JOURNAL OF RESEARCH of the National Bureau of Standards – B. Mathematical Sciences Vol. 77B, Nos. 3 & 4, July–December 1973

Character Induced Subgroups*

Russell Merris** and William Watkins***

(May 17, 1973)

Given a finite group G with an irreducible character χ , define $G_{\chi} = \{g \epsilon G : |\chi(g)| = \chi(1)\}$. Then $\chi(1)^2 \leq [G: G_{\chi}]$. We investigate the case of equality. There are applications to symmetry classes of tensors and generalized matrix functions.

Key words: Character of central type; central idempotent; Frobenius Reciprocity; group algebra; orthogonality relations; tensor product.

1. Character Induced Subgroups

Let G be a finite group with an irreducible (complex) representation $\{A(g) : g \in G\}$ and corresponding character χ . Let

$$G_{\chi} = \{g \in G : | \chi(g) | = \chi(1)\}.$$

One easily sees that G_{χ} is the normal subgroup of G consisting of those elements represented by scalars in $\{A(g)\}$. Moreover, $\lambda = \chi/\chi(1)$ is a linear character on G_{χ} which is invariant under conjugation by elements of G, we call G_{χ} the subgroup *induced* by χ .

THEOREM 1: We have $\chi(1)^2 \leq [G : G_{\chi}]$, with equality if and only if χ is the only irreducible character of G whose restriction to G_{χ} contains λ as a component.

PROOF: Let λ^G be the character of G induced by λ . Then, by the Frobenius Reciprocity Theorem, χ occurs in λ^G exactly $\chi(1)$ times. Moreover, if η is an irreducible character on G whose restriction to G_{χ} contains λ , then $\eta \in \lambda^G$. But, the degree of λ^G is $[G:G_{\chi}]$.

We might point out that if η is an irreducible character on G such that $\lambda \in \eta \mid G_{\chi}$, then $\eta \mid G_{\chi} = \eta(1)\lambda$ [8, p. 53]. In particular, $G_{\chi} \subset G_{\eta}$.

COROLLARY 1: Let $g \in G$ be arbitrary. Then λ can be extended to a character of $\langle G_{\chi}, g \rangle$, the group generated by G_{χ} and g. If $\chi(1)^2 = [G : G_{\chi} > 1$, then λ cannot be extended to G.

PROOF: The first statement follows because G_{χ} is normal and λ is invariant. The second follows from Theorem 1.

We now give another proof of Theorem 1 which leads to an apparently different case of equality. First, define the *support of* χ to be supp $\chi = \{g \in G : \chi(g) \neq 0\}$.

THEOREM 1': We have $\chi(1)^2 \leq [G:G_{\chi}]$, with equality if and only if supp $\chi = G_{\chi}$.

PROOF: Let $G = \bigcup_{i=1}^{m} g_i G_{\chi}$ be the coset decomposition of G with respect to G_{χ} . Then

$$_{0}(G) = \sum_{g \in G} \mid \chi(g) \mid {}^{2}$$

AMS Subject Classification: 20C15

^{*} An invited paper.

^{**} Present address: California State University, Hayward, Calif. 91242 *** Present address: California State University, Northridge, Calif. 91324

$$= \sum_{i=1}^{m} \sum_{h \in G_{\chi}} |\chi(g_i)|^2$$
$$= o(G_{\chi}) \sum_{i=1}^{m} |\chi(g_i)|^2.$$

The case of equality in Theorem 1' recalls the following result of Brunside

THEOREM 2: ([3, p. 322], [8, p. 93], [11, p. 41]). Suppose that $(o(C), \chi(1)) = 1$ for some conjugacy class C of G. Then $\chi(C) = 0$ or $|\chi(C)| = \chi(1)$.

THEOREM 3: If A_1, \ldots, A_r are the inequivalent irreducible representations of G and if G_i is the subgroup induced by the character of A_i , then

$$\bigcap_{i=1}^{r} G_{i} = Z(G), \tag{1}$$

the center of G. If A_i is faithful, then $G_i = Z(G)$.

PROOF: The group G_i is the inverse image of the center of $\{A_i(g)\}$. Equation (1) follows from an examination of the center of the regular representation.

THEOREM 4: Suppose $\chi(1)^2 = [G : G_{\chi}]$. Let $\mathbf{K} = \{g \in G : \chi(g) = \chi(1)\}$. Then $(G/\mathbf{K})_{\chi} \cong G_{\chi}/\mathbf{K}$ is cyclic.

PROOF: If $G = \bigcup_{i=1}^{m} g_i K$ is a coset decomposition of G, $g_i K \to A(g_i)$ defines an irreducible representation of G / K. Thus, χ is a character of G / K and $(G / K)_{\chi} \cong G_x / K$. But, G_{χ} / K is isomor-

phic to the group of values of λ , a subgroup of the $o(G_X)$ th roots of unity.

The group G is of central type if $\chi(1)^2 = [G:Z(G)]$ for some irreducible character $\chi[6]$, [7]. Since $Z(G) \subset G_{\chi}$, if G is of central type with respect to χ , then $\chi(1)^2 = [G:G_{\chi}]$.

THEOREM 5: If $\chi(1)^2 = [G: G_{\chi}]$, then there exist irreducible characters $\chi_p, \chi_q, \ldots, \chi_r$ on the Sylow subgroups S_p, S_q, \ldots, S_r of G, respectively, such that $(S_t)_{\chi_t} = S_t \cap G_{\chi}, t = p, q, \ldots, r$, and $[S_t: (S_t)_{\chi_t}] = \chi_t(1)^2, t = p, q, \ldots, r$.

The following simple proof of Theorem 5 was communicated by Professor DeMeyer to the first author [5]: If $\chi(1)^2 = [G:G_X]$, then $G/\ker \chi$ is a group of central type with character χ . Thus, Theorem 5 follows from [7, Theorem 2].

2. Examples

(a) If χ is linear, then $G_{\chi} = G$ and $\chi(1)^2 = [G : G_{\chi}]$.

(b) Let G be a finite group with normal subgroup H. Let $\{B(gH) : g \in G\}$ be any irreducible representation of G / H. Then $\{B(gH)\}$ gives rise to an irreducible representation of G, A(g) = B(gH). Let χ be the character afforded by $\{A(g)\}$. Since H is in the kernel of $\{A(g)\}, H \subset G_{\chi}$.

(c) Let G be a finite group with irreducible character χ . Let L be any group with linear character η . Then $H = G \times L$ is endowed with the irreducible character ζ , $\zeta(g, 1) = \chi(g) \eta$ (1). Moreover, $H_{\zeta} = G_{\chi} \times L$, and $[H : H_{\zeta}] = [G \times L : G_{\chi} \times L] = [G : G_{\chi}]$.

If $[G: G_{\chi}] = \chi(1)^2$ then $[H: H_{\zeta}] = \zeta(1)^2$. If *L* is not abelian, then $Z(H) \subseteq H_{\zeta}$.

(d) Let p be a prime. Suppose G is the group of order p^3 generated by elements g and h with defining relations

$$g^{p^2} = h^p = 1, h^{-1}gh = g^{p+1}.$$

Let A be the representation of G of degree p given by

$$A(g) = \omega^{1/p} \operatorname{diag} (1, \omega, \ldots, \omega^{p-1}),$$

$$A(h) = \begin{bmatrix} 0 & 0 & . & . & . & 0 & 1 \\ 1 & 0 & . & . & . & 0 & 0 \\ 0 & 1 & . & . & . & 0 & 0 \\ & & \cdot & \cdot & \cdot & & \\ 0 & 0 & . & . & . & 1 & 0 \end{bmatrix}$$

where $\omega = \exp(2\pi i / p)$. Let χ be the character afforded by A. Then, $G_{\chi} = Z(G) = \langle g^p \rangle$ is of order p, and $\chi(g^p) = p\omega$. (For details, see [11, P. 43].)

3. Central Idempotents

The authors believe the material of this section to be of independent interest, but it may also be viewed as lemmata for Theorem 8 in the next section.

Let KG denote the complex group algebra of G. Define

$$t(G, \chi) = \frac{\chi(1)}{o(G)} \sum_{g \in G} \chi(g)g.$$

Suppose $\chi = \chi_1, \ldots, \chi_r$ are inequivalent, irreducible characters on G. Then $t(G, \chi_1), \ldots, t(G, \chi_r)$ are annihilating idempotents and

$$t(G, \chi_1) + \ldots + t(G, \chi_r) = 1 \epsilon G.$$

Moreover, $t(G, \chi_1), \ldots, t(G, \chi_r)$ span Z(KG), the center of KG. Finally, $t(G, \chi_i)$ generates the simple two sided ideal in KG to which χ_i corresponds [4, pp. 233–236], [1, p. 83].

THEOREM 6: We have $t(G_{\chi}, \lambda) = \Sigma t(G, \eta)$, where the summation is over those inequivalent, irreducible characters η of G whose restriction to G_{χ} contains λ as a component. In particular, $t(G_{\chi}, \lambda) = t(G, \chi)$ if and only if $[G:G_{\chi}] = \chi(1)^2$.

PROOF: We claim first, that $t(G_{\psi}, \lambda) \epsilon Z(KG)$. Take $g \epsilon G$. Then

$$g^{-1}t(G_{\chi},\lambda)g = \frac{1}{o(G_{\chi})} \sum_{h \in G_{\chi}} \lambda(h)g^{-1}hg$$
$$= \frac{1}{o(G_{\chi})} \sum_{h \in G_{\chi}} \lambda(ghg^{-1})h$$
$$= t(G_{\chi},\lambda),$$

because G_{χ} is normal in G and λ is invariant under conjugation by elements of G.

Thus, there exist complex numbers a_1, \ldots, a_r such that

$$t(G_{\chi},\lambda) = \sum_{i=1}^{r} a_i t(G,\chi_i).$$
(2)

Considered as linear operators on KG (multiply on the left), $t(G, \chi_i)$, and $t(G_X, \lambda)$ are hermitian with respect to the inner product which makes $G \subset KG$ an *o*. *n*. basis. Since they are also idempotent, we may view them as orthogonal projections on KG. Since $t(G, \chi_1), \ldots, t(G, \chi_r)$ are mutually annihilating and belong to Z(KG), all the a_i 's must be 1 or 0. Indeed,

$$a_i = \begin{cases} 1, \text{ if } t(G_{\chi}, \lambda) t(G, \chi_i) = t(G, \chi_i), \\ 0 \text{ otherwise.} \end{cases}$$

Thus, $a_i=1$ if and only if $t(G_{\chi}, \lambda)t(G, \chi_i)$ is not zero. But, if ζ is the character of the regular representation of G,

 $\operatorname{rank} (t(G_{\chi}, \lambda)t(G, \chi_{i}))$ $= \operatorname{trace} (t(G_{\chi}, \lambda)t(G, \chi_{i}))$ $= \frac{\chi_{i}(1)}{o(G_{\chi})o(G)} \sum_{h \in G_{\chi}} \lambda(h) \sum_{g \in G} \chi_{i}(h^{-1}g)\zeta(g)$ $= \frac{\chi_{i}(1)}{o(G_{\chi})} \sum_{h \in G_{\chi}} \lambda(h)\chi_{i}(h^{-1}).$

This last expression is $\chi_i(1)$ times the number of occurrences of λ in $\chi_i|G_{\chi}$.

4. Symmetry Classes of Tensors

Let V be an n-dimensional complex inner product space. Take $m \leq n$. Denote by $\otimes^m V$ the mth tensor power of V. If $v_1, \ldots, v_m \in V$, then $v_1 \otimes \ldots \otimes v_m \in \otimes^m V$ will denote their tensor product. If (.,.) denotes the inner product on V, then

$$(v_1 \otimes \ldots \otimes v_m, v'_1 \otimes \ldots \otimes v'_m) = \prod_{t=1}^m (v_t, v'_t)$$
(3)

is an inner product on $\otimes^m V$.

Let S_m denote the symmetric group of degree m. Given $g \in S_m$, there is a linear operator, P(g) on $\otimes^m V$ such that

$$P(g^{-1})v_1 \otimes \ldots \otimes v_m = v_{g(1)} \otimes \ldots \otimes v_{g(m)},$$

for all $v_1, \ldots, v_m \in V$. Observe that $g \to P(g)$ is a representation of S_m .

Suppose, now, that G is a subgroup of S_m and χ is an irreducible character on G. Let

$$T(G,\chi) = \frac{\chi(1)}{o(G)} \sum_{g \in G} \chi(g) P(g).$$

With respect to the inner product, (3), $T(G, \chi)$ is hermitian. It is a consequence of the orthogonality relations for characters that $T(G, \chi)$ is idempotent. Thus, $T(G, \chi)$ is an orthogonal projection. Let $V_{\chi}^{m}(G)$ denote the range of $T(G, \chi)$. Then $V_{\chi}^{m}(G)$ is called a symmetry class of tensors.

Let V^m denote the *m*th cartesian power of *V*. Define

$$f: V^m \to V^m_{\chi}(G)$$
 by $f(v_1, \ldots, v_m) = T(G, \chi) v_1 \otimes \ldots \otimes v_m$.

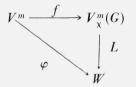
clearly, f is m-linear. If χ is a linear character, then f is symmetric with respect to G and χ , i.e., if $g \in G$, then

$$f(v_{g(1)}, \ldots, v_{g(m)}) = \chi(g) f(v_1, \ldots, v_m).$$
(4)

This follows from the observation that

$$T(G,\chi)P(g^{-1}) = \chi(g)T(G,\chi).$$
⁽⁵⁾

From (4), and the Universal Factorization Property for tensor spaces, it follows that: If W is any complex vector space and $\varphi: V^m \to W$ is any *m*-linear function, symmetric with respect to G and χ , then there exists a unique linear $L: V_{\chi}^m(G) \to W$ such that $\varphi = L \cdot F$, i.e., such that the diagram



is commutative.

For characters of degree greater than one, (5) does not hold. We are motivated to define

$$G' = \{g \epsilon S_m : T(G, \chi) P(g^{-1}) \epsilon \langle T(G, \chi) \rangle \},\$$

i.e., G' is the set of elements $g \in S_m$ such that $T(G, \chi)P(g^{-1})$ is a multiple of $T(G, \chi)$. For $g \in G'$, write

$$T(G,\chi)P(g^{-1}) = c(g)T(G,\chi).$$

THEOREM 7: We have $G' = G_{\chi}$ and $c = \lambda$. PROOF: Suppose, first, that $g \in G_{\chi}$. Then

$$T(G,\chi)P(g^{-1}) = \frac{\chi(1)}{o(G)} \sum_{h \in G} \chi(h)P(h)P(g^{-1})$$
$$= \frac{\chi(1)}{o(G)} \sum_{h \in G} \chi(hg)P(h)$$
$$= \lambda(g)T(G,\chi).$$

Thus, $G_{\chi} \subset G'$ and $c | G_{\chi} = \lambda$.

Next, we prove that G' is a group and c is a linear character on it.

Since P(1) is the identity, $1 \epsilon G'$ and c(1) = 1. Since $P(g^{-1}) = P(g)^{-1}$, $g \epsilon G'$ implies $g^{-1} \epsilon G'$ and $c(g^{-1}) = c(g)^{-1}$. Finally, if $g, h \epsilon G'$, then

$$T(G, \chi)P(h^{-1}g^{-1}) = c(h)T(G, \chi)P(g^{-1})$$

= $c(h)c(g)T(G, \chi)$.

It follows that $gh \in G'$ and c(gh) = c(g)c(h).

Now let $g \in G'$. Let v_1, \ldots, v_m be an *o.n.* set in V. We compute the same inner product in two ways to obtain

$$(f(v_{g(1)}, \ldots, v_{g(m)}), c(g)f(v_1, \ldots, v_m)))$$

$$=\overline{c(g)} \frac{\chi(1)}{o(G)} \sum_{h \in G} \chi(h) \prod_{t=1}^{m} (v_{g(t)}, v_{h(t)})$$
$$= \begin{cases} \overline{c(g)} \frac{\chi(1)}{o(G)} \chi(g), g \in G \\ 0, g \notin G, \end{cases}$$

and $||c(g)f(v_1, \ldots, v_m)||^2 = \chi(1)^2/o(G)$. Thus,

$$G' \subset \{g \epsilon G: |\chi(g)| = \chi(1)\} = G_{\chi}.$$

Our next result involves the generalized matrix functions of Schur [12]. If $A = (a_{ij})$ is an *m*-square complex matrix, define

$$d_G^{\chi}(A) = \sum_{g \in G} \chi(g) \prod_{t=1}^m a_{tg(t)}.$$

THEOREM 8: Let $A = (a_{ii})$ be an m-square matrix. Then

$$\frac{1}{\mathrm{o}(G_{\chi})} \, \mathrm{d}_{G_{\chi}}^{\lambda}(\mathrm{A}) = \sum \, \frac{\eta(1)}{\mathrm{o}(\mathrm{G})} \, \, \mathrm{d}_{\mathrm{G}}^{\eta}(\mathrm{A}) \,,$$

where the summation is over those inequivalent, irreducible characters η of G whose restriction to G_X contains λ as a component.

When $C_{\chi} = \{1\}$, this result collapses to an identity of Freese [9, eq (8)].

COROLLARY 2: Suppose A is positive semidefinite hermitian.

Then

$$\frac{1}{o(G_{\chi})} d^{\lambda}_{G\chi}(\mathbf{A}) \geq \frac{\chi(1)}{o(G)} d^{\chi}_{G}(\mathbf{A}).$$

If A is positive definite, equality obtains if and only if $[G: G_{\chi}] = \chi(1)^2$.

PROOF: Schur proved [11] that $d_G^{\eta}(A) \ge 0$, with strict inequality if A is positive definite. Thus, the result is an immediate consequence of the theorem.

The inequality in Corollary 2 is of a type recently studied by Botta [2] and others.

PROOF of THEOREM 8: Extend $\sigma \rightarrow P(\sigma)$ linearly to a representation \overline{P} of KG. Then \overline{P} is a homomorphism of the algebra KG onto the operator algebra generated by $\{P(g): g \in G\}$.

(Indeed, since $m \leq n$, $V_{\eta}^{m}(G) \neq 0$ for every irreducible character η of G [10, Lemma 1]. But, the dimension of $V_{\eta}^{m}(G)$ is trace $T(G, \eta)$, which is the number of occurrences of η in the character of the representation $g \rightarrow P(g)$. Thus, every irreducible character of G is a component of the character {tr P(g)}. It follows that \overline{P} is, in fact, an isomorphism [1, p. 69].)

Since $T(G, \chi_i) = \overline{P}(t(G, \chi_i))$, we may apply Theorem 6 to obtain

$$T(G_{\chi},\lambda) = \sum^{1} T(G,\eta)$$
(6)

where the summation is as it was there.

Let, now, $v_1, \ldots, v_m, v'_1, \ldots, v'_m$ be vectors such that $a_{ij} = (v_i, v'_j)$. Observe that

$$(T(G,\eta)v_1\otimes\ldots\otimes v_m,v_1'\otimes\ldots\otimes v_m') = = \frac{\eta(1)}{o(G)}\sum_{g\in G}\eta(g)\prod_{t=1}^m (v_t,v_{g(t)}')$$

$$= \frac{\eta(1)}{o(G)} d^{\eta}_{G}(A).$$

The result follows from (6).

We might remark that eq (6) also shows that

$$V^m_{\lambda}(G_{\chi}) = \pm V^m_n(G),$$

the orthogonal direct sum of those symmetry classes corresponding to the irreducible characters n of G whose restriction to G_X contains λ .

5. References

- [1] Boerner, Hermann, Representations of Groups (American Elsevier, New York, 1970).
- [2] Botta, Peter, Matrix inequalities and kernels of linear transformations, Pacific J. Math. 40, 285–289 (1972).
- [3] Burnside, W., Theory of Groups of Finite Order (Dover reprint, New York, 1955).
- [4] Curtis, Charles W., and Reiner, Irving, Representation Theory of Finite Groups and Associative Algebras (Interscience, New York, 1962).
- [5] DeMeyer, Frank, private correspondence.
- [6] DeMeyer, Frank, Groups with an irreducible character of large degree are solvable, Proceedings Amer. Math. Soc. 25, 615-617 (1970).
- [7] DeMeyer, Frank and Janusz, Gerald, Finite groups with an irreducible representation of large degree, Math. Z. 108, 145-153 (1969).
- [8] Feit, Walter, Characters of Finite Groups (Benjamin, New York, 1967).
- Freese, Ralph, Inequalities for generalized matrix functions based on arbitrary characters, Linear Algebra Appl., to appear.
- [10] Merris, Russell, and Pierce, Stephen, Elementary Divisors of Higher Degree Associated Transformations, to appear.
- [11] Newman, Morris, Matrix Representations of Groups, Nat. Bur. Stand. (U.S.), Appl. Math. Ser. 60, 82 pages (July 1968).
- [12] Schur, I., Über endliche Gruppen und Hermitesche Formen, Math. Z. 1, 184-207 (1918).

(Paper 77B3&4-383)