272 
Barometric pressure Inm-H g 755.14 749.04 732.68 758 .36 
Relative humidit y % 33.4 28.3 35.4 21.3 
Effecti ve wavelength (A) JL .632820878 .6328222 23 .6328259 67 .6328 200 79 

R = Right frac tion L= Left fraction L R L+R L R L+R L R L+R L R L+R 

1st .608 .942 .550 .1l6 .427 .543 .337 .157 .534 .393 .163 .556 
2nd .715 .942 .657 .402 .095 .497 .967 .692 .659 .103 .553 .656 
3rd .564 .007 .571 .882 .715 .597 .483 .919 .402 .380 .262 .642 

Fringe fractions calculated from measurements made on 4th .418 .965 .383 .440 .103 .543 .732 .804 .536 .866 .928 .794 
interferometer negatives (constructi ve in terference) 5th .222 .175 .397 .017 .444 .461 .146 .328 .474 .901 .673 .574 

6th .998 .504 .502 .890 .654 .544 .796 .848 .644 .006 .494 .500 
7th .748 .850 .598 .353 .202 .555 .655 .743 .398 .587 .996 .583 
8th .965 .681 .646 .569 .133 .702 .794 .663 .457 .380 .054 .434 
9th .332 .089 .421 .812 .788 .590 .1 71 .319 .490 .353 .124 .477 

10th .031 .434 .465 .994 .721 .715 .526 .025 .551 .635 .899 .534 

Average .519 .575 .515 .575 

Total frin ge count (N) 12552.519 12552.575 12552.515 12552.575 
((NX A) -0.710) /2= :VIPD !J- 3971.3930 3971.4192 3971.4237 3971.4058 
Etalon length at tes t temperature !J- 67471.6022 67471.6020 67471.6020 67471.6024 
Ball diameter at tes t tempera ture !J- 63500 .2092 63500.1828 63500 .1783 63500. 1967 
Ball diameter at 20 O( !J- 63500.0019 63499.9795 63499.9741 63499 .9848 
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TABLE 4d. Resume of raw data taken during interferometric tests on BaLL J) 

Average test temperature 20.2678 °c 
Averaged measured diameter=63500.3969!J­
Averaged Measured MPD = 3971.2054 !J-

Data reduction is based upon an assumed etalon length 67471.6075 microns at 20.413 °c 
based upon the average values obtained in Etalon tests ET-3 and ET-4. The temperature 
coefficie"nt of linear ex"pansion of the etalon is assumed to be 0.000 000 537 and of the steel 

hall , 0.0000 12272. The va lues of the diameter of the ball at 20°C reproduced in the four 
tests to a standard deviation of the mean of 0.0041 micron. Average Values: Dia @ 
20 °C= 6.3500188 cm Vol @ 20 °C= 134.067547 cm" 

Date of test 

3-14-72 3-16-72 3-21-72 3-22-72 

Potentiometer indication of thermocouple output (milli· 1st .287 .289 .287 .286 
volts nominal) 2nd .287 .289 .287 

3rd .287 .290 .287 
4th .287 Avg. .289 Avg. .286 Avg. Avg. 
5th .2870 .2893 .2867 .286 

Room temperature °C 19.32 19.30 19.30 19.30 
Thermocouple span °C 1.183 1.193 1.182 1.179 
Reference temperature well-PRT °C 19.071 19.055 19.079 19.081 
Correction for lead losses °C .012 .012 .012 .012 
Temperature of ball diameter test °C 20.266 20.260 20.273 20.272 
Barometric pressure ITIln-Hg 750.28 744.16 756.01 737.16 
Relative humidity % 32.4 29.7 31.9 38.7 
Effective wavelength (A) !J- .6328219 71 .632823335 .632820676 .632824981 

R = Right fraction L = Left fraction L R L+R L R L+R L R L+R L R L+R 

1st .236 .768 .004 .799 .423 .222 .246 .591 .837 .096 .652 .748 
2nd .765 .274 .039 .393 .562 .955 .675 .207 .882 .463 .454 .917 
3rd .430 .368 .798 .831 .083 .914 .806 .142 .948 .011 .753 .764 

Fringe fractions calculated from measurements made on 4th .012 .807 .819 .991 .070 .061 .935 .957 .892 .332 .456 .788 
interferometer negatives (constructive interference) 5th .703 .076 .779 .772 .017 .789 .140 .730 .870 .534 .406 .940 

6th .063 .913 .976 .530 .285 .815 .900 .935 .835 .555 .253 .808 
7th .944 .874 .818 .746 .215 .961 .675 .258 .933 .122 .737 .859 
8th .890 .907 .797 .794 .178 .972 .077 .016 .093 .587 .322 .909 
9th .371 .664 .035 .194 .659 .853 .720 .100 .820 .881 .854 .735 

10th .355 .691 .046 .459 .306 .765 .962 .907 .869 .310 .386 .696 

Average .911 .931 .898 .816 

Total Fringe Count (N) 12551. 911 12551.931 12551.898 12551.816 
((N X A) -0.710) /2 = MPD !J- 3971.2075 3971.2224 3971.1953 3971.1964 
Etalon length at tes t temperature !J- 67471.6022 67471.6020 67471.6024 67471.6024 
Ball diameter at test temperature !J- 63500.3947 63500.3796 63500.4071 63500.4060 
Ball diameter at 20°C !J- 63500.1874 63500.1770 63500.1944 63500.1941 
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T ABLE 4e . R esume of raw data taken during interferometric tests on B all E 

Average tes t tem perature 22.8835 °C 
Averaged measured diameter = 63502.3533 !1. 
Averaged Measured MPD = 3969 .3415 !1. 

Data reduction is based upon an assumed etalon length of 67471.6985 microns at 
22.987 °C based upon the average values obtained in Etalon tes ts ET-5 and ET- 6. The 
temperature coeffi cient of linear expansion of the etalon is assumed to be 0.000 000 537 

and of the steel ball , 0.000012272. The values of the diamete r of the ball at 20 o( repro· 
duce in the four tests to a standard deviation of the mean of 0.0054 microns. Average 
Values : Dia @ 20 °C = 6.3500106 c m Vol @ 20°C = 134.067 028 c m3 

Date of tes t 

5- 3- 72 5-8-72 5-11-72 5-11-72 

Pote ntiometer indication of thermocouple output (milli· 1st .614 .615 .598 .594 
volts nominal) 2nd .614 .614 .599 .595 

3rd .615 .614 .599 .595 
4th .614 Avg. .614 Avg. .599 Avg. .594 Avg . 
5th . 6142 .6142 .5987 .5945 

Room temperature °C 20.60 20.50 20 .58 20.60 
Thermocouple s pan o( 2.532 2.532 2.468 2.450 
Reference te mperature well-PRT °C 20.379 20.361 20.341 20.351 
Correc tion for lead losses °C .030 .032 .029 .029 
Te mperature of ball diameter tes t °C 22.941 22.925 22.838 22.830 
Barometri c pressure mm·Hg 745.61 747.91 759.11 758.66 
Relative humidity % 42.2 41.7 23.9 22.4 
Effective wavele ngth (A) !1. .632824672 .632824143 .632821449 .632821534 

R = Right fracti on L = Left fraction L R L+ R L R L + R L R L+R L R L+R 

1st .505 .316 .821 .946 .992 .938 .989 .155 .144 .230 .988 .218 
2nd .708 .115 .823 .992 .795 .787 .666 .520 .186 .544 .569 .113 
3rd .064 .723 .787 .699 .193 .892 .917 .273 .190 .807 .348 .155 

Fringe fractions calculated from Measurements made on 4th .225 .563 .788 .690 .239 .929 .825 .320 .145 .982 .116 .098 
interferometer negati ves (constructive interference) 5th .954 .838 .792 .131 .749 .880 .414 .720 .134 .178 .993 .171 

6th .054 .752 .806 .614 .280 .894 .321 .859 .180 .935 .199 .134 
7th .534 .200 .734 .824 .106 .930 .650 .448 .098 .853 .317 .170 
8th .290 .451 .741 .758 .1 72 .930 .653 .557 .210 .565 .566 .131 
9th .874 .894 .768 .682 .209 .891 .868 .244 .112 .359 .790 .149 

10th .246 .458 .704 .094 .782 .876 .290 .863 .153 .183 .982 .165 

Average .776 .895 .156 .150 

Total frin ge count (N) 12545.776 12545.895 12546.156 12546.150 
((N x A) - 0.710 )/2= MPD !1. 3969.2833 3969.3176 3969.3833 3969.3819 
Etalon le ngth at tes t te mpe rature !1. 67471. 6969 67471.6963 67471.6931 67471.6928 
Ball diameter a t tes t te mperature !1. 63502.4136 63502.3787 63502.3098 63502.3109 
Ball diameter at 20°C !1. 63500.1217 63500.0993 63500.0982 63500.1055 

-
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TABLE 4f. Resume of raw data taken during interferometric tests on Ball F 

Averal(e tes t temperature = 22.9153 °C 
Avera~ed meas ured diamet er= 63502.3682 /.L 
Avera~ed Meas ured MPD = 3969.3278 /.L 

Data reduction is based upon an assumed etalon length of 67471.6985 microns at 
22.987 °C based upon the average values obtained in Etalon tests ET-5 and ET-6. The 
temperature coefficient of linear expansion of the etalon is assumed to be .000 000 537 

and of the steel ball , .0000 12272. The values of the diameter of the ball of 20°C repro· 
duce in the four tests to a standard deviation of the mean of 0.0064 microns. Average 
Values: Dia @ 20 °C = 6.350 0096 cm Vol @ 20°C = 134.066 966 cm 3 

Date of test 

5-2-72 5-2-72 5-4- 72 5-10-72 

Potentiometer indication of the rmocouple output (milli - 1st .604 .604 .616 .596 
volts nominal) 2nd .604 .604 .616 .596 

3rd .605 .604 .616 .596 
4th . 604 Avg . .604 Avg. . 616 Avg . .596 Avg. 
5th .6042 6040 .6160 .5960 

Room temperature °C 20.70 20.70 20.50 20.60 
Thermocouple span °C 2.490 2.489 2.539 2.456 
Refe rence tem perature well- PRT °C 20.421 20.421 20. 369 20.357 
Correction for lead losses °C .029 .029 .032 .029 
Temperature of ball diameter test °C 22.940 22 .939 22. 940 22.842 
Barometri c pressure mm-H~ 748.21 748.11 746.98 754.06 
Relati ve humidity % 42. 3 41.6 36.5 32 .0 
Effective wave length (A) /.L .632824089 .632824106 .632824321 .6328 22643 

R= Right fraction L= Left fraction L R I. + R L R L + R L R L + R L R I.+R 

1st .747 .183 .930 .609 .224 .833 .595 .332 .927 .477 .772 .249 
2nd .139 .727 .866 .796 .107 .903 .054 .848 .902 .482 .744 .226 
3rd .441 .432 .873 .293 .521 .8 14 .465 .365 .830 .077 .086 .163 

Fringe fra ctions calculated from measurements made on 4th .285 .527 .812 .401 .475 .876 .969 .951 .920 .663 .523 .186 
interferometer negatives (cons tructive interference) 5th .947 .853 .800 .535 .223 .758 .853 .013 .866 .201 .980 .181 

6th .126 .579 .705 .280 .591 .871 .901 .006 .907 .632 .582 .214 
7t h .244 .547 .791 .379 .395 .774 .130 .721 .851 .150 .941 .091 
8th .090 .866 .956 .560 .207 .767 .689 .173 .862 .834 .409 .243 
9th .658 .166 .824 .960 .964 .924 .351 .490 .841 .910 .189 .099 

10th .866 .011 .877 .424 .388 .812 .341 .388 .929 .002 .102 .104 

Average .843 .833 .884 .176 

Total fringe count (N) 12545.843 12545.833 12545.884 12546.176 
((N X A) - 0.710) /2 = MPD /.L 3969.3008 3969.2978 3969.3153 3969.3971 
Etalon length at test temperature /.L 67471.6968 67471.6968 67471.6968 67471.6933 
Ball diameter at test temperature /.L 63502.3960 63502.3990 63502.3815 63502.2962 
Ball diameter at 20°C /.L 63500.1050 63500.1086 63500.0904 63500.0814 



where tl is the lower te mpe rature and t2 the higher. 
We have measured the MPD of balls A and B at about 
20.2 °C and (under the na mes E and F) at about 23 
°C a nd presented the data in table 4. By thi s pro­
cedure we estimate the coefficie nt of A to be 0.000 
012 220 and B to be 0.000 012 324. 

T he manufac turer beli eves the coeffi c ie nts of the 
balls (whatever their magnitude) to be about eq ual 
because they were from th e same metallurgical 
stoc k, subjected to the same heat treatme nt and same 
mechanical surface work. Accordin gly, we ha ve 
averaged the above two values and ap pli ed this 
average, 000 012 272 to all balls. 

2.5. Hydrostatic Transfer of Volumetric Information 
from the Spheres to the Crystals 

Several years ago, BIPM circula ted a one-kilogram 
metal objec t a mong the major na tional me trology 
laboratories for a density determination. The spread 
of data among this very sophi sticated group amounted 
to about 14 ppm. Although part of thi s s pread could 
most ce rtainly be ascribed to differences in de ns ity of 
the water samples used , we have always believed 
(without proof) that this was another demonstration 
of the basic imprecision of th e classical hydros tati c 
weighing experim ent. In s pite of th e shortco min gs of 
this experiment , nobody has suggested a more precise 
procedure for routine densi ty co mpari sons. Although 
the thermal Cartesian Dive r of S pae pe n [13] and the 
pressure Cartes ian Diver of Bowm an a nd Schoonover 
[6] are about two orders more prec ise tha n ordin ary 
hydrosta ti c weig hin g, th e co mplexity of suc h sys te ms 
immediately eliminates th e m from the " routin e" 
catego ry. 

The volumetric information co ntained in our 
spheres was too dear to us to di ssipate unnecessaril y 
in the imprecision of a c lassical hydrostati c tran sfe r 
experiment, so we had previously devoted a great deal 
of effort to improving thi s precision . We have found it 
expedient to modify both the hydros tati c syste m a nd 
the experimental philosophy. 

2.5.1. The Hydrostatic System 

There a re four co mponents of the hydrostatic weigh­
ing system: (1) the suspension, (2) the liquid, (3) the 
immersed pan loading assembly, and (4) the hydro­
static balance. Each component contributes to impre­
cision ; but if choices are made with care, total 
variability may be restricted to i·easonable bounds. 

2 . 5 . 1.1. The Hydrostatic Suspe nsio n 

This is the member which delivers the load from 
the immersed structure to the balance. Its most 
critical co mpone nt is the suspension wire whic h passes 
through the air· liquid interface. Inasmuch as we have 
already published [14] a procedure for redu cing 
variability from this source to a few micrograms it 
will not be co mme nted upon here . 

2.5.1.2. The Hydro8tatic Liquid 

The intent of the hydrostati c weighing experim e nt 
is accomplis hed by observing the buo yant force exerted 

-- -----

on the object of interes t by the liquid . The liquid 
exerts two independent effec ts on the prec ision of the 
ex perim e nt. The greater its de ns ity , the greater is th e 
magnitude of the buoyant force exerted by th e liquid , 
a nd the easier it is to meas ure in the presence of many 
s mall perturbing forces. The liquid we have c hose n is 
a fluorocarbon whose de nsity (l.8g/cm3 ) is almost 
twice that of water so that precision is almost doubled. 
Thi s substance has been used in this service for many 
years by atomic reactor experimenter s and it has 
proved to be a n excellent choice. 

One of th e majo r perturbing forces associated with 
the use of water arises from its large and va ri abl e 
s urface te nsion. The penetration wire minimizes mos t 
of these effec ts when it is skillfully pre pa red. The 
fluorocarbon we use has a surface te nsion vnly a bout 
one fifth that of water (15 versus 75 d yn/c m) whi c h 
has the e ffect of improvin g wire performan ce e ve n if 
incorrec tl y or sloppily prepared . 

An additional major advantage of thi s liquid is its 
vast appe tite for absorbin g gas . Thi s gives a great deal 
of protection agains t variability associated with sur· 
face bound tiny bubbles on immersed loads. 

2 .5. 1.3. TIIf' IlIIm~'rs(>d Pun Louding Asscmhly- Re dunda ncy 

A tim e honored tec hnique for minimizin g ra ndom 
variabi lit y in a process is to make "many" inde­
pendent observations. 

In co mparing two qua ntiti es th e ex perim ente r has 
a vailable only one compari so n co mbination. In workin g 
with three quantities he has onl y three co mbinations. 
W he n he works with four qua ntities he has six co m­
binations, a nd under these c ircum stances he has the 
redunda ncy necessary to make a meanin gful redu ction 
in random variability. 

Figure 5 is a sche mati c s ketc h of our imm ersed pan 
loading assembly, from which it is obvious that we 
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---- ---------- LIQU ID SUR FACE 

IMMERSED 

29 

SU PPORT PEG FOR FLAT 
SUR FACE OBJEC T S 

STEEL SP HERE WAITIN G TO BE 
'iYDROSTAT ICA LLY WEIGHED 

Ii 
~ THI S CO LUMN ROTATES AND SLI DES 
t VERTI CALLY IN ORDER T O EXCHANGE 
+ LOADS ON IMM ERSED PAN 

ST EEL SPHERE RE STING IN CO NCAVE CUP 
OF IMMERSED PAN BEING WEIGHED 

FIGURE 5. Immersed pan loading mechanism. 



are able to compare four different loads in a single 
experiment. The sketch shows two of the loading 
trays carrying two silicon crystals each, a third tray 
carrying ball B and the fourth tray (which normally 
carries ball A) empty, inasmuch as ball A is on the 
immersed pan. 

With the apparatus loaded as illustrated we may 
compare the four loads (two balls and two pairs of 
silicon crystals) in all six combinations. This co m· 
parison format is called a 4-1 series and is the format 
used throughout this work. It should be noted that by 
varying the co mbinations of loading that many differ· 
ent 4-1 series may be conducted on the same two balls 
and four crystals. W e utilized the four co mbinations 
shown below: 

TRAY 1 TRAY 2 TRAY 3 TRAY 4 

BALL A BALL B X2+X3 X4+X5 
BALL A BALL B X2+X4 X3+X5 
BALL A BALL B X2+X5 X3+X4 

X2 X3 X4 X5 

2.5.1.4. The Hydro8tatic Balance and ltA Calibration 

Other factors being equal, the data spread among 
independently measured densities decreases with 
increasing sample size. In our 1967 paper on hydro· 
static weighing in water, we demonstrated that a single· 
pan, damped, direct-reading balance would provide 
density values spreading by 3 ppm (worse case) for 
10 cubic centimeter samples. This was significantly 
better than our previous work using a free-swinging, 
equal-arm balance. For this reason, and others men­
tioned in that paper, we abandoned the conventional 
balance, and since that time, all critical density work 
at NBS has been performed on single-pan, direct­
reading instruments. 

In 1967 we recommended the single-pan direct­
reading balance as the best available instrument and, 
to date, we have found no evidence to suggest a change 
in this position. We have used two balances of this type 
in the work reported here. In the earlier paper we 
speculated upon the ideal hydrostatic balance (servo­
driven-to-null) and we have commenced development 
of such a device. We feel confident that this balance 
will improve the hydrostatic experiment by about an 
order of magnitude_ Until this device is complete we 
shall continue use of the simple instrument. 

In informal and unreported experiments on conventional free· 
swinging equal· arm balances we found several modifications which 
would improve their hydrostatic precision. The application of 
strong vertical temperature gradients in the balance case as de· 
scribed by Macurdy, NBS , [1 5] reduced random variability. The 
application of external damping was even more effective. Reducing 
sensitivity (by lowering the gravity knob) to the point where read· 
ability and reproducibility were about equal actually improved the 
latter. The use of a large· volume hydrostatic chamber appeared to 
give higher precision data than small chambers. 

We believe that the vertical oscillatIOns ot an Immersed loao 
suspended from a free-swinging balance are damped by the viscous 
action of the liquid on the load. During this process, momentum is 
transferred from the oscillating system to the liquid where it mani­
fes ts itself as turbulence. This turbulence result s in faulty "turning 
point" data . We believe that system damping s hould be such that 

30 

momentum is removed complete ly from the hydrostatic system such 
as is true for damping by air or magnetic eddy currents and the 
heavier this damping, up to near criti cal, the better because the 
quicker the osci ll ations are damped to zero, the less the turbulence 
in the liquid. 

We believe that by the judicious use of the techniques mentioned 
above and perhaps so me others, hydrostatic work on the free 
swinging balance could be significan tly improved. Conside rin g the 
re lati ve ease of achieving ppm result s with a direct-reading bal­
ance, it is quest iona ble whether the required expenditure of effort 
would be justified. 

In the s ingle-arm direct- reading damped balance, 
the maximum vertical motion of the suspension is 
about 3 millimeters, and the motion is quickly damped 
externally to near zero. In a balance of this type, 
built-in balance weights may be added to or removed 
from the suspension by remote control dials which 
cause only slight motion being induced in the bath. 

Co mmercially available sin gle-pan direc t-reading 
balan ces are intended for use in the air weighings 
mode, and in suc h service they satisfy most weighing 
require me nts. When they are put to use in the hydro­
s tatic mode it is necessary that the direct-reading 
data be interpreted in a s lightly different manner in 
the data reduction process. The data are obtained from 
the balance by means of two devices - the numbe rs 
e ngraved on the weight changing dial(s) and the num­
bers projected on a screen from a hi ghly magnified 
view of a small reticle attac hed to the beam counter­
weight sys te m. 

1. SCREEN READINGS. The manufacturer of the 
balance assigns mass designations to the screen read­
in gs which are app ropriate for use in the air weighing 
mode. These designations are based upon assumptions 
regarding the density of the objects to be weighed and 
that the only screen-related force in the system is 
associated with beam-angle moments. In the hydro­
static mode there must necessarily be a wire penetrat­
ing the liquid surface. The dip section of this wire (the 
section which is sometimes immersed in the bath and 
sometimes exposed to air) exerts two forces on the 
suspension system - a constant force and also a force 
which is directly proportional to the screen reading. 
Although neither of these forces have to be evaluated 
independently, as will be shown in the section follow­
in g, the screen-related force demands that we interpret 
the screen readings merely as numbers indicating the 
angle of the beam counterweight system. This inter­
pretation satisfies all requirements of the double 
substitution force comparison solution given in the 
next section. 

2. THE DIAL READINGS. The numbers engraved on 
the weight manipulation dials are intended for use in 
direct-weighing in air of loads placed on the weighing 
pan. In the air weighing situation they indicate (in 
units of apparent mass versus brass [16]) the mass of 
balance weights removed from the suspension. In the 
calibration procedure it is necessary to determine the 
true mass of weights actually loading the suspension 
for each dial reading to make a true comparison be­
tween the forces associated with an immersed load 
and those associated with the built-in balance weights 
(in air). There are two methods of obtaining a calibra­
tion. The easiest is by weighing standard weights on 



the pan of the balance. This was discussed in our 1967 
paper. The other technique is to remove the weights 
from the balance and calibrate them in the same 
manner that one would use in the calibration of any 
other standard weight. 

A requirement of a direct· reading balance to be used 
in hydrostatic work is that the major weights of the 
balance have densities equal to a few parts in 10 4• 

Most manufacturers meet this requirement. We 
verified by experiment that this requirement was 
satisfied in the balances used in our work. 

When the hydrostatic balance is to be used in the 
most critical work, the built-in weights should be 
calibrated in two steps: 

1. All weights should be removed from the balance 
and the total mass (of the summation) should be deter­
mined. Out of this test we obtain a value of the correc­
tion to the nominal value of the summation and an 
estimate of the uncertainty in this value. 

2. The balance weights should then be intercom· 
pared in combinations which permit a calculation of 
the fraction of the summation mass contained in each 
individual balance weight. 

2.5 .2. Hydrostatic Weighing on a Direct-Reading Balance 

Our objective in hydrostatically we ighi'ng an object 
is to obtain a value of I , de fined as 

I=M-pIY 

where M and V are the mass and volume respectively 
of the object and PI, the de nsity of the liquid. 

For several years we have determined I from a 
double substitution comparison betwee n the (unknown) 
force associated with the imm ersed load and the 
(known) force associated with the built·in weights of a 
single-arm direct-reading balance. The format which 
we use in making thi s comparison consis ts of five 
balance observations unde r various load condition s. 
The entire comparison requires four minutes because, 
we have found , res ults are most reproducible when 
there is a one minute interval between observations. 
The five load conditions are: 

1. With the immersed pan empty 
2. With the immersed pan loaded by the object of 

interest 
3. With the sensitivity weight added (in air) 
4. With the load removed from the immersed pan 
5. With the sensitivity weight removed - the first 

and fifth load conditions are the same. 

Each observation requires the recording of two data 
(1) the dial reading which indicates the combination 
of the built-in balance weights whic h are in place and 
loading the suspension, (2) the screen reading which 
is taken as a number indicating the beam·counter­
weight angle with respect to some fixed reference. As 
pointed out in the previous section, this is not the 
interpretation placed on direct-reading balance data 
in the ordinary weighing situation. 
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In the first, fourth and fifth observations, taken 
with the immersed pan e mpty, the dial readings will 
be the same (D; = Do), and in the second and third , 
with the immersed pan loaded (D;= Dd. The five 
screen readings, s, to S5, are usuall y differe nt. The 
balance data a re therefo re of the form 

Do, S, 

D/~ , S2 

DL , S 3 

Do, S4 

Do, S5 

In our 1%7 paper [14] on hydrostatic weighing we 
presented a detailed discussion of the linearity be­
tween the beam angle and changes in the total suspen­
sion force. We described how the linearity may be 
evaluated in a simple experiment and how to correct 
observed data if linearity was judged to be inadequate. 
Since the date of that paper, we have evaluated 
several single-arm, direct-reading balances , and we 
have not found any to be inadequately linear for 
hydrostatic work. 

Subject to the following assumptions, we may write 
equations associated with suspension forces under 
each of the five load conditions listed above: 

1. That the beam angle, as defined by screen read­
ings, is a linear indicator of the difference between 
the total suspension force and a fixed reference force 
associated with the counter-weight system. 

2. That prior calibration effort has provided us with 
knowledge of the true mass and density of each of the 
three balance weights involved in the double-substitu­
tion comparison. These three weights are: 

a. Do- the combination of balance weights loading 
the suspension when the dial reads Do. 

b. D L - the combination of balance weights loading 
the suspension when the dial reads D/~ . 

c. 5 - the sensitivity weight. 

3. That the density, PH, of these three weights is 
equal. 

4. That the following parameters are constant during 
the four minute observation interval: 

a. The air density, PA, in the balance case. 
b. The bath density, PL. 
c. The volume and density of the meniscus. 

5. That there are no perturbing turbulent forces. 
6. That the drift in the system is linear with time. 
The five observation equations to be written consist 

of various combinations of forces . With the exception 
of the unknown force exerted by the immersed load, 
Ig (where g is the acceleration due to gravity at the 
immersed pan level) these forces fall into three classes: 

1. Forces which are constant over the observation 
interval. These forces need not be evaluated because 
they are eliminated during the solution of the system 



of observation equations. They may be added directly 
and the value of C assigned to their sum. These forces 
are: 

a. The force exerted by the portion of the suspension 
which is never immersed in the bath. 

b. The forces exerted by the portion of the suspen­
sion which is always immersed. 

c. The constant component of force exerted by the 
dip section of the suspension wire. 

d. The reference force. 
e. The meniscus force. 

2. Forces which are linearily related to the beam 
angle (and hence the screen reading). There are two 
such forces: 

a. KIs;, where KI is the proportionality constant 
between the screen reading, s;, and the difference 
between the constant reference force and the total 
suspension force. 

b. K2s;, where K2 is the proportionality constant 
between the screen reading, Si, and the com­
ponent of force exerted by the dip section of the 
suspension wire which is screen related. 

These two forces need not be previously evaluated 
because they are added together as 

and are evaluated (as a sum) during the solution of the 
system of observation equations. 

3. The forces which are exerted by the three balance 
weights involved in the comparison. These three forces 
are: 

where gl is the acceleration due to gravity at the 
vertical level in the balance case in which the balance 
weights are loaded on the suspension. 

The five observation equations and a method of 
solving them for the value of I are as follows: 

1. C+F DO =slK 
2. C+FDL+Ig =s2K 
3. C+FDL +Ig+Fs =s3K 
4. C+FDO+Fs =s4K 
5. C+FDO =s5K 

Subtracting eq (1) from eq (2) gives us a value of Ig in 
terms of K. Subtracting eq (2) from eq (3) provides us 

with a value of K so that we may write our first value 
of Ig from the double substitution force comparison 

A similar manipulation of eqs (3), (4), and (5) gives us 
the second value 

I" F F F [S 3 - S4J g= DO- Dt+ s ---
S4 -s 

Letting 
S2 - SI S 3 -S4 --+--
S3-S2 S4-S5 

S 
2 

we may write the average value of Ig which is used 
during data reduction 

I'g+J"g 
Ig= 2 =FDO-FDt+Fss. 

J 
Re placing the right member forc e terms by their cali-
bration data gives us the numerical value of 1 wfIich 
the experiment is designed to provide "' 

1= [MDO-Mot+Mss ] [1-::] [~] 
.~ 

An adequate value of gl is obtained from geometric 
measurements on the system and assumed values of 
g and the vertical gradient in g. As pointed out in the 
previous section, there are two methods of calibrating 
a direct-reading balance. If the weights are removed 
from the balance for calibration, gl is the value of the 
acceleration due to gravity at the level in the suspen­
sion where the weights actually load it. On the other 
hand, if the weights are calibrated in place by weigh­
ing standard weights on the load pan of the balance, 
the effective level at which gl should be calculated is 
the level of the load pan in the weighing chamber of 
the balance. 
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In the foregoing solution for I, we initially obtain 
two values of Ig, namely l'g and J"g. These two values 
should be very nearly equal. A wide separation of the 
two values probably indicates failure to meet the six 
assumptions upon which the solution depends. We 
believe the I' g - J"g may be an excellent quality 
control signal, but we have not yet had the long ex­
perience with our system which is necessary to eval­
uate it as such. 

2 .5.3. Hydrostatic Weighing Format- The 4-1 Ratio Series 

The equation 

where the subscript A indicates that object A is under 
test, is classically solved for VA based upon measured 
values of I A and M A and a tabulated value of PL. 

_ _ __ _ 1 



This is not our intent. By use of the immersed pan 
loadi ng assemb ly, 2.5. 1.3, we re move objec t A fro m 
the imme rsed pa n and re place it with objec t B. Thi s 
results in violent turbule nce in the bath, so we wait 
10 minutes for the bath motion to subside, after whi c h 
we perform the 5 observations required to obtain a 
value of 

These two equations may be combined to provide 
us with a value of the volumetric ratio of obj ect A to 
object B 

Combining th e hydrostatically measured value s of 
I A and I B with previously determined values of M A 

and MB yields a numerical value of the volume tric 
ratio at the temperature of the experiment. The validity 
of the ratio is primarily limited by the nonlinear drift 
in the syste m. The linear component is accounted for 
by performing the hydrostatic weighings in a time­
symmetri cal A- B- A format. 

Inas m\ich as our imm ersed pa n loadin g asse mbl y 
wil~ manipulate 4 objec ts, we may co mpare the m in s ix 
combinjltions. This requires 15 hydrostatic weighin gs 
tak en ill the follo wing order : 

A- B-A-C-A-D-A-B-C-B- D- B-C-D-C. 

This' is not a perfectly balanced seri es because 
object D is weighed only three tim es while all oth er 
'objec ts are weig hed four times; however it is adequ ate 
to defin e the six ra tios in A-B-A type fo rm ats. 

A 4- 1 se ries ordin aril y provides us with six diffe r­
e nces. In the ca se a t ha nd we obtain six ra tios, and in 
thi s case, the series is referred to as a 4-1 ra ti o seri es . 

The 15 weighin gs to be performed are the n calculated 
as six 1- 2- 1 compa ri sons of volumes. 

A- B- A gives us the volumetri c ratio ~ 

A-C-A gives us the volumetric ra tio ~ 

A 
A- D- A gives us the volu metri c ratio 15 

B-C-B gives us the volumetri c ratio ~ 

B- D- B gives us th e volumetri c r atio ~ 

C-D-C gives us th e volumetri c ratio ~ 

This procedure may be interrupted at any time 
between 1- 2- 1 com pari son s, however this usually 
r equires one additional observation to maintain the 
time symmetrical properti es of each compari son. 

525 -013 0 - 74 - 3 
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In actu al practice, all 15 tes ts whic h ma ke up th e 
4-1 rati o series are conducted at slightly d iffere nt 
te mpe ratures. Unless th e objects un der volu metric 
co mpari son ha ve the same temperature coe fficie nts of 
ex pansion, th eir ra tio will be a function of the tempera­
ture of observa tion_ Therefore, before proceeding with 
the leas t-squares adjustme nt of thi s series, we reduce 
the observed ratio at the temperature of the tes t to the 
ratio whic h would exist at 20 °C by appropria te applica­
tion of the temperature coefficients of expansion of the 
obj ects_ 

We use the method of Connor and Youde n, NBS, r1 7] 
for least-squ ares adju stment. They noted th at th e 
products of the observed ratios 

d..x !l.x f 
B C A 

d.. x !l.x !2. 
B D A 

d.. x fx!2. 
C D A 

!l.xfx!2. 
C D B 

as well as so me four-ratio-products would be exac tl y 
equ al to unity if the se ri es were pe rform ed without 
error. Th ese observed ratios may be adjus ted by leas t 
squ ares 1.0 valu es which ac tu ally do have uni ty products 
by their for mula of the form 

where the overlined va lues, eg., 4, are adju sted ratios . 
B 

The absolute s um of the six residual differe nces be­
tween the observed and adju sted ra tios is a meas ure 
of the precision of the conduc t of the 4-1 ratio series. 

As pointed out in 2.5. 1.3 we are able to conduc t four 
different 4-1 ratio series on the two s tandard ball s 
and four crystals. The observed ratios, 24 in all , are 
presented in tables 5. Also shown in the table are the 
ratios reduced to 20 °C, their adjusted values from the 
Connor-Youden procedure, and the sum of the 
residuals. 

In 2.5.2 it was shown that the mass of the objects 
enters the calc ul ation of the volumetric ratios, so the 
assumed valu es of the masses and coeffi cients of 
expansion of the six objects are given in the caption 
to the tables 5. 

2.6_ Final Calculation of Crystal Volumes and Densities 

The 24 ratios shown in the last column of table 5 
may each be used in writing an equation expressing 
the relative volume between various members of the 



TABLE 5a 

This table presents the volumetric ratios between the four silicon crystals and the two steel balls employed in Determination AB. As 
pointed out in the test the "ratios at test temperature" are calculated from the previously measured mass value and the weight in liquid 
measured hydrostatically. The ratios at 20 °C involve assumed values of temperature coefficients of expansion. These assumed masses and 
coefficients are given below. These ratios at 20 °C are submitted (in groups of six) to the Connor·Youden least square adjustment procedure, 
and the adjusted ratios are given in the last column with the sum of residuals. 

Measure d mass (grams) Lin. coef. expo 

Ball A 1043. 352056 0.000 012 272 
Ball B 1043. 482802 .000 012 272 

X2 200. 420 689 .000 002 56 
X3 199. 763 734 .000 002 56 
X4 200. 010 795 .000 002 56 
X5 199. 932675 .000 002 56 

Sum of volumes of the 2 balls = 268.073 950 cm3 at 20 DC. 

Test Ratio under test Avg test temp Observed ratio Ratio reduced L.S. adjusted ratio 
No. at test temp to 20 °C 

1 A:B 20.3187 1.0000028601 1.0000028442 1.0000028767 
2 A:X2+X3 20.3183 .7802953318 .7802881037 .7802877510 
3 A:X4+X5 20.3168 .7807629276 .7807556860 .7807560134 
4 B:X2+X3 20.3194 .7802923978 .7802851145 .7802855064 
5 B:X4+X5 20.3205 .7807614394 .7807541343 .7807537675 
6 X2 + X3:X4 + X5 20.3176 1.0006000685 1.0006000647 1. 000600 1151 

Absolute sum of re siduals = .00000515217 

7 A:B 20.3361 1.0000023160 1. 00000231 07 1. 0000014007 
8 A:X2+X4 20.3370 .7798135876 .7798059447 .7798063201 
9 A:X3+X5 20.3370 .7812466828 .7812390037 .7812393385 

10 B:X2+X4 20.3359 .7798135609 .7798059199 .7798052278 
11 B:X3+X5 20.3346 .7812458895 .7812382618 .7812382442 
12 X2 + X4:X3 + X5 20.3336 1. 00 18380683 1.0018380664 1.0018376594 

Absolute sum of residuals = .0000027368 

13 A:B 20.3533 1.0000013838 1.0000014360 1.0000004250 
14 A:X2+X5 20.3519 .7799632731 .7799553009 .7799560148 
15 A:X3+X4 20.3501 .7810926282 .7810846634 .7810847381 
16 B:X2+X5 20.3482 .7799633471 .7799554589 .7799556833 
17 B:X3+X4 20.3470 .7810933265 .7810854207 .7810844062 
18 X2 + X5:X3 + X4 20.3474 1.0014459694 1. 00 14459580 1.0014471628 

Absolute sum of residuals = .0000042435 

19 X2:X3 20.3157 1.0032860536 1.0032860446 1.0032863403 
20 X2:X4 20.3168 1.0020459883 1.0020459770 1.0020468304 
21 X2:X5 20.3169 1.0024388963 1.0024388959 1.0024377467 
22 X3:X4 20.3186 .9987632820 .9987632796 .9987645502 
23 X3:X5 20.3163 .9991551669 .9991551626 .9991541860 
24 X4:X5 20.3l70 1.0003879913 1.0003879932 1.0003901178 

Absolute sum of residuals = .0000066700 
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TABLE 5b 

Thi s table present s the volumetric ratio between the four s ili con c rystals and the t IVO steel balls employed in Determin ation CD. As 
pointed out in the text the " ratios at test temperatu re" are calculated from the previously measured mass value and the weigh t in liquid 
meas ured hydrostatica ll y. The ratios at 20 vC involve assumed valu es of te mperature coeffi cients of expansion. These assumed masses and 
coe ffi cients are give n below. These ratios at 20 °C are submitted (in groups of six) to the Connor· Youden leas t squ are adjust ment proced ure, 
and the adjusted ratio s are given in the last co lumn with th e sum of res iduals. 

Measured mass (grams) Lin. coef. ex po 

Ball C 1043. 94 t 406 0.000 Ot 2 272 
Ball 0 t042. 909 2t4 .000 012 272 

X2 200. 420 653 .000 002 56 
X3 t 99. 763 663 .000 002 56 
X4 200. OtO 763 .000 002 56 
X5 199. 932 620 .000 002 56 

Sum of volumes of the 2 ball s= 268.073 808 e nrl at 20 °C 

Test Ratio under Avg tes t Observed ratio Ratio reduced L.S. adjusted 
No. tes t temp at test temp to 20°C ratio 

1 C:D 19.1941 0.9999902719 0.9999903218 0.9999899545 
2 C:X2+ X3 19.1931 .7802638204 .7802821681 .7802820581 
3 C:X4+X5 19.1925 .7807321977 .7807505575 .7807509544 
4 D:X2 + X3 19.1933 .7802711575 .7802895033 .7802898965 
5 D:X4 + X5 19.1928 .7807411148 .7807594778 .7807587975 
6 X2+ X3:X4+ X5 19.1913 1. 0006005705 1.0006005686 1. 0006009318 

Absolut e sum of res idua ls= 0.0000023109 

7 C:D 19.1742 .9999902037 0.9999902105 .9999903037 
8 C:X2+X4 19.1748 .7797814847 .7798002324 .7798001020 
9 C :X3+ X5 19.1758 .7812152264 .7812340008 .7812340586 

10 D:X2 + X4 19.1770 .7797887982 .7798074949 .7798076632 
11 D:X3 +X5 19.1781 .7812230169 .7812417295 .7812416338 
12 X2+ X4:X3+ X5 19.1774 1.0018388271 1. 00 18388285 1.0018388772 

Absolute sum of re siduals = 0.0000005943 

13 C:D 19.1771 0.9999898783 0.9999898601 .9999899070 
14 C: X2+ X5 19.1764 .7799335893 .7799523068 .7799524297 
15 C :X3+ X4 19.1763 .7810629297 .7810816678 .7810815082 
16 D:X2+ X5 19.1753 .7799418941 .7799606345 .7799603018 
17 D:X3 +X4 19.1755 .7810702651 .7810890220 .7810893917 
18 X2+X5 :X3+X4 19.1754 1.0014478970 1.0014478942 1.0014476248 

Absolute sum of res iduals = 0.0000013011 

19 X2:X3 19.1674 1. 0032889403 1. 0032889517 1. 0032884305 
20 X2:X4 19.1661 1.0020461432 1.0020461603 1.0020461508 
21 X2: X5 19.1669 1. 00243 79242 1.0024379280 1. 0024384582 
22 X3 X4 19. 1703 0.9987618535 0.9987618281 0.9987617920 
23 X3 X5 19.1687 .9991533078 .9991532965 .9991528136 
24 X4 X5 19.1701 1.0003915491 1.0003915520 1.0003915063 

Absolute su m of res iduals = 0.0000016255 
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TABLE 5c 

This table prese nts the volum etric ratios between the four silicon crystals and the two steel balls employed in Determination EF. As 
pointed out in the text the "ratios at tes t temperature" are calculated from the previously measured mass value and the weight in liquid 
measured hydrostatically. The ratios at 20 °C involve assum ed values of temperature coefficients of expansion. These assumed masses and 
coefficients are given below. These ratios at 20 °C are submitted (in groups of six) to the Connor· Youden least square adjustment procedure, 
and the adjust ed ratios are given in the last column with the sum of residua ls. 

:\1 eas ured mass (grams) Lin . coef. e xpo 

Ball E t043.3.5 1 968 0.000 012 272 
Ball F 1043.482 847 .000 01 2 272 

X2 200.420 679 .000 002 .56 
X3 t99.763 687 .000 002 ,56 
X4 200.0\0 802 .000 002 56 
X5 t99.932 659 .000 002 ,56 

Surn of volumes of the 2 balls = 1.34.073 994 e lll '! at 20 °C. 

Test Ratio under Avg test Observed ratio Ratio reduced L.S. adjusted 
No. tes t temp at test temp to 20 °C ratio 

1 E:F 23.4340 1.0000017166 1.0000016894 1.0000012132 
2 E: X2+X3 23.4346 0.7803650384 0.7802869637 0.7802869783 
3 E: X4+ X5 23.4336 .7808337796 .7807556737 .7807560308 
4 F: X2+X3 23.4304 .7803630492 .7802850701 .7802860317 
5 F: X4 + X5 23.4291 .7808344232 .7807564176 .7807550837 
6 X2+ X3: X4+ X5 23.4303 1.0005998798 1.0005998765 1. 00060 11283 

Absolute sum of residuals = .0000043952 

7 E:F 23.4300 1. 0000007342 1.0000007115 1.0000010387 
8 E:X2+ X4 23.4296 0.7798820731 0.7798041460 0.7798046139 
9 E: X3 + X5 23.4313 .7813169195 .7812388476 .7812381233 

10 F:X2 + X4 23 .4307 .7798821909 .7798041925 .7798038039 
II f: X3+ X5 23.4312 .7813147650 .7812366668 .7812373II8 
12 X2+ X4: X3+ X5 23.4313 1.0018381973 1.0018381912 1.0018382930 

Absolute sum of res iduals = .0000026549 

13 E:F 23.4300 1.0000013369 1.0000012869 1.0000013539 
14 E: X2+ X5 23 .4289 O. 780035 II 05 0.7799571782 0.7799574605 
15 E : X3 +X4 23.4220 .7811638859 .7810859896 .7810856546 
16 F: X2 + X5 23.4278 .7800351625 .7799572923 .7799564044 
17 F : X3+ X4 23.4267 .78II616473 .7810836555 .7810845970 
18 X2+ X5 : X3+ X4 23.4266 1. 00 14472596 1.0014472591 1.0014464816 

Absolut e sum of residuals = .0000032913 

19 X2 : X3 23.3973 1.0032875312 1.0032875421 1. 0032877488 
20 X2 :X4 23.3970 1.0020470576 1. 0020470528 1. 0020463889 
21 X2: X5 23.3951 1. 0024373288 1. 0024373259 1. 00243 77836 
22 X3 : X4 23.3969 0.9987618333 0.9987618238 0.9987627079 
2;, X3 : X5 23.3977 .9991535001 .9991534986 .9991528200 
24 X4:X5 23.3963 1.0003903684 1.0003903727 1.0003905954 

Absolute sum of residuals = .0000031138 

six objects (four crystals and two balls) used in the 
hydrostatic tests. For example, the first three equations 
are: 

used in the tests. This sum is obtained by adding the 
values of the two ball volumes at 20°C given in the 
captions to tables 4 whjch are based upon direct 
interferometric measurement. 

1 = LOOO 002 8767 

A 
0.780 287 7510 

X2+X3 

A 
X4+X5=0.780 756 0134 etc. 

These 24 equations all express relative volumetric 
information. To this system of equations we add a 25th 
which expresses absolute volumetric information­
namely the sum of the volumes of the two steel balls 
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These 25 equations are solved for six unknowns, 
namely the volumes of four crystals and two balls, by 
the method of least squares. Two possible criticisms 
may be raised to the calculation of volumes by this 
method: 

L The data have been smoothed twice, once within I 

the six ratios, and again in the 4 sets of ratios, 
2. the observed data appear in the coefficients of 

the observational equations rather than as a 
separate term. 

We have not evaluated the effect of the above, but have 
calculated the volumes in another way for comparison. 



their associated temperatures are averaged to 
. provide one value of etalon length at some partic­
ular temperature_ 

Treating each set of six adjusted ratios separately 
with the s um of volumes of steel ba ll s, we calc ul ate, 
for example, th e volumes of X2+ X3 and X4+ XS. 
Then the individual volumes are solved by adding two 
appropriate measured ratios of the c rys ta ls in the 
fourth set. Thus three sets of volumes are obtained for 
each set of ball-temperature combin ations. 

The differences in volumes from the two methods of 
computation are found to be negligible, and we decided 
to use values resulting from least squares fitting. The 
least squares estimate of the volumes of each of the 
four crystals and two balls are given in table 6. This 
table has four columns. The first three columns show 
the six volumes obtained in each of the three de termi­
nations and the fourth column shows the average 
values which (until additional work is done) will be our 
presently accepted values of the crystal de nsiti es. 

b. Four measurements on the average diame ter of 
each of two balls. Each diametric measurement is 
the average of ten observations as explained in 
2.4_2.5. The four average diameters along with 
their associated temperatures are averaged to 
provide a single value of the average diame ter at 
some particular temperature. The assumed etalon 
length employed in this step is obtained from the 
step a above, and appropriately adjusted by the 
application of our assumed value of the te mper­
ature coefficient of expansion of the etalon. 

c. A group of mass measurements on each of the 
two balls. 

TABLE 6 

The result s of th e leas t squa res so lution for th e vo lumes of the crys tal s a nd th e ball s a re give n in thi s tab le. Also prese nt ed are the 
ass umed mass valu es of the four c rystals used in each deter mination. At th e b')tt o m, the quot ien t of the assum ed mass divided by the 
leas t squares estim a te of volume (i. e. dens ity) is give n for each c r ys tal and eac h de te rmination . T he average dens it y va lu e is the prese ntl y 
"acce pted" va lue. 

Dete rmin at ion AB Dete rmina tion C D Determin a tion EF Average va lu e of dens it y and 
s tandard de via ti on of the 

Silicon crystal volu mes (c m3 ) a verage. Thi s is th e accepte d 
X2 86.049 744 86.049 82] 86.049 800 value as expla in ed in the 
X3 85.767 873 85.767 793 85.767 886 text. 
X4 85.874 004 85.874 036 85.874 058 
X5 85.840 520 85.840 466 85.840 488 

Steel ba ll vo lumes (cm") 
Firs t Ball Ba ll A Ball C Ball E 

Leas t square estimate 134.067 080 ]34.066 237 134.067 078 
Measured value 134.067 062 134.066 261 134.067 028 
Diffe re nce - 0.000 018 + 0.000024 - 0.000 050 

Second Ball Ball B Ball D Ba ll F 
Least sq ua re estimate 134.066 870 134.067 571 134.066 916 
Measured value 134.066 888 134.067 547 134.066 966 
Difference + 0.000 018 - 0.000024 + 0.000 050 

Crysta ll mass (grams 
X2 200.420 689 200.420 653 200. 420 679 
X3 199.763 734 199.763 663 199.763 687 
X4 200.0lD 795 200.0lD 763 200.0lD 802 
X5 199.932 675 199.932 620 199.932 659 

Crysta l de ns ities (g/cm") 
X2 2.329 1259 2.329 1234 2.329 1243 2.329 1245 

0.000 0007 
X3 2.329 1208 2.329 1221 2.329 1199 2.329 1209 

0.000 0006 
X4 2.329 1192 2.329 1180 2.329 1179 2.329 1184 

0.000 0004 
X5 2.329 1177 2.329 1185 2.329 1184 2.329 1182 

0.000 0003 

2.6.1 . Precision and Estimate of System Errors 

A single determination on the volumes of our four 
silicon crystals requires the following measurements. 

d. A group of mass measurements on each of the 
four silicon crystals. 

e. Twenty-four hydrostati c com parisons (in four 4-1 
ratio series) between the volumes of the two balls 
and various combinations of the four crystals. 

a. Two measurements on the length of the etalon 
as described in 2.4.2.4. These two lengths and 
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During the winter of 1970-1 we worked on our re­
dundant hydrostatic weighing process. To check the 
process precision, we performed the complete hydro­
static comparison between balls A and B and the four 
silicon crystals at a temperature of about 23.4 0c. We 
were aware of the crudeness of our knowledge of the 
temperature coefficients of expansion involved (there 
is no "good" way to measure a ball's coefficient), and 
we had no intention of using this experiment in a real 
volumetric determination - we considered this only as 
a precision test. 

In 1971-2 we performed determinations A-B and 
C-D at temperatures within one degree of 20°C. At 
this time it was pointed out to us by H. H. Ku of our 
Applied Mathematics Division that our experiments 
over this very limited temperature range were highly 
nonrealistic, and that we should make every effort 
to achieve a determination at a temperature at least 
21/2 °C away from 20. 

Our interferometer was designed to operate at a 
maximum temperature of 22°C, however we found 
that, at the sacrifice of some thermostat stability, we 
could operate marginally at a temperature of 23°C. 
Accordingly, we made etalon tests ET -5 and ET -6 at 
23°C and also measured the diameters of balls A and 
B at this temperature. Additional mass measurements 
were made. These new data at 23°C were combined 
with the early hydrostatic work at 23.4 °C and new 
crystal volumes were calculated. Although balls A 
and B were employed, in this high temperature de­
termination we have referred to them as balls E and 
F. Inasmuch as this work on E and F contains all the 
elements of a single determination as defined above, 
we feel justified in claiming three independent deter­
minations. 

Our presently "accepted" values of the crystal 
densities are the average of the three determinations. 
As stated above, as additional work is done on these 
four crystals our accepted values will be modified. 
The standard deviations of these average values of 
crystal volume are given in table 6. These standard 
deviations are indicative of the reproducibility of our 
system in the determination of such volumes. 

As pointed out in the previous section, the data 
presented in table 6 are obtained from a least-squares 
solution of 25 equations - 24 relating the relative 
volumes of crystals and balls and the 25th stating our 
best estimate of the sum of the volumes of the two balls. 
Out of the least squares solution we obtain an estimate 
of the volumes of each of the four crystals as well as 
an estimate of the volumes of each of the two balls. A 
comparison between the least square estimates of the 
individual ball volumes and our measured values (used 
in calculating the sum) is indicative of the inconsist­
ency between our interferometric tests and our hydro­
static tests. These differences are shown in table 6. 

An examination of the three sets of density values 
did not reveal any discernible pattern in rank. Statis­
tical analysis of the volume and density data for three 
sets also supported the contention that a between-set 
component of error, if any, was negligible. The meas· 
ured masses of the four silicon crystals, on the other 
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hand, did show that the A-B set was on the average 
50 Ilg, 0.25 ppm, higher than the C-D set, but the 
effect of this discrepancy on densities was not obvious. 
A possible explanation could be that these values of 
masses were used first in the computation of volume 
ratios and then in the computation of densities. The 
correlation between the numerator and denominator 
of the density computation would tend to decrease the 
effect of any systematic error present in the mass on 
the density values. Since these measured mass values 
were assigned to the sets of volume ratio calculations 
by date, an alternate way of computation could be to 
use the averages of the three sets of mass values in all 
density calculations. We will, however, adhere to the 
present scheme of calculation so that the random 
component of error can be computed from the three 
sets of final results as planned. 

The standard deviation of density values of each 
determination was computed to be 0.97 fLg/cm 3 with 
8 degrees of freedom. The random component of un­
certainty of the averages of density values of three 
determinations is taken as three standard deviations 
of these averages, 1.68 J1-g/cm3 , or 0.72 ppm. 

To the extent that the same array of apparatus and 
instruments is used in all three determinations, the 
three determinations are not entirely independent. 
There are residual uncertainties in the calibrations 
of such instruments, and when these calibration un­
certainties exert the same effect on the crystal densities 
calculated in eac h determination, they do not increase 
the data spread shown in table 6, so they are not in­
cluded in the standard deviation of the mean given in 
that table. 

The major sources of such uncertainties going into 
each determination are listed in table 7. Alongside of 
each item of source data (which may be an instrument 
such as a thermocouple or a process such as a weighing 
experiment to determine mass) is our estimated bound 
to the systematic uncertainty in that item. 

Also shown is the effect of the error on the calcu­
lated crystal density obtained in each of the three 
determinations. It is noted that the effects of such 
errors on calculated densities classify the errors into 
two groups: 

a. When the effect of the error on the volumetric 
calculation is the same in each of the three deter­
minations. This group of errors must be assigned 
to the systematic category. 

b. When the effect of the error on the volumetric 
calculation is different in each of three deter­
minations. This group consists of errors, the 
effects of which are temperature dependent. In­
asmuch as the temperature pattern in the various 
tests was grossly different, this group of errors 
need not be classed as systematic because their 
effect is present in the spread of data shown in 
figure 6. 

We have no basis for assigning a value of uncertainty 
to the 22° phase shift used in interferometu calcula-



TABLE 7 

Source data 

Data items in which errors exert the same effect 
in all three determinations and are therefore 
sys tematic 

1. Temperature measurement system used 
inside interfe rometer on etalon and 
s~l~~ ......... ....... ........ .................. . 

2. Calibration errors in system used to ca l· 
culate effective wavelength of inter· 
ferometer illumination ... . .. . .. . ... .... .. .. . .. . . . 

3. Fringe fraction calculated fro m photo· 
graphic system ... .. .... .... .. . ... ... .. ... . ....... . 

4. Hydrostati c bath temperature ...... .. . .......... . 

5. Mass of one steel ball .. . ................. ......... . 

6. Mass of t wo sili con crys tals ..... . ................ . 

7. Calibration errors in hydrostatic balance . .... 

Estimated 
magnitude 
of erro r in 

source data 

2.5 X 1O- 8 /J-

0.001 

0.OO15 °C 

0.000 064 g 

0.000 090 g 

13/J-gJl00 g 

Absolute sum of syste matic errors (worst case) ........ .. .. .... .. ......... .. . .. . 
Realsitic estimate (square root of sum of sqt;ares) .... .. . .. . .. .. ..... ... ... . .. . 

Data items which are temperature dependent 
and the refore contribute to random component 

8. Expansion coeffi cient of eta lon . . ...... . .. . ...... . 

9. Expansion coeffi cient of balls .......... . ........ . 

10. Expansion coeffi cient of crystals .. .. ...... .... . . 

MEASURED DEN SITY 
OF SILICO N CRYSTALS AT 20 ·C 

(gram I cm3 ) 

2.329 125 

124 

123 

122 

121 -

2.329 120 

11 9 

118 

iA - e 

CRY STAL )( 2 

E-F 

c-o 

C-D! 
A-8 CRYSTAL)(3 

E-F 

CRYSTAL )(4 

T 
I ppm in 

IN DEN SITY 

1 

E-F 

3 X 10- 8 

5 X 10-8 

9 X 10- 8 

117 
~
A-B 

C-D 
E-F 

C-Db CRYSTAL )(5 
A-8 

116 

2. 32 911 5 

LINEAR POSITION ON BOULE FROM WHICH CRYSTAL WAS CUT 

FIGU RE 6. This figure illustrates the spread of density data f or each 
crystal among its three determinations. 

We have made several previous attempts to measure the density gradient in single 
c rystal silicon bonlca. This graph is the best display of the existence of such a gradient 
which has come to our at tention. We deeply regret that a particularly well-remembered 
day in history marked the begi nni ng of ou r utili za tion of Crys tal Xl for the fabrica tion of 
fractional-gram silicon weights. 
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Effect of estimated error on calculated values of 
crystal densities (gfcm") 

Determination AB Determination CD 

7.89 X 10- 7 

2.67 X 10- 7 

0.18 X 10- 7 

1.02 X 10- 7 

6.25 X 10- 7 

1.62 X 10- 7 

9.28 X 10- 7 

28.91 X 10 - 7= 1.25 ppm 
14. 10 X 10 - 7= 0.60 ppm 

- 0.63 X 10 - 7 +0.33 X 10- 7 

- 1.40 X 10- 7 +3.75 X 10- 7 

+0.67 X 10.7 -1.69 X 10- 7 

Determination EF 

+0.10 x lO- 7 

- 1.72 X 10- 7 

+7 .20 x 10- 7 

lions. Additionally our es tim ate of item 9 may be weak. 
The square root of the s um of the squ ares of items 1 to 
7 indicates a sys temati c of 0.6 ppm. We believe that 
0.7 ppm is a jus tifi ed and co nservative estimate of the 
total sys te mati cs in thi s work. 

The density program described in this report has 
involved numerous scientists in various divisions of 
NBS. The following individuals have given generously 
of their time and talents. D. P. Johnson has been our 
primary theoretical consultant. He worked out the data 
taking and reduction procedures for the interfero­
metric part of the experiment on the etalon and balls. 
He calculated the volumetric uncertainty associated 
with ball imperfections (given in a companion paper). 
R. D. Deslattes provided us with adequate values of 
laser wavelengths and suggested the use of single 
crystal silicon as a working density standard. J. B. 
Saunders developed the spherical interferometer at 
our request. W. H. Gallagher assisted in working out 
adequate hydrostatic procedures. H. H. Ku played a 
major role in experiment design and he worked out 



the hydrostatic data reduction format. J. L. Riddle gave 
us guidance in building and evaluating our interferom­
eter temperature measurement system. Geraldine 
Hailes wrote many computer programs for us especially 
in the early stages of development when numerical 
techniques were only hazy ideas_ 
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