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In a recent s tudy of the thermodynamic restrictions of a theory of com press ibl e, viscoelasti c Auid s, 
Fong and Simmons (ZAMP 23, No.5 (1972)) encountered a proble m of integrat ing the followin g 
matrix identi ty: 

M[ H O,c( HTII1H )HT - 0 ,,(111) ) - HO,c( HTH )HT == 0 , 
"" = == = = = = = = = = -

, , 

whe re U, c de notes the gradi ent of the sca lar-valued fun c tion U= U( C) wit h respec t to it s matrix 
a rgume nt C which is symmetri c and positive-definit e_ The iden tit y is va lid for every sy mmetri c positive­
definite M and every unimodular H. The symbol H T denotes the transpose of the matrix H. Th e so lution 
of the proble m is presen ted he re in detai l as an exa mple of app lying, probably for the firs t time , Schur's 
le mma on irred ucible sets of matri ces in theore ti ca l continuum mechanics. 

Key words : Continuum mechanics; e lasti c ity; integration; matrix ca lculu s; matrix id entity ; matrix 
theory; reducibility; S chur's le mma; strain ene rgy. 

1. Introduction 

Continuum mechanics , or the mechanics of a deformable medium , depends heavily on the use 
of standard results in matrix theory for the formulation of problems and their solution s. For example, 
a "hyperelastic mate rial" is characterized by the following constit utive equation whe n th e th ermal 
variables are ignored: 

(1.1) 

Here T is the Cauchy stress tensor with a matrix representation Tt" which specifies the actual 

contact force per unit area in the spatial coordinate system Xk, k = 1, 2,3. The symbo l p s tands for 
tht; mass density per unit volume associated with a particle at X k. To define F , the deformation gradi-

. e nt tensor with a matrix re prese ntation 'F~, we need to introduce a reference co nfiguration K with 
respect to which each material particle is gi ven a coordinate label X a , 0' = 1, 2, 3. The deformation 
gradient matrix is then defined as F; = ax h" (X/3) /a Xa. The scalar function a-(F) is called the s train· 
energy fun ction of the hyperelastic material. The symbol a- F stands for the gradient of a- with 
res pect to F , a ndi s, the refore, itse lf a matrix with its transpose denoted by a- dF)T. Equation (1.1) 
states that the res ponse of a hyperelast ic mate ri al is co mpletely dete rmined for a given se t of values 
of p and F , provided th e form of the sca la r fun ction a- can be de te rmined experi mentally. As it s tands, 
a- depends on a 3 X 3 matrix variable or a total of nine components of the matrix F~. A combination 
of physical require ment (strain energy mu st be fram e-indifferent) , and a standard result in matrix 
theory (po lar deco mpositi on of F in to a product of an orthogonal R and a symmetric U) reduces th e 
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number of variables in the function a from nine to six, i. e. , a(F) = a( U). For additional examples, 
see, e.g., Truesdell and Noll [1] ,1 Murnaghan [2], etc. 

In a recent s tudy of the thermodynamic restrictions of a theory of compress ible , viscoelastic 
fluids, Fon g and Simmons [3] encountered the problem of integrating the followin g matrix iden tity: 

(1.2) 

where, U'e l denotes the gradient of a scalar·valued fun ction U = U( C) with respect to its matrix 
argument C whi ch is , by definition , symmetric and positive-definite . 2 • The identity is valid for every 
symmetric, positive-definite M and every unimodular H , i.e. , det H = 1. It turns out that the in- I 

tegrability of (1.2) depends in a crucial way on two basic results in matrix theory. The purpose of 
this expository paper is to bring to the readers ' attention these results which are well-known to 
mathematicians but not necessarily to workers in continuum mechanics: 
Fact 1 The set of all symmetric, positive-definite matrices is irreducible. 
Fll ct 2 If a matrix Y commutes with each matrix of an irreducible set, then Y is a scalar matrix , 

i.e., Y = H. 

In section 2, the notion of "reducibility" of a set of matrices is first defined. A proof relating the 
notion of "reducibility" with that of an invariant subspace is also given. In section 3, we prove 
"fact 1" with a scheme of reasoning essentially due to Newman [4]. In section 4 , we begin with I 

Schur's lemma on irreducible sets of matrices and use it to prove "fact 2." The integration of (1.2) 
using both facts 1 and 2 is given in section 5. Finally , a discussion of the significance of the new 
result appears in section 6. 

2. Reducibility of a Set of Matrices 

We reproduce here the formal definition of the notion of "reducibility" of a set of matrices, 
d = {A(II x n)}. over the complex field, as presented by Newman [5]. The set d is said to be reducible 
if there exists a fixed, nonsingular matrix 5(1, x II) and fixed positive integers p, q, such that for each 
Ain d , 

S - l A S= (!L(P XP) 
= = = !2(q x /J) 

(2.1) 

The symbol 0 represents a block of zeros with, of course, p rows and q columns. If no such 5 can 
be found, the set d is said to be irreducible. Examples of reducible and irreducible sets of matrices 
are: 
Example 2.1 The set consisting of a single n X n matrix A alone , n > 1, is reducible. 

Example 2.2 The set consisting of all 2 X 2 matrices of the form (~ -~) is reducible. 

Example 2.3 The set consisting of ali n X n matrices of the form (~ @ with respect to some i 

fixed partitioning is reducible. = = 

Example 2.4 The set of all n X n column stochastic matrices having all column sums equal to 1 
is red ucible. 

Example 2.5 The set W' = { (~ D, G ~)} is irreducible. 

Additional examples of irreducible sets will be given in the next section. For thos e reducible sets 
given in the abov e examples, the reader can find the corresponding fixed matrix 5 in the book by 

I Figures in brackets indicate the lite rature re ferences at the end of thi s paper. 
2 The scalar fun ction iJ, as it appears in reference [31. also de pends on a scala r pa rameter ,. i. c .• U = U(C, O. For our purposes here. thi s dependence is sup-

pressed for brevit y_ = 
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Newman [51. We now wish to interpret th e notion of reducibilit y by provin g its equivale nce to the 
ex is te nce of an invariant subspace : 
Remark 2.1 Let V be the n-dimensional vector space over the co mplex field , and let .91= {A(lI xn)} 
be a set of matrices which is reducible. Then there exists a subspace W in V s uch that W is invariant 
under any sequen ce of transformations given by the matrices in the se t .if. 

PROOF: Interpre ting matrices in .91 as transformati ons, we have 

(2.2) 

r valid for each v in V and each A in the reducible set d . Consider the set of vectors of the form 

W = (Q (IJ X I») . 
- !(q x I) 

(2 .3) 

, Then we can de fin e a subs pace W co nsistin g of all the w 's with the property that W is invari a nt 
under matrix tran sform ations of the t ype 

i.e., ( !!D Q) w = WI E - -

is necessaril y a n e le me nt of W. We nuw wi sh to s how that W is a lso inva ri ant unde r the se t ,#. Let 
S -1 w = Lt , i.e. , S Lt = w , andS Ltl = WI. Th en we have 

Q) S U =S - I (!! 
E = - = D 
- -

Q) W=S - I W I = UI . 
E - = - -

Sin ce a fi xed trans formation matrix S when a pplied to all th e vec tors in a s ubs pace W does not a lte r 
the collection of vec tors in th at s ubs pace, we conclude th at th e redu cibility of. e1 impli es the exi st­
e nce of an invariant subs pace Wund er .'7[. 

Remark 2.2 Given a subspace W of the n-dime nsional vector space V and given a set of matrices 
.91= {A(ll x n)} under which W re mains invariant, then the set .91 is reducible. 

PROOF: Let the subspace W be of dimension q, q < n, and let w be any vector in W. The n there 
exists a linear tra nsformation with matrix S such that every vector w can be brought to the form: 

(2.4) 

The condition that W is invariant under .91 implies {Aw} C {w}. Substituting the representation 
of w as given in (2.4) into the co ndition of invariance , we get 

(2.5) 

The statement (2_5) implies S - 1 AS must be of the form (~ ~). Hence the set .91 is reducible. 
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Combining remarks 2.1 and 2.2, we arrive at the following useful result: 
Remark 2.3 A set of square matrices, .Yi= {A(lI xn)} , over the complex field is reducible, if, and. 
only if, there exists an invariant subspace under d . 

3. Irreducibility of the Set of Symmetric, Positive-Definite Matrices 

We now wish to use remark 2.3 to show whether a given set of matrices is reducible or not. 
The following remark is due to Newman [4]: 
Remark 3.1 The set of matrices consisting of a diagonal matrix with nonzero and distinct eigen· 
values, i.e., diag (AI, Az, . .. ,All), Ai 0/= Aj for i 0/= j, 1 ~ i,j ~ n , and a special matrix J= (jij), 
with lij= 1, 1 ~ i, j ~ n, is irreducible. 

PROOF: Let x= (XI, Xt, ... , Xn) T be a nonzero vector in the n-dime nsion al vector space v. ' 
Let D be the diagonal matrix with nonzero, distinct eigenvalues, AI , ... ,An. The proof for reo 
mark 3.1 can be broken into three steps as follows : 
Step 1 For x 0/= 0, there exists a positive integer k such that D" x 0/= O. Suppose the statement is 
false , i.e. , Di x= 0 for 1 ~ i ~ n. Then it is possible to have the syste m: 

1AIXI + A2x2+ . .... + AnXn= 0 
A~XI + A~x2 + ... . . + A;,xn = 0 

...... 
A';X I + A~x2 +. . + A;;xn = O. 

(3.1 ) 

The system (3.1) has a nontrivial solution based on the hypothesis that x 0/= O. Hence the determinant 
must vanish, contrary to the well·known result that a determinant of the form: 

~= = AIA2 ... An IT (Aj-Ai) 0/= 0, 
l ~ i < j ~ n 

is never zero. Hence for x 0/= 0, there exists k such that 

Step 2 We 
(1, 1, 

no w calculate the vector JDkX and conclude that it is equivalent to the vector y = 

, IF up to a nonzero scalar multiplying constant. Let us now calculate Dy, D 2y , 
, Dn - I y, and obtain the following set of vectors: 

y= (1,1, .. ,IF, 

Since the determinant is the well· known Vandermondian which is nonzero as long as the Ai are 
distinct, we conclude that the above form a linearly independent set of n vectors and span the space. 

Step 3 Since the set d = {D, J} of matrices when applied to a nonzero vector x generates the 
entire space, there is no proper subspace invariant under d . Hence , by remark 2.3, the set d is 
irreducible. 
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Since both matrices D and J as defined in remark 3.1 are symmetric, it is trivial to conclude 
that, 
Remark 3.2 The set of all symmetric matri ces of any order over the co mplex field is irreducible. 

Since any symmetri c matrix can be made into a positive-definite symmetric one by the addition 
of a scalar matrix aI , where a is any nonzero scalar, and I is the ide ntity matrix, and it is easy to 
show that such an additio n does not affec t the property of reducibility of a given set of symmetric 
matrices, we conclude that, 
Remark 3.3 The set of all sym metric, positive-definite matrices of any order over the complex 
field is irreducibile. (This was stated earlier as "Fact 1.") 

4. Shur's Lemma on Irreducible Sets of Matrices 

We reproduce here the celebrated Schur's Lemma as stated in [5], p. 3: 
THEOREM (Schur's Lemma): Let si= {A}, f!lJ = {B} be irreducible sets of n X n matrices, m X m 
matrices respectively. Let M be a fixed m X n matrix which determines a 1 - 1 correspondence 
between si and f!lJ such that MA = BM. Then either M = 0 , or m = nand Mis nonsingular. 

The proof for the above theore m is given in [5] and is omitted here for brevity. It is , however, 
instructive to re peat the proof for an important corollary as follows: 
COROLLARY: If a matrix Y commutes with each matrix of an irreducible set si, then Y is a scalar 
matrix, i.e., Y = AI. 

PROOF: Let A be any eigenvalue of Y. Then Y - AI is singular. It is easy to see that the matrix 
Y - AI also co mmutes with eac h matrix of .# . Schur's le mma now implies that Y - 'AI must be O. 
He nce Y = AI. 

This corollary was referred to earli e r in the introduction as "Fact 2." 

5. Integration of the Matrix Identity (1.2) 

Let us re write (1.2) by introducing Y= HU.~(H'/'H)H'/': 

. . 
ft U.~(ftTMft)ftT- U,c(M ) = M- \~. (5.l) 

. . 
Since U depends on a symmetric argum ent , the gradi ent U, c is necessarily sym metri c. This implies 
Y is symmetric as well as the left-hand sid e of (5 .1). S in ce M is sy mmetri c and positive-definite, 
M - t is also symmetric and positive-defin ite. The identity (5.1) tell s us that the product of two 
sy mmetric matrices, M- t and Y is also sym metric. A s ta ndard res ult in matrix theory says that 
the necessary and suffic ie nt condition for the product of two symmetri c matrices to be again 
symmetric is that the two matrices mus t commute. Hence M - tY= YM - t. Since (5.1) is true for 
every pos itive-defi nite, sym metri c M, and since the se t of all positive-definite, symmetric matri ces 
is irreducible (Fac t 1), the matrix Y must be a scalar. This completes the application of the co rollary 
to Schur's lemma as s ta ted in the last section (Fac t 2)_ 

With the matrix Y assuming the form of a scalar matrix 'A(H)/, we can write every term in 
(5.1) in the form of a total differential, i.e., 

dl}1}=d(U(M», 
- -

d~D=d('A(ft) In (det!!i). 

(5.2) 

(5_3) 

(5.4) 

For an expos ition of the use of matrix notation in the calculus of differentiable fun ct ions whose 
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arguments are square matrices, see e.g., [6]. For our purposes here, it is sufficient to list the follow· 
ing formulas with which (5.2), (5.3), and (5.4) are derived: 

Given E= i(1) ,we have dE =tr [E,~dJ]' (5.5 ) 

Given i (dJ = det d. (5.6 ) 
- -

, , 

Given i(4)=cf> (~4Q), we have i' :,= !rcf>d!!.:!£l!F. (5.7) 

The identity (5.1) can now be integrated without difficulty: 

, , 

U(ff: 1!IJ) - U(I'1) = A(lj) In (deq}1) + (3(11). (5 .8 ) 

Detailed steps for the determination of the scalar functions A(H) and (3(H), are given in [3]. It is 
the main purpose of this expository article to demonstrate that without the ma!hematical results 
in the theory of irreducible sets of matrices, an identity on the scalar function U in the form (5.8) 
would not have been derived. 

6. Significance of New Result Based on Identity (5.8) 

An important contribution an applied mathematician can make in the field of science and 
engineering is to reduce the total number of variables in a given problem through a series of ri gorous 
arguments, each of which can be further examined for its consistency with experiments. An 
example of this was given in the introduction of this paper where the strain energy function depends I 

on six components of a symmetric matrix U instead of the nine co mponents of the matrix F. It is 
not surprising to many mathematicians that further simplification is possible by having the strain 
energy function to depend only on the three principal invariants of the symmetric matrix U. The 
physical basis for the reduction of the number of variables from six to three is known as the condi­
tion of isotropy, where the hyperelastic material responds to an arbitrary deformation with no 
preference to its own orientation in an undistorted state.3 A rigorous characterization of an isotropic, 
hyperelastic material requires the experimental determination of a strain energy function, say, 

W= W(L 1 , L2 , L3),where L1 , L2 , L3 are some special combin ations of the eigenvalues of the sym­
metric matrix U. Recently Penn [7] reported the results of a series of experiments on the de­
formation of a peroxide vulcanized, pure-gum, natural rubber. He concluded from his experiments 
that the strain energy func tion, in general, cannot be separated as a sum of two parts: 

(6.1) 

In attempting to explain this experimental result, Fong and Simmons [3] studied the thermo­
dynamic restri ctions of a theory due to Bernstein, Kearsley, and Zapas [8, 9]. The theory was 
motivated , by that of hyperelastic materials by replacing, among, oth er things, the strain energy 
function W with a more genera l, time-dependent fun ction, U = U (C (t , T), t - T), where t and T 
denote, res pective ly, the present and some past time betwee n - 00 and t. An iden tity as given in 

(1.2) on the gradie nt ;>f the func tion U was derived, and Schur's le mma was applied in arriving at 

the identity (5.8) on U. Th e significance of (5.8), as disc ussed in [3] and [10], is best described in 
terms of a decomposition result based on (5.8): 

(6.2) 

:! ror a thorou gh treatme nt of the not ion of isotropy. see, e.g., Truesde ll & Noll [I] . 
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Since the Bernstein-Kearsley-Zapa,s' theory is known to describe responses of hypere lasti c ma­
teri a ls for so me s pecial forms of U, it is co nceivable that ~enn 's data [7J can be explained with 

an a na logo us deco mposition on the strain energy function W : 

(6 .3 ) 

Further significance of the reduction of the form of W as stated in (6.3) will a ppear in a forth co ming 
pape r [10]. 

I thank E. A. Kearsley, M. Newman, H. 1. Oser, R. W. Penn, and L. 1- Zapas , for their generous 
help and critical comments in the preparation of thi s exposition. 
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