JOURNAL OF RESEARCH of the National Bureau of Standards - B. Mathematical Sciences Vol. 77B, Nos. 3 & 4, July-December 1973

The Characterizations of $(A_q(U))^*$

Mark E. Sheingorn**

(May 17, 1973)

For $q > 1$ Bers defines a Banach space $A_q(U) = \left\{ f \in H(U) \mid \int_{U} |f(u)| (1 - |u|^2)^{q-2} dx dy < \infty \right\}$ and shows that any bounded linear functional Λ on $A_q(U)$ may be represented as $\Lambda(f) = \int f(u)\bar{G}(u) (1-u)^{2} du$ $|u|^2$ ^{2q-2}dxdy where $G\epsilon B_q(U) = \{h\epsilon H(U) | \sup |h(u)| (1 - |u|^2)^q < \infty\}$ and is unique. This work is done in [1]¹. Duren, Romberg, and Shields, pursuant to their work on H^p for $p < 1$, define a Banach space $B^p(p<1)=\left\{\int_{0}^{z}f\epsilon H(U)|\int_{0}^{2\pi}\int_{0}^{1}|f(re^{i\theta})|(1-r)^{1/p-2}drd\theta<\infty\right\}$. They show that a bounded linear

functional Λ on B^p may be uniquely represented as $\Lambda(f) = \lim_{r \to 1} \int_0^{2\pi} f_r(e^{i\theta}) \bar{g}(e^{i\theta}) d\theta$ where

(i) $f_r(e^{i\theta}) = f_r(re^{i\theta})$

(ii) $g \in A = \{h \in H(U) | g$ is continuous on $\overline{U}\}$ and $g^{(n-1)}$, and $n-1$ st derivative of g, is in $\Lambda_{\alpha} = \{\hbar \epsilon H(U) | h'(re^{i\theta}) = 0 (1-r)^{\alpha-1} \}$. (Here $\alpha = 1/p - n$ where $n < 1/p < n+1$, so $\alpha \neq 0$. If $1/p = n + 1$, the conditions on g are: $ge4$, $ge^{(n-1)} \epsilon \Lambda_{\alpha} = \{h \epsilon H(U) | h''(re^{i\theta}) = 0 ((1-r)^{-1})\}$.) This work appears in [2].

In this paper, after showing that $B^p \cong A_q(U)$ with $1/p = q$, we derive the relationship between G and g , namely:

$$
G(z) = \sum_{k=0}^{2n+1} A_k \cdot g^{(2k+1)}(z) \cdot z^{2k+1},
$$

 $(|z|<1)$ where A_i are constants, $A_{2n+1}\neq 0$. (in this case $q=1/p$ is an integer. The Theorem is slightly different if q is not an integer.)

Key words: Automorphic functions; Hardy spaces.

We begin by showing that B^p is isomorphic to $A_q = A_q(U)$ with $1/p = q$. (the mapping is the identity.)

PROOF: Take $f \in B^p$.

$$
\int_U |f| (1-|u|^2)^{q-2} dx dy = \frac{1}{2\pi} \int_0^1 |f| (1-r^2)^{q-2} r dr d\theta \le \frac{\max(1, 2^{q-2})}{2\pi} \int_0^{2\pi} \int_0^1 |f| (1-r)^{q-2} dr d\theta.
$$

This shows that $k||f||_{B}$ $p \ge ||f||_{A_{q}}$. So $B^{p} \subset A_{q}$, with a continuous injection. Now it is easy to verify that if $f \in A_q$ then $f \in B^p$. Thus we have $i : B^p \to A_q$, i the injection, is continuous and onto. The Open Mapping Theorem implies that i^{-1} is continuous, completing the proof that $B^p \cong A_q$, with $1/p = q$.

We turn to the Duren, Romberg and Shields representation. We hereafter will only refer to A_q , dropping all reference to B^p . If $f(z) = z^n$, $n \ge 0$ (which is certainly in Aq).

$$
\Lambda(z^n) = \lim_{r \to 1} \int_0^{2\pi} r^n e^{in\theta} \bar{g}(e^{i\theta}) d\theta = \int_0^{2\pi} e^{in\theta} \bar{g}(e^{i\theta}) d\theta,
$$

 $\emph{AMS Subject Classification: 30A58; 30A78.}$
 *An invited paper. This work was done while the author was a National Academy of Sciences-National Research Council Postdoctoral Research Associate
 at the National Bureau of Standards, Washing

since $g \in A$. But now

$$
\int_0^{2\pi} e^{in\theta} \bar{g}(e^{i\theta}) = \lim_{r \to 1} \int_0^{2\pi} e^{in\theta} \bar{g}_r(e^{i\theta}) d\theta,
$$

by the Lebesgue Dominated Convergence Theorem since $\|g_r\|_{\infty} \leqslant \|g\|_{\infty}.$ Now, letting $g(z) = \sum\limits_{i=1}^{\infty}\, b_k z^k,$ $k = 0$

$$
\int_0^{2\pi} e^{in\theta} \bar{g}_r(e^{in\theta}) d\theta = \int_0^{2\pi} e^{in\theta} \sum_0^{\infty} \bar{b}_k r^k e^{-ik\theta} d\theta
$$

$$
= \sum_0^{\infty} \int_0^{2\pi} (\bar{b}_k r^k e^{in\theta - ik\theta}) d\theta
$$

(since the power series for g_r converges absolutely in \bar{U})

$$
=2\pi\bar{b}_nr^n
$$

and

$$
\lim_{r\to 1}\int_0^{2\pi}e^{in\theta}\bar{g}_r(e^{i\theta})d\theta=2\pi\bar{b}_n.
$$

We have proved \Box LEMMA 1: $If g(z) = \sum b_k z^k$, $k = 0$

 $\Lambda(z^n) = 2\pi \overline{b}_n$.

Now we turn to the Bers representation of $\Lambda(z^n)$. *If*

$$
G(z) = \sum a_k z^k, \ \lambda(z) = (1 - |z|^2)
$$

$$
\Lambda(z^n) = \int \int_U z^n \overline{G}(z) \lambda^{2\alpha - 2} dxdy
$$

$$
= \frac{1}{2\pi} \int_0^1 \int_0^{2\pi} r^n e^{in\theta} \sum_0^{\infty} \overline{a}_k r^k e^{-ik\theta} (1 - r^2)^{2\alpha - 2} r dr d\theta
$$

Define $G_{\rho}(z) = G(\rho z)$. Then

$$
\sup_{|z|=s}|G_{\rho}(z)\lambda^{q}(z)|=\sup_{|z|=s}|G_{\rho}(z)|\lambda^{q}(s)|
$$

(since λ depends only on |z|)

$$
\leq \sup_{|z|=s} |G(z)| \lambda^{q}(s)
$$

=
$$
\sup_{|z|=s} |G(z)| \lambda^{q}(z).
$$

We have shown that

$$
|G_{\rho}(z)\lambda^{q}(z)| \leq \sup_{|\zeta| \leq |z|} |G_{\rho}(\zeta)\lambda^{q}(\zeta)|
$$

$$
\leq \sup_{|\zeta| \leq |z|} |G(\zeta)\lambda^{q}(\zeta)| \leq K;
$$

since $G \in B_q$. Then,

$$
(\mathbf{a}^*)\qquad \qquad \lim_{\rho \to 1} \int \int \bar{\mathcal{F}}_{\rho} \lambda^{2q-2} dx dy = \int \int \bar{\mathcal{F}} \bar{\mathcal{G}} \lambda^{2q-2} dx dy
$$

since

$$
|fG_{\rho}\lambda^{2q-2}| = |f(G_{\rho}\lambda^{q})\lambda^{q-2}| \leq K|f\lambda^{q-2}|,
$$

by above. But since $f \in A_q$, $K | f \lambda^{q-2}$ is integrable so (*) holds. Now, as before, we compute $\int \int z^n \bar{G}_{\rho} \lambda^{2q-2} dx dy, n \geq 0.$ $\int \int z^n \bar{G}_{\rho} \lambda^{2q-2} dx dy$ $=\frac{1}{2\pi}\int_0^1\int_0^{2\pi}r^n e^{in\theta}\left(\sum_{\alpha}^{\infty}\bar{a}_k\rho^k r^k e^{-ik\theta}\right)(1-r^2)^{2q-2}r dr d\theta$ $=\frac{1}{2\pi}\int_0^1(1-r^2)^{2q-2}\cdot r^{n+1}\cdot\int_0^{2\pi}e^{in\theta}\left(\sum_0^\infty a_k\rho^kr^ke^{-ik\theta}\right)d\theta dr$ $=\hspace*{-1em}\dfrac{1}{2\pi}\int_{0}^{1}\left(1\hspace*{-0.05cm}-\hspace*{-0.05cm}r^{2}\right)^{2q-2}r^{n+1}\sum_{\alpha}^{\infty}\int_{0}^{2\pi}\bar{a}_{k}\rho^{k}r^{k}e^{in\theta-ik\theta}d\theta dr$

(since the series for G_{ρ} converges absolutely for $|z|=r \leq 1$)

$$
=\frac{1}{2\pi}\int_0^1 (1-r^2)^{2q-2}r^{n+1}\bar{a}_n\rho^n r^n \cdot 2\pi dr
$$

$$
=\frac{1}{2\pi}\cdot 2\pi\bar{a}_n\rho^n \int_0^1 (1-r^2)^{2q-2}r^{2n+1}dr
$$

and taking limit as $\rho \rightarrow 1$ we get

LEMMA 2: If
$$
G(z) = \sum_{0}^{\infty} a_k z^k
$$

$$
\Lambda(z^n) = \overline{a}_n \cdot \int_0^1 (1 - r^2)^{2q-2} r^{2n+1} dr = \overline{a}_n \cdot c_n
$$

where

$$
c_n\!=\!\int_0^1{(1-r^2)^{2q-2}r^{2n+1}}dr.
$$

 $2\pi b_n = a_n c_n$.

PROOF: By taking conjugates, and noting that c_n and 2π are real.

We shall need the following computation. LEMMA 4: *Let*

$$
p^{c}n = \int_{0}^{1} r^{2n+1} (1 - r^{2})^{p} dr,
$$

then

$$
p^{c}n = \frac{n!\Gamma(p+1)}{\Gamma(p+n+2)\cdot 2}.
$$

(Here $p \neq -1$.) PROOF: By integration by parts

$$
p^{c}n = \int_{0}^{1} r^{2n+1} (1 - r^{2})^{p} dr
$$

=
$$
\frac{1}{p+1} \int_{0}^{1} r^{2n-1} (1 - r^{2})^{p+1} dr
$$

=
$$
\frac{n}{p+1} (p+1)^{c} (n-1).
$$

Also, it is easy to compute

$$
p^c 0 = \frac{1}{2(p+1)}.
$$

Using our recursion equation and initial condition, we obtain:

$$
p^c n = \frac{n!}{2(p+1) \dots (p+n+1)}.
$$

$$
p\Gamma(p) = \Gamma(p+1).
$$

So

or

$$
[2(p+1) \dots (p+n+1)]\Gamma(p+1) = 2\Gamma(p+n+2)
$$

$$
[2(p+1) \dots (p+n+1)] = \frac{2\Gamma(p+n+2)}{\Gamma(p+1)}.
$$

Substituting in (**), we obtain

$$
p^c n = \frac{n! \Gamma(p+1)}{2\Gamma(p+n+2)}.
$$

We can now prove the basic theorems. First, the case when $q = n + 1$, an integer.

THEOREM 5: Let $q = n + 1$, then

(1) $G(z) = A_{2n+1}g^{(2n+1)}(z) \cdot z^{2n+1} + A_{2n}g^{(2n)}(z) \cdot z^{2n} + \ldots + A_0g(z) (\vert z \vert < 1)$ where A_i are constants, $A_{2n+1} \neq 0.$

PROOF: $a_m = 2\pi b_m/c_m$ where

$$
c_m = (2q - 2)^c \cdot m = \frac{m! \Gamma(2q - 1)}{2\Gamma(2q + m)}
$$

$$
2q - 2 = 2(n + 1) - 2 = 2n
$$

$$
c_m = \frac{m! \cdot 2n!}{(2n + m + 1)! \cdot 2}.
$$

Then

$$
a_m = 2\pi b_m/c_m = \frac{2\pi b_m \cdot 2 \cdot (2n + m + 1)!}{m! \, 2n!}.
$$

Now, $\frac{(2n+m+1)!}{m!}$ is a polynomial of proper degree $2n+1$. Such polynomial is a linear combination of the following $2n+2$ polynomials:

$$
C_0(m) = 1
$$

\n
$$
C_1(m) = m
$$

\n
$$
C_2(m) = m(m-1)
$$

\n
$$
C_3(m) = m(m-1)(m-2)
$$

\n
$$
\vdots
$$

\n
$$
C_{2n+1}(m) = m(m-1) \dots (m-2n)
$$

Thus we have

$$
a_m = \frac{4\pi b_m}{2n!} \cdot \sum_{i=0}^{2n+1} B_i \cdot C_i(m).
$$

 $(B_i \text{ constant}, B_{2n+1} \neq 0);$ then

$$
a_{m}r^{m}e^{im\theta} = \frac{4\pi}{2n!}\sum_{i=0}^{2n+1} B_{i}C_{i}(m) b_{m}r^{m}e^{im\theta}
$$

and, if $r < 1$

$$
\sum_{m=0}^{\infty} a_m r^m e^{im\theta} = \sum_{m=0}^{\infty} \frac{4\pi}{2n!} \cdot \sum_{i=0}^{2n+1} B_i C_i(m) \cdot b_m r^m e^{im\theta}
$$

$$
= \frac{4\pi}{2n!} \sum_m \sum_i B_i C_i(m) b_m r^m e^{im\theta}
$$

$$
= \frac{4\pi}{2n!} \sum_i \sum_m B_i C_i(m) b_m r^m e^{im\theta}
$$

507-714 O - 73 - 2

 $(since \r<1)$

$$
=\frac{4\pi}{2n!}\sum_i B_i\sum_{m=0}^\infty C_i(m)b_m r^m e^{im\theta}.
$$

Now,

$$
g^{(k)}(z) = \sum_{m=0}^{\infty} C_k(m) b_m r^{m-k} e^{i(m-k)\theta}
$$

$$
g^{(k)}(z) = z^{-k} \cdot \sum_{m} C_k(m) b_m r^m \cdot e^{im\theta}
$$

or

or

$$
z^k g^{(k)}(z) = \sum_m C_k(m) b_m r^m e^{im\theta}.
$$

Hence

$$
G(z) = \sum_{m=0}^{\infty} a_m r^m e^{im\theta}
$$

$$
=\frac{4\pi}{2n!}\sum_{i=0}^{2n+1}B_i\cdot g^{(i)}(z)\cdot z^i.
$$

Now, with $A_i = \frac{4\pi B_i}{2n!}$ we have $(1) \cdot A_{2n+1} \neq 0$ because $B_{2n+1} \neq 0$.

We now turn to the case when *q* is *not* an integer. COROLLARY 6: Let $n < q < n+1$. Then $G \in B_q$ may be written

$$
G(z) \!= \sum_{i=0}^{2n+1} \, A_i \cdot z^{i} \! \cdot \! g^{(i)}\left(z\right)\!, A_{2n+1} \neq 0
$$

where not only is $g^{(n-1)}\epsilon \Lambda$, $g\epsilon A$ but $g^{(2n+1)} = 0 \frac{1}{(1-r)^q}$.

(We shall see shortly that $g^{(n-1)} \in \Lambda_* \Rightarrow g^{(2n+1)} = 0(1/(1-r)^{n+1})$.)

Note that we do *not* claim that this g is the same as the g associated with Λ . PROOF: Choose β such that $q+\beta=n+1$. $G \in B_q$. $G \in B_{q+\beta}=B_{n+1}$ since $\lambda(z) \leq 1$, and $\beta > 0$. Apply Theorem 5, getting $G(z) = \sum_{i=0}^{2n+1} A_i z^i g^{(i)}(z)$. The proof that $g^{(2n+1)} = 0(1/(1-r)^q)$ depends on LEMMA 7: Say $f\in H(U)$,

$$
|f(re^{i\theta})| < k/(1-r)^{1}.
$$
\n
$$
|f'(re^{i\theta})| < k'/(1-r)^{1+1}
$$

Then

l

PROOF: Pick z, $r = |z|, r < p < 1, C_p = \{z \mid |z| = \rho\}.$ Then

$$
f'(z) = \frac{1}{2\pi i} \int_{C_{\rho}} \frac{f(\zeta)}{|\zeta - z|^2} d\zeta
$$

$$
|f'(z)| \le \frac{k}{(1-\rho)^l} \cdot \frac{1}{2\pi} \cdot \int_{C_{\rho}} \frac{|d\zeta|}{|\zeta - z|^2}.
$$

We must estimate the last integral

$$
\int_{C_{\rho}}\frac{|d\zeta|}{|\zeta-z|^2}=\int_0^{2\pi}\frac{\rho d\theta}{|\rho e^{i\theta}-z|^2}
$$

(where $\zeta = \rho e^{i\theta}$, $d\zeta = \rho i e^{i\theta} d\theta$, so $|d\zeta| = \rho d\theta$). Now, let $\rho = (1 + r)/2$. If we set $z^* = z/\rho$, $|z^*| = 2r/(1 + r) < 1$, when $r < 1$. Then.

$$
\int_0^{2\pi} \frac{\rho d\theta}{|\rho e^{i\theta} - z|^2} = \frac{1}{\rho} \int_0^{2\pi} \frac{d\theta}{|e^{i\theta} - \frac{z}{\rho}|^2}
$$

$$
= \frac{2}{1+r} \int_0^{2\pi} \frac{d\theta}{|e^{i\theta} - z^*|^2}.
$$

Let us look at the last integral.

$$
2\pi = \int_0^{2\pi} \text{Re} \, \frac{e^{it} + z^*}{e^{it} - z^*} dt \qquad \text{(Poisson Kernel)}
$$

$$
= \int_0^{2\pi} \text{Re} \, \frac{(e^{it} + z^*) \left(e^{it} - z^* \right)}{|e^{it} - z^*|^2} dt
$$

$$
= \int_0^{2\pi} \text{Re} \, \frac{1 - |z^*|^2 + (e^{it} z^* - e^{it} \overline{z}^*)}{|e^{it} - z^*|^2} dt
$$

Now $\overline{ei^{t}}z^{*}-e^{it}\overline{z}^{*}$ is imaginary so

$$
= \int_0^{2\pi} \frac{1 - |z^*|^2}{|e^{it} - z^*|^2} dt
$$

= $(1 - |z^*|^2) \int_0^{2\pi} \frac{dt}{|e^{it} - z^*|^2}$

Thus

$$
\frac{2}{1+r} \int_0^{2\pi} \frac{d\theta}{|e^{i\theta} - z^*|^2} = \frac{2}{1+r} \cdot \frac{2\pi}{1-|z^*|^2}
$$

Now since $G \in B_q$, $n < q < n + 1$ we see that

$$
^{(***)}
$$

$$
(***)\qquad \qquad (1-r)^q \cdot z^i \cdot g^{(i)}(z) = 0(1)
$$

for $i > 2n + 1$.

$$
G(z) (1 - r)^{q} = 0(1) + (1 - r)^{q} g^{2n+1}(z) \cdot z^{i}
$$

by $(***)$. Thus $g^{2n+1} = 0(1/(1-r)^q)$.

This concludes the proof of *Corollary 6.*

We ask the following question: Is every sum of the form

 $\sum A_i \cdot z^i \cdot g^{(i)}(z)$ in B_q ? First, if *q is an integer*, the answer is yes. For then $g^{n-1} \in \Lambda_*$ which

implies

$$
g^{n+1} = 0(1/(1-r))
$$

\n
$$
g^{n+2} = 0(1/(1-r)^{2})
$$

\n
$$
g^{2n+1} = 0 \left(\frac{1}{(1-r)^{n+1}} \right) = 0 \left(\frac{1}{(1-r)^{q}} \right)
$$

\n
$$
g^{2n+1} = 0 \left(\frac{1}{(1-r)^{n+1}} \right) = 0 \left(\frac{1}{(1-r)^{q}} \right)
$$

\nby Lemma 7.

Thus clearly

$$
\sum_{i=0}^{2n+1} A_i \cdot z^i \cdot g^{(i)}(z) \in B_q.
$$

If q is *not an integer*, then not every such sum is in B_q . Only those with $g^{2n+1} = 0(1/(1-r)q)$ will be in B_q . $g \in \Lambda_*$ only implies that $g^{2n+1} = 0(1/(1-r)^{n+1})$, and $0(1/(1-r)^{n+1})$ is a weaker condition than $O(1/(1-r)^q)$, since $q \leq n+1$.

The author wishes to thank Jay Stepelman without whom this work could not have begun.

References

[1] Bers, L., Completeness theorems for Poincaré series in one variable, Proceedings of the international Symposium on Linear Spaces, Jerusalem, (Jerusalem Academic Press-Pergamon Press, 1961), pp. 88-100.

[2] Duren, P., Romberg, R., Shields, A., Linear functionals on H^p with $0 \le p \le 1$, to appear.

(Paper 77B3&4-382)