Remarks on a Problem of Rademacher in the Theory of Modular Forms*

Marvin I. Knopp**

(May 17, 1973)

Rademacher quite some time ago posed the question of deriving the classical functional equation of $1/\eta(z)$ ($\eta(z)$) is the Dedekind modular form) directly from the exact expression he had found for the partition function, $p(n)$, which arises as the Fourier coefficient of $1/\eta(z)$. Although he had been able to solve a similar problem for the absolute invariant $I(z)$. Rademacher was unable to solve the problem for $1/\eta(z)$. We here relate this question to some more recent results of Douglas Niebur, which reduce the problem to one of identically zero Poincaré series of degree $-5/2$.

Key words: Dedekind function; modular form; partition function; Poincaré series.

1. In $[6]^1$ Rademacher introduced a method for recapturing the functional equation

$$
J\left(-\frac{1}{z}\right) = J\left(z\right)
$$

of the well-known modular invarient, $J(z)$, directly from the explicit representation of the Fourier coefficients of $J(z)$ that he had obtained earlier [5]. Subsequently, Rademacher quite naturally raised the question of finding an analogous method for deriving the functional equation of the modular form $\eta^{-1}(z)$ from the exact formula he had found for the partition function, $p(n)$, which is generated as the Fourier coefficient of $\eta(z)^{-1}$. It is the purpose of this note to consider the relationship of this problem to the results of Niebur [3]. We shall show that, in one sense at least, Niebur's results (which are quite far-reaching and deep) solve Rademacher's problem; in another sense the problem remains open. The apparent paradox will be explained in due course.

2. The *Dedekind function* $\eta(z)$ is defined by the infinite product.

(1)
$$
\eta(z) = e^{\pi i z/12} \prod_{m=1}^{\infty} (1 - e^{2\pi i m z}), \qquad \text{Im } z > 0.
$$

A simple combinatorial argument [1, pp. 32-34] shows that

(2)
$$
\eta(z)^{-1} = e^{2\pi i (23/24)z} \left\{ e^{-2\pi i z} + \sum_{n=0}^{\infty} p(n+1) e^{2\pi i n z} \right\},
$$

where $p(n)$ is the number of unrestricted partitions of *n* into positive integers. Now it is obvious from either (1) or (2) that

(3)
$$
\eta(z+1) = e^{\pi i/12} \eta(z),
$$

AMS Subject Classifications: 10D05; 1001.

^{*} An invited paper.
** Present address: The University of Illinois, Chicago, Illinois 60680

¹ Figures in brackets indicate the literature references at the end of this paper.

while it is a deep property of $\eta(z)$ that

(4)
$$
\eta(-1/z) = e^{-\pi i/4} z^{1/2} \eta(z), \qquad \text{Im } z > 0,
$$

where $-\pi \leq \arg z \leq \pi$ is the convention adopted for calculating $z^{1/2}$ [1, pp. 41-43].

It follows from (1), (3), and (4) that $\eta(z)$ is a *modular cusp form of degree* $-1/2$; that is,

(5)
$$
\eta(iy) \to 0, \text{ as } y \to +\infty,
$$

and

(6)
$$
\eta(Mz) = v_{\eta}(M) \ (cz+d)^{1/2} \eta(z),
$$

for all $Mz = (az + b) / (cz + d)$, with *a*, *b*, *c*, *d* rational integers such that $ad - bc = 1$. Here $v_{\eta}(M)$ is a 24th root of unity, independent of *z*. The collection $\{v_{\eta}(M)\}\$ is called the *multiplier system of* $\eta(z)$. It follows that $\eta(z)^{-1}$ is a modular form of degree 1/2, with multiplier system \bar{v}_η ; $\eta(z)$ ⁻¹ has a *pole* at $i\infty$, in the sense that

(7)
$$
\left| \eta(iy)^{-1} \right| \to +\infty, \text{ as } y \to +\infty.
$$

Using (2) and (4) and a refined version of the "circle method," Rademacher [4] derived the exact formula

(8)
$$
p(n) = \frac{e^{\pi i/4}}{\pi \sqrt{2}} \sum_{k=1}^{\infty} A_k(n) k^{1/2} \frac{d}{dn} \left\{ \frac{\sinh(\nu \sqrt{n-1/24}/k)}{\sqrt{n-1/24}} \right\},
$$

where $\nu = \pi \sqrt{2/3}$ and

(9)
$$
A_k(n) = \sum_{\substack{h(\text{mod }k) \\ (h, k) = 1}} v_{\eta}(M_{k, -h}) \exp\left\{-\frac{2\pi i}{k} \left[\left(n - \frac{1}{24}\right)h + \frac{1}{24}h'\right]\right\};
$$

here $M_{k,-h} = \binom{h' - k'}{k - h}$, with $-hh' - kk' = 1$.

Rademacher's problem may be stated as follows. Suppose we regard the function $\eta(z)^{-1}$ as being *defined* by (2), (8), and (9), ignoring the definition (1) and the number-theoretic interpretation of $p(n)$ as the partition function. Show *from this definition* that $\eta(z)^{-1}$ is a modular form of degree $1/2$ and multiplier system \bar{v}_η , that is, that

(10)
$$
\eta(Mz)^{-1} = \bar{v}_{\eta}(M) (cz+d)^{-1/2} \eta(z)^{-1},
$$

with M as before. Since it is obvious from (2) that

$$
\eta(z+1)^{-1} = e^{-\pi i/12} \eta(z)^{-1},
$$

the problem reduces to showing that

(11)
$$
\eta(-1/z)^{-1} = e^{\pi i/4} z^{-1/2} \eta(z)^{-1}, \quad \text{Im } z > 0.
$$

3. The results of Niebur are valid for all automorphic forms of positive degree on H -groups, and, in particular, apply to the function $\eta(z)^{-1}$, as defined by (2) and (8). In this case Niebur's method

yields the following functional equation directly from the series (2) , (8) [3, Theorem 3.2]:

$$
e^{-\pi i/4}z^{1/2}\eta\left(-1/z\right)^{-1}-\eta\left(z\right)^{-1}=\ \left[\alpha\ \int_0^{i\infty}G(\tau)(\tau-\bar{z})^{1/2}d\tau\right]^{-},
$$

where α is a nonzero constant, $\lceil \beta \rceil$ denotes the complex conjugate of β , the path of integration is the *y* axis, and $G(\tau)$ is the *Poincaré series* defined by

(13)
$$
G(\tau) = \sum \frac{\exp\left\{\frac{2\pi i}{24} \frac{a\tau + b}{c\tau + d}\right\}}{\nu_{\eta}(M)(c\tau + d)^{5/2}}, \quad \text{Im } \tau > 0.
$$

Here the sum is taken over all pairs of relatively prime integers c, *d* and *a, b* are rational integers chosen such that $ad-bc=1$; also, $M\tau = (a\tau + b)/(c\tau + d)$ and v_n is the multiplier system of $n(z)$.

Now (11) follows from (12) if it can be shown that

(14)
$$
\int_0^{i\infty} G(\tau) \ (\tau - \bar{z})^{1/2} d\tau = 0,
$$

and Niebur has observed that (14) is equivalent to $G(\tau) \equiv 0$ [3, Theorem 4.1]. Thus Rademacher's problem is reduced to showing that $G(\tau) \equiv 0$. On the other hand, $G(\tau)$ is a modular cusp form of dimension $-5/2$ and multiplier system v_{η} (cf. the discussion in [2, pp. 272-280]), and we may show that such a modular form is necessarily $\equiv 0$. This can be done as follows. With $\eta(z)$ defined by (1), the function $f(z) = G(z)/n(z)$ is an *entire* modular form of degree -2 and multiplier system identically 1. That is,

(15)
$$
f(Mz) = (cz + d)^2 f(z),
$$

with *M* as in (6) and Im $z > 0$, and

(16)
$$
|f(iy)|
$$
 has a finite limit as $y \to +\infty$.

It is not too difficult to show that $f(z)$ satisfying (15) and (16) is identically 0 [2, p. 216]. Thus $G \equiv 0$ and Rademacher's problem is solved.

But only in a sense, for to maintain the spirit within which Rademacher proposed the problem, one should show that $G = 0$ *directly from the expression* (13). This is as yet unresolved and apparently exceedingly difficult.

References

- [1] Knopp, Marvin 1. , Modular Functions in Analytic Number Theory (Chicago, Markh am Publishing Co., 1970).
- [2] Lehner, J., Discontinuous groups and automorphic functions, Providence, American Mathematical Society, 1964.
- [3] Niebur, Douglas, Automorphic integrals of arbitrary positive dimension and Poincaré series, Ph. D. Thesis, University of Wisconsin, 1968.
- [4] Rademacher, Hans, A convergent series for the partition function $p(n)$, Proc. Nat. Acad. Sci. U.S.A. 23,78-84 (1937).
- [5] Rademacher, Hans, The Fourier coefficients of the modular invariant $J(\tau)$, American Journal of Mathematics 60, 501-512 (1938).
- [6] Rademacher, Hans, The Fourier series and the functional equation of the absolute modular invariant $J(\tau)$, American Journal of Mathematics 61,237- 248 (1939).

(Paper 77B3&4-381)