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The Characterizations of (A, (U))*

Mark E. Sheingorn™*

(May 17, 1973)

For ¢ > 1 Bers defines a Banach space A,,(l/')={feH((') \J’ [A(u)| (1 — |u|2) 9 2dxdy < = } and
{

shows that any bounded linear functional A on 4,(U) may be represented as A (f) :j_f(ll)(:( u)(1—
{
|u|?)29-2dxdy where GeBy(U) = {heH (U)| sup |h(u)|(1 — |u|?)9 < =} and is unique. This work is
uel
done in [1]'. Duren, Romberg, and Shields. pursuant to their work on H” for p < 1, define a Banach space

Br(p<1) {feH U)|f f f(re?®) [(1—r)YP-2drdf < = } They show that a bounded linear

functional A on B” may be uniquely represented as A(f) = llm f fr(e?)g(e®)dl

where

(i) fr-(ei?) =f,(rei) B
(ii) geA=1{heH(U)| g is continuous on U} and g Y. and n—1 st derivative of g, is in
Ao={heH(U)|h' (re"’)— (I—r)c1)}. (Here a=1/p—n where n<l/p<n+1, so a#0. If
I/p = n + 1, the conditions on g are: ge4, gn-1DeA *{hEH(l |A"(rei®) = 0((1 —r)=1)}.) This work
appears in [ZI
In this paper. after showing that B? = A ,(U) with 1/p=g¢. we derive the relationship between G
and g, namely:

2n+1
G(z)= Y Ak g%*+D(z) - 22K+,

k=0

(|z] < 1) where A; are constants, 42,41 7 0. (in this case ¢=1/p is an integer. The Theorem is slightly
different if ¢ is not an integer.)

Key words: Automorphic functions: Hardy spaces.

We begin by showing that B? is isomorphic to 4,=A4,(U) with 1/p=gq. (the mapping is the

identity.)
ProoOF: Take feB”.

o 1 (! o 1, 24-2) [2m (1 o
ﬁ|f|(l—|u|-)’ -dxdy=%f” |f1(1—r2)a -rdrd(JS%‘[0 ﬁ |£1 (X —r)2drde.

This shows that k[|f[s»=[f]l1,. So B’ C Ay, with a continuous injection. Now it is easy to verify
that if feA, then feB”. Thus we have i : B’ — A, i the injection, is continuous and onto. The Open
Mapping Theorem implies that ' is continuous, completing the proof that B? = A4,, with 1/p=g¢q

We turn to the Duren, Romberg and Shields representation. We hereafter will only refer to
Ay, dropping all reference to B”. If f(z) =z", n = 0 (which is certainly in Ay).

27

A(Zn)zlimlf" r:zeinﬂg(ei())dng- ez (ei?)do,
== 0 0

AMS Subiect Classt fication: 30A58: 30A78.
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since g€A.
But now

2m 2
f einﬂg(eid) = llmlf ein0gr(ei9)d0’
0 r—> 0

by the Lebesgue Dominated Convergence Theorem since ||g-||. < ||g||... Now, letting g(z)

o

f“ ez, (einf)dh= J" einei birke-ik0dp
0 0

00 2r  _ ) X
— z J:) (bkrkem@—lke)de

0

(since the power series for g converges absolutely in U)

=2mh,r"
and
}Enl 02”e"”"gr(e”’)d0=27rl_),,.
We have proved .
LEMMA 1: If g(z) 2 xZ*,
A(z")=27TBn.

Now we turn to the Bers representation of A(z"). If

G@)=Y axz*, Nz)=(1—|z|?)
/\(z")szU Z“E(z))\z“’zdxdy

Z.L b n_inf Q k,—-ikf(1 — .2)\2a-2
WJ:) fo r'e E(, agrie (1 —r?) rdrd6.
Define G,(z) =G(pz). Then

sup |G, (2)N%(2) | = sup |G, (z)|\(s)

|z[=s [z]=s

(since A depends only on |z])

< sup |G(z)|A(s)

2'—\

= sup |G(z)|\(z)

1=
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We have shown that

‘(’u }\q(z)| SUP ?(';»(C))\"(QH

=|z|

= Sup IGON()]| <K
=z

since GeB,. Then,

(*) lim fjf@,,)x“*zdxdy:JJ-f(:')\“*?dxdy

p—1
since

6N = | (G M) A2 < K| o2,

by above. But since fed,, K|f\92| is integrable so (*) holds. Now, as before, we compute

ffz”(:,,)\z’l’zdxdy,n = 0.

f f 2"G N2 2dxdy

f f r"e"‘”( E agprriesikd ) (1 —r?)292rdrd6
0 0

1 L . 2T . ) .
- (1 _r.’).'lI* 2. pntl. em(f E (L;‘-pkrke""‘” d(.)dr
27T 0 ]
1 1 o % 27 ) )
2_77 (1 — r_’) 2q-2pn+l E (ikpl"r"'el"(””"ﬁdﬂdr
0 o> Jo

(since the series for G, converges absolutely for |z|=r=<1)

217r ( (1 —r2 ) 2q-2pn+ ‘dnp"r" o 27'rdr
)
1 1
= 7 n — 2q—-2,2n+1
o 2w anp fﬁ (| =) 2= g7

and taking limit as p— 1 we get
LEMMA 2: If G(Z)=2 az®
0
A(z")=1a, f (1'—r2)29=2p2n4tidr=a, " ¢,

0

where
1
e (1 —r2)2a-2p2n+ 1,
0
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COROLLARY 3: n =0
27b, = ancn.

ProOF: By taking conjugates, and noting that ¢, and 27 are real.
We shall need the following computation.
LEMMA 4: Let
1
'pcn___f 2+ (1 —p2) P dr,
)

(
then
e _ nll(p+1)
P T (p+nt2)-2
(Here p #—1.)
PRrRooF¥: By integration by parts

1
p"n=f r2ttl (1 — r2)2dr
0

1
p+1

frer—l(l _rz)mldr

n C —
p+1([)+1) (n—1).

Also, it is easy to compute

1

PO+

Using our recursion equation and initial condition, we obtain:

'
) P +1) n (p+n+1)
Now
pl(p)=T(p+1).
So
[2(p+1) ... (p+n+D)](p+1)=2(p+n+2)
or
[2(p+1) . . . (p+n+1)]=*2£W'
Substituting in (**), we obtain
nl'(p+1)

P nz2]‘(p+n+2)

We can now prove the basic theorems. First, the case when ¢g=n+1, an integer.
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THEOREM 5: Let q=n+1, then

(1) G(2)= Agps1 €2 D(z) 22"+ Ap,g2(2)- 22" + . . .+ Aog(z)(|z| < 1) where A; are constants,
Aspir # 0.
PROOF: ay=2mbm/cm where

m!l'(2¢—1)

21°(2g+m)

cm= (2g—2)m=

2¢—2=2(n+1)—2=2n

m!2n! )
(2n+m—+1)!-2

Cm=

Then
2abn2:2n+m+1)!
am = 27Tbm/cm = < ( )
m!2n!
2n+m—+1)!
Now, (—*T—) is a polynomial of proper degree 2n+ 1. Such polynomial is a linear combination

of the following 2n+2 polynomials:
Co(m)=1
Ci.(m)=m
Co(m)=m(m—1)

Cy(m) =m(m—1)(m—2)

Copnii(m)=m(m—1) .. . (m—2n)

Thus we have
Am = 47Tbm' E B C (m
=0
(Bi constant, Bauy1 # 0); then

amrmeim()—_‘ E BC (m)b rmemz()

'1()

and, if r<1

2n+1

o
an rmennﬁ—— Bici(m).bmrmeimo
> DE B

m=0 m=0 1=

= % 2 E Bi'Ci(m)b,,,r"‘ei"lB
cmi

7T
- 2— 2 2 m)bm meimf
i oom
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(since r<1)

::_jz 25 (j (ﬂl b rmezm9
2n i m=
Now,
g“")(z) - 2 Ck(m)bmrm—kei(mfk)()
m=0
or
g(A-)(z) =z~ k. 2 Ck(m)bmrm.einw
m
or
zkg(l;) (Z) — 2 Ck(m)bmrmeimq
m
Hence
— 2 amrmeime
m=0
47T 2n+1
2n' 2 Big"(z) 2.
i=0
) 47B;
Now, with 4;= on! “ we have (1)Asns1 # 0 because Ban,y # 0.

We now turn to the case when q is not an integer.
COROLLARY 6: Let n < q<n+1. Then G € B, may be written

2n+1

G(2)= 2 Azl g (z), Asni1 #0
i=0

1 .
(1=r)°

where not only is g™ VeAx, geA but g2+ =)

(We shall see shortly that g™ Vel = gn+D=((1/1—r)"*.)
Note that we do not claim that this g is the same as the g associated with A.
ProoF: Choose B such that ¢g+B=n+1. GeB,. GeB4.p=B..1 since A(z) <1, and 8> 0. Apply

2n+1
Theorem 5, getting G (z) = 2 Aizigt(z). The proof that g2"+V=0(1/(1 —r)?) depends on
=
LEMMA 7: Say feH(U),
| f(re®)| < k/0—1)".

Then )
If'(re') | <k'/(Q—r)".

ProOF: Pick z, r=|z|, r<p<1,C,={z||z|=p}. Then

f(2)=

L[ L0y,

2mi Je, |{—z|?

7@ s g [ AL

(1=p)' 277 b 1L=2f
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We must estimate the last integral

[ Al [ e

o 8=zl Jo |pet?—zf?

(where (= pe®, d{= pie?df, so |d{|= pdb).
Now, let p= (1+7)/2. If we set z*=z/p, |z*|=2r/(1+7r) <1, when r < 1. Then.

f?ﬂ pdd 1 f‘-’v 6
0 |pe‘9—z|2 P Jo eio__Z_-"z
o)

_ 2 [ do
1+r o |e"9—z*|z

Let us look at the last integral.

2m it *
ZWZJ Reei,+z* dt (Poisson Kernel)
0 e’ —z
it it — %

R (eit+ 2*) (e z )dt
0 |evt |
2m — * 1! CR e e

Re 1—[z*]*+ (e el'z*) dt

0 [ett="2A1|2

Now eitz*— el’z* js imaginary so

o __‘jZ_L ~dt

ZZ dt
— (1 — | ,*|2 -
(1 |Z | )J'“ |ei1_z*|2

2 [ d6 2 2m
1+r)o |e®—z*> 14+r 1—|z*|?

Thus

Now since GeB4,n < ¢ < n+ 1 we see that
(%) (L=r)e- 2+ g0 (z) = 0(1)
fori > 2n+ 1.
G(z) 1=r)1=01)+ (1 —r)ig>"(2) - z
by (***). Thus g2"*'=0(1/(1 —r)9).

This concludes the proof of Corollary 6.
We ask the following question: I's every sum of the form

2A;-z - g9 (z) in By ? First, if ¢ is an integer, the answer is yes. For then g"' € A, which
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implies

gt =01/(1—r)
g =0(1/(1—r)?)

successively,
by Lemma 7.

g2l =0 (Hﬁ) =0 ((_1—1—r)‘1>

Thus clearly
2n+1

Y Ai-z'-g7(z) eB,

i=0

If q is not an integer, then not every such sum is in Bg. Only those with g2**' =0(1/(1 —r))
will be in Bg. g€ A_ only implies that 8"*'=0(1/(1 —r)"*"), and 0(1/(1 — r)"*') is a weaker
condition than 0(1/(1—r)?), sinceq < n—+1.

The author wishes to thank Jay Stepelman without whom this work could not have begun.
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