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Character Induced Subgroups*
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Given a finite group G with an irreducible character x, define Gx = {geG:|x(g)| =x(1)}. Then
x(1)2 = [G: Gx]. We investigate the case of equality. There are applications to symmetry classes of

tensors and generalized matrix functions.
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1. Character Induced Subgroups

Let G be a finite group with an irreducible (complex) representation {4(g) : g€ G} and cor-
responding character . Let

Gx={geG : | x(g) |=x(1)}.

One easily sees that Gx is the normal subgroup of G consisting of those elements represented by
scalars in {4(g)}. Moreover, A = x/x(1) is a linear character on Gx which is invariant under con-
jugation by elements of G. we call Gx the subgroup induced by x.

THEOREM 1: We have x(1)* < [G : Gx], with equality if and only if X is the only irreducible
character of G whose restriction to Gx contains \ as a component.

PROOF: Let A be the character of G induced by A. Then, by the Frobenius Reciprocity Theo-
rem, X occurs in A exactly x(1) times. Moreover, if n is an irreducible character on G whose
restriction to Gx contains A, then m € A¢. But, the degree of \“is [G : Gx].

We might point out that if m is an irreducible character on G such that A e | Gx, then n | Gx
=n(1)A[8, p. 53]. In particular, Gx C Gn.

COROLLARY 1: Let ge G be arbitrary. Then N can be extended to a character of {Gx, g), the
group generated by Gyand g. [f x(1)> = [ G : Gx > 1, then \ cannot be extended to G.

PROOF: The first statement follows because Gy is normal and A is invariant. The second follows
from Theorem 1.

We now give another proof of Theorem 1 which leads to an apparently different case of equality.
First, define the support of x to be supp x = {g € G : x(g) # 0}.

THEOREM 1': We have x(1)> < [G : Gx],with equality if and only if supp x = Gx.

m

PRrROOF: Let G = U giGx be the coset decomposition of G with respect to Gx. Then

i=1

o6)= 3 | xle) |2

geGG

AMS Subject Classification: 20C15

* An invited paper.

** Present address: California State University, Hayward, Calif. 91242
*** Present address: California State University, Northridge, Calif. 91324

93



m

=3 > Ix(e)|®

i=1 heGy

m

=o(Gx) Y |x() |2

The case of equality in Theorem 1’ recalls the following result of Brunside

THEOREM 2: ([3, p. 322], [8, p. 93], [11, p. 41]). Suppose that (o(C), x (1)) = 1 for some
conjugacy class C of G. Then x(C)=0or | x(C)|= x(1).

THEOREM 3: If A;,. . . , A, are the inequivalent irreducible representations of G and if G;
is the subgroup induced by the character of A;, then

N G;= Z(G), 1)

i=1

the center of G. If A; is faithful, thenG; = Z(G).
PROOF: The group G is the inverse image of the center of {4i(g)}. Equation (1) follows from
an examination of the center of the regular representation.

THEOREM 4: Suppose x(1)*= [G : Gx]. Let K={geG : x(©)=x(1)}. Then (G/K)x =Gx/K is
cyclic.

m
ProorF: If G= U gK is a coset decomposition of G, giK —> A(g:) defines an irreducible
5=

representation of G /| K. Thus, x is a character of G/ K and (G/ K)x = G,/ K. But, Gx | K is isomor-
phic to the group of values of A, a subgroup of the o(Gx)th roots of unity.

The group G is of central type if x(1)2= [G:Z(G)] for some irreducible character x [6], [7].
Since Z(G) C Gy, if G is of central type with respect to x, then x(1)? = [G : Gy].

THEOREM 5: If X(1)>= [G : Gx], then there exist irreducible characters Xy, Xq» - - +» Xr ON
the Sylow subgroups Sy, Sq, . . ., S; of G, respectively, such that (S)x =S; N Gx,t=p,q,. . .,T,
and [St : (St)Xt] = Xt(l)z’ t=p,q,. . .,T.

The following simple proof of Theorem 5 was communicated by Professor DeMeyer to the first
author [5]: If x(1)2= [G : Gx], then G/ker X is a group of central type with character x. Thus,
Theorem 5 follows from [ 7, Theorem 2].

2. Examples

(a) If x is linear, then Gx = G and x(1)% = [G : G«].

(b) Let G be a finite group with normal subgroup H. Let {B(gH) : g € G} be any irreducible
representation of G | H. Then {B(gH)} gives rise to anirreducible representation of G, 4 (g) = B(gH).
Let x be the character afforded by {4 (&) }. Since H is in the kernel of {4(g)},H C Gx.

(c) Let G be a finite group with irreducible character x. Let L be any group with linear character
7. Then H= G X L is endowed with the irreducible character ¢, {(g, 1) = x(g) n (1). Moreover,
H;=GxXL,and[H : H] =[G XL :Gx X L] =[G : Gy].

If[G : Gx] = x(1)2then [H : H] = {(1)2. If L is not abelian, then Z (H) c H,

(d) Let p be a prime. Suppose G is the group of order p? generated by elements g and & with
defining relations

g1)2 hp 1 h lgh g17+1
Let A be the representation of G of degree p given by
A(g):wl/l) diag (l,w,. . ‘,wl)—l),
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0 0 0 1

1 0 0 0

0 1 0 0
A(h) =

0 0 1 0_

where w = exp (2mi [ p). Let x be the character afforded by A. Then, Gx = Z(G) = (g”) is of order
p, and x(g”) = pw. (For details, see [11, P. 43].)

3. Central Idempotents

The authors believe the material of this section to be of independent interest, but it may
also be viewed as lemmata for Theorem 8 in the next section.
Let KG denote the complex group algebra of G. Define

£(G, x) =X52 ((, Ex(g

gels

Suppose X = X1, . . ., Xr are inequivalent, irreducible characters on G. Then t(G, x1), . . ., t(G, x»)
are annihilating idempotents and

t(G, x1) +...+t(G, xr) = 1eC.

Moreover, t(G, x1), . . ., t(G, xr) span Z(KG), the center of KG. Finally, t(G, xi) generates the
simple two sided ideal in KG to which xi corresponds [4, pp. 233—236], [1, p. 83].

THEOREM 6: We have t(Gyx, \) = Zt(G, n), where the summation is over those inequivalent,
irreducible characters m of G whose restriction to Gx contains N\ as a component. In particular,
t(Gx, N) =t(G, x)if and only if [G:Gx]=x(1)2.

PROOF: We claim first, thatt (Gy, \) eZ (KG). Take geG. Then

1
't (Gy, =— Nh)g!
( X )g 0((’X)h§x ( )g hg
1
= N(ghg=")h
O(Cx),.gx (ghg~ 1)

because Gx is normal in G and A is invariant under conjugation by elements of G.
Thus, there exist complex numbers a1, . . . , ar such that

£(Gx,\) 2 (G, xi). @)

1
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Considered as linear operators on KG (multiply on the left), t (G, xi), and t(Gx, \) are hermitian
with respect to the inner product which makes G C KG an o. n. basis. Since they are also idem-
potent, we may view them as orthogonal projections on KG. Since t(G, x1), . . ., t(G, x,) are
mutually annihilating and belong to Z(KG), all the a;’s must be 1 or 0. Indeed,

a:{l, if t(Gx, Mt (G, xi) =t(G, i),

0 otherwise.

Thus, @i=1 if and only if t(Gx, N)t(G, xi) is not zero. But, if { is the character of the regular
representation of G,

rank (¢(Gx, N)t(G, xi))

= trace (¢(Gx, N\)t(G, Xi))

__xi(1) (h-1
oG (©) & MW 2 XN
_xd) e

- O(Cx) h;X )\(h)XI(h )

This last expression is xi(1) times the number of occurrences of \ in xi|Gx.

4. Symmetry Classes of Tensors

Let ¥ be an n-dimensional complex inner product space. Take m < n. Denote by @"V the
mth tensor power of V. If vy, . . ., vm€eV, then i® . . .® v,€@"V will denote their tensor product.
If (., .) denotes the inner product on ¥, then

m

® . ..Quw, v,®...Qu,)= H (v, v]) 3)

m
t=1

is an inner product on @™V

Let S, denote the symmetric group of degree m. Given g €Sy, there is a linear operator,
P(g) on &V such that

P(g71)01® o o o ®‘l)m:1}y(|)® 5 o o ®1}!,(,,1),

for all vy, . . . , vm€eV. Observe that g— P(g) is a representation of S,,.
Suppose, now, that G is a subgroup of S, and x is an irreducible character on G. Let

16,0 =2X 3 x@P@.

geG

With respect to the inner product, (3), T(G, x) is hermitian. It is a consequence of the orthogonality
relations for characters that T(G, x) is idempotent. Thus, T'(G, x) is an orthogonal projection. Let
Vit (G) denote the range of T'(G, x). Then V7' (G) is called a symmetry class of tensors.

Let ™ denote the mth cartesian power of V. Define

f: an——) V’;(C) byf(v,, 6 © .,Um)zT(G,X)U1® o 6 D ®'l)m.
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clearly, f is m-linear. If x is a linear character, then f is symmetric with respect to G and ¥, i.e., if
g €G, then

f(v_{/(l)» .. -’U!/(m}):X(t‘ﬁ’)f(Un . . -,Um)- (4)

This follows from the observation that
TG, x)P(g") =x(&T(G, x). (5)

From (4), and the Universal Factorization Property for tensor spaces, it follows that: If W
is any complex vector space and ¢: V'™ — W is any m-inear function, symmetric with respect to
G and x, then there exists a unique linear L: V(G)— W such that ¢=L - F, i.e., such that the

diagram

yom __l‘__) V;"(G)
1L,
/4

is commutative.
For characters of degree greater than one, (5) does not hold. We are motivated to define

G'={geSn: T(G, x)P(g ") e(T(G, x))},
i.e., G’ is the set of elements ge€S,, such that T(G, x)P(g ') is a multiple of T(G, x). For geG', write
T(G,x)P(g ')=c(&)T(G,x).

THEOREM 7: We have G' =Gy and ¢=A\.
PROOF: Suppose, first, that g€ Gx. Then

TG, x)P(g')= ((,)2 x(h)P(h)P (g~ ")

( E x (hg)P (h)
=N&)T(G,x).

Thus,Gx C G" and ¢|Gx= \.
Next, we prove that G’ is a group and c is a linear character on it.
Since P (1) is the identity, 1€ G' and c¢(1) =1. Since P(g~!')=P(g) ', g€’ implies g~ '€CG’
and c (g7') =c(g) . Finally, if g, h € G’ then
T(G,x)P(h-'g"")=c(R)T(G,x)P(g")
= clhe(g i EIx)2
It follows that gh € G' and c¢(gh) =c(g)c(h).

Now let geG’. Let vi, . . ., vm be an o.n. set in V. We compute the same inner product in
two ways to obtain

(f(‘Uym, C ey Vgm) s c(g)f(vl, .. s Um))
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———c(g) 2 x(h) H (V90> Vr(o))

h((

@ X((G)) x(2). £€G

0, g¢G,
and ||c(&) f(vi, - - -, o) ||? = x(1)2/0(G). Thus,
G' C {geG: [x(g)|=x(1)} = Gx.

Our next result involves the generalized matrix functions of Schur [12]. If A = (a;j) is an
m-square complex matrix, define

m

d;‘,(A) E X(g H Arg(t)-

gel;

THEOREM 8: Let A = (ay;) be an m-square matrix. Then

. -y 2D
oG 4D = 2 ) A

where the summation is over those inequivalent, irreducible characters m of G whose restriction
to Gx contains N as a component.

WhenGx= {1}, this result collapses to an identity of Freese [9, eq (8)].

COROLLARY 2: Suppose A is positive semidefinite hermitian.
Then

1 (A) = - x()

0(Gx) dox 0(G)

d(A).

If A is positive definite, equality obtains if and only if [G: Gx]=x(1)?

PROOF: Schur proved [11] that d2(4) =0, with strict inequality if 4 is positive definite.
Thus, the result is an immediate consequence of the theorem.

The inequality in Corollary 2 is of a type recently studied by Botta [2] and others. B

PROOF of THEOREM 8: Extend o — P (o) linearly to a representation P of KG. Then P is a
homomorphism of the algebra KG onto the operator algebra generated by {P(g): g€ G}.

(Indeed, since m < n, V"(G) # 0 for every irreducible character 1 of G [10, Lemma 1]. But,
the dimension of ¥ (G) is trace T(G, 1), which is the number of occurrences of 9 in the character
of the representation g = P(g). Thus, every irreducible character of G is a component of the
character {tr P(g)}. It follows that P is, in fact, an isomorphism [1, p. 69].)

Since T'(G, xi) =P (t(G, xi)), we may apply Theorem 6 to obtain

T(Gx, \)=>T(G,m) (6)
where the summation is as it was there.
Let, now, v1, . . ., vm v/, . . ., v, be vectors such that ai;= (vi, v}). Observe that
(T(G,’Y])'Dl . ®'Umsvl® . Qv )_

m
m

(G) 2 (&) H (03 vy

geG
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~

n(1
o(G

dn(A).

e

The result follows from (6).

We might remark that eq (6) also shows that

Vi (Gx) = LV"(G),

the orthogonal direct sum of those symmetry classes corresponding to the irreducible characters
1 of G whose restriction to Gx contains A.

(1]

e

4]

%

==

(10]
[11]
(12]
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