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Let a, B, ¥ be three distinct complex numbers of modulus 1. It is shown that there is essentially
one exception to the following statement: For some positive integer m, 0 is in the closed convex hull of
a™, B™, y". The exception occurs for the normalized triple

omil7  ,2kmilT
].P_my",,.l.r: s

where k=3 or 5. This question was motivated by the problem of determining when a positive integer m
and a nonzero n X 1 vector x exist such that

x*A"x =0,
where A is a given matrix of M, (C).
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In connection with determining for what A€M, (C) the equation
x*Amx=0

is solvable by some positive integer [1| m and some n X1 vector x # 0, the following question arose:

How many distinct points o, . . . , @; on the unit circle are in general required to insure that for
some positive integer m, 0 lies in the convex hull of {a]", . . ., a7'}? We find that in general [=4

such points are required. However, our main result is that under appropriate normalization in the
case [=3 there is exactly one exceptional set.

Throughout «, B, v will denote three distinct points on the unit circle in the complex-plane.
We shall denote the triangular solid generated by their mth powers by

Tw(a, B, y)=Cofa™, B™, y"}.
Our goal is to determine for which triples «, B, v, there is a positive integer m such that
0€eTn(a, B, 7).
For this purpose we shall identify two triples (a, 3, y), and (o', B, ¥") if one may be obtained from
the other via any combination of permutation, reflection, and simultaneous rotation. We shall also

identify these two triples if

{Tw(a, B, y)Imel*} ={Tw(a', B", y")|mel"}.
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Subsequent to this identification there is exactly one exception (e, B3, ¥) to the statement:
There is an mel* such that 0T, (a, B. y).

With respect to the identification mentioned above, we shall take our triples to be in normalized
form:

Ol:f,’z"izl, B:e‘lm‘zgq ')/:l

where 0 <z, <z, <1. Letting {r} denote the fractional part of the real number r, we shall then
say that the positive integer m is a solution to the normalized problem (¥) if

(i) {mz;,} <2

(i) {mz;,} =2,
and

(iii) {mzj,} —{mz;} <,

where (ji, j2) = (1, 2) or (2, 1). It is clear that m is a solution to the normalized problem (*) if
and only if 0T, («, B, v).
Example. 1f z, :% and z» =% or % , then the system (*) is not solvable. Only the values 1 =m <7
need be considered and it is routine to check that for each of these values at least one of (i), (ii),
or (iii) is not satisfied.

Our main result is:

THEOREM: Let «, B,y be distinct complex numbers such that |a| = |B| = |y| = 1. Then there is a
positive integer m such that 0eT,(a, B, v) if and only if the normalized form of {«, B, v} is not

2mi 2KkTi

{e”,e ™ ,1},k=3o0r5.

PROOF: It suffices to consider the normalized problem (*). The necessity then follows from the
given example. For the sufficiency we distinguish 5 possibilities (1) z1 and z» are irrational and
rationally independent; (2) z; and z» are irrational and rationally dependent; (3) exactly one of
z; and z» is rational; (4) z; and z» are rational with distinct denominators in reduced form; (5) z; and

z» are rational with the same denominator in reduced form.
For cases 1, 2, and 3 we shall employ a well-known theorem of Weyl:

LEMMA 1 (Weyl [2]): (a) If z is irrational, then the sequence {nz}>, is uniformly distributed on the
unit interval. (b) If z; and z, are rationally independent, then the ordered pairs ({nz:}, {nz.}),
n=1,2,. . ., are uniformly distributed on the unit square.

In case 1, the normalized problem (*) is easily solved because of Lemma 1, part (b). For case
2 we assume without loss of generality that the pair zi, 2: is of the form

bz, az+r

where z is irrational, r = 7 is rational, and a, b, [;, [, are integers with a, b, [, > 0. If a = b, this

2

case may be transformed into case 3 by rotation. Thus we also assume without loss of generality
that @ > b. Suppose m = m'l,, m" > 0 and integral, and let

c={mz} = {m'(z)}.
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Then by Lemma 1, part (a), we may obtain ¢ arbitrarily close to any real number between 0 and 1
by choice of m'. Since a > b > 0, we may choose €. € so that

€ = 0, € > 0, € t+ € <_1
2

and

9; IN= 262

a 1+ 2¢

Next choose

Then choose m’ so that

We then have
{m(az+ r)} = {ac}=ac
{m(bz)}={bc}=bc
and {m(az+r)} —{m(bz)} = ac —be.

Since

%+e. Sac<‘l+el+ea

2
and l—e,Sbc<l—e-,+eb
2 2 ’
it follows that
1
B <ac=<1
Ve
2
and 0$(zc——bcs—l

2

so that (*) is solvable in case 2. In case 3, (*) may be solved using Lemma 1, part (a).
For the remaining cases we assume that in reduced form

Without loss of generality we may assume that h or £ is 1. If either n; is even, then 0€7',, , («, 8, 1)
and we are finished. Thus we may assume that n, and n, are odd. Suppose (case 4) that n, # n.,
and n=g.c.d. (n1, n2). By the Chinese Remainder Theorem, the congruences

2hm = n, —n mod n,
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and
2km = ny,+n mod n»

have a solution m, which may be taken positive. It then follows that for such an m, (i), (ii), and (iii)
are satisfied which completes the discussion of this case.

Finally we assume (case 5) that n;=n;=n which is odd. Without loss of generality we take
h=1 and since z is in reduced form we have g.c.d. (k, n)=1.

LEMMA 2: If n>2, 1<k <n are integers, z;=—, z2=—, and (k, n) =1, then the following are
n i

equivalent:

(1) the system (*) is solvable for & = x;

(2) the system (*) is solvable for £ = x’, where xx'= 1 (mod n); and
(3) the system (*) is solvable for £ = (1 — x) (mod n).

PROOF: The equivalence of (1) and (2) follows from the fact

2mi 27T,

{T (eT,e no 1) |mel t}

m

2i 2’

={T (em,e ™ ,1)|mel+}.

m

The equivalence of (1) and (3) follows from the fact that

20110 21 2mix 27wi(1—x) 2i

en(emn,e , 1)=(l,e m» ,en).

. . n . ! . .
Now if £ is even, we may choose m= to satisfy (*) since n # 1 is odd. Thus we may

assume because of Lemma 2 that & and £’ are both odd, where 1 < £" < n is the unique solution

to k&' = 1 mod n. Because of Lemma 2, we may also assume that
pt+1
1<k,
2
: pt+1y’ . :
However since 5 =2 which is even, we need only consider
p=1l
1<k=<
2

We now wish to determine for which n (*) is solvable under our present assumptions.

MAF ]}
Let m=k' < ! ) mod n where j is odd and n <k'j<2n. Then since k' is odd, we have
{r_n}v{l_'_/{'j}_{1+k'j—~n}_{/r'j—n}wk’j—-n<n_l hick T isfed
. 5o, om = o =, on o ¥ ich means that (1) is satisfied.

If 1 < j<n also, th {""k}-—{'l+j}~{l+j}—l+j>1 AR s
J < n also, then . = on = 2" on —2 on 2SOtdl(ll)lssdtlS€.
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o {mk} {m} l+j k'j—n ] <(lc'—l)j W 1 .
o — — —_— —_————— — —_— » Q o < — Sl 5 >
inally | — . 5t o . ) which is less than 3 if ( 1)j > n.
We now have 4 requirements on j for (*) to be solvable. Since £ # 1 is odd they reduce to
J odd
and
n . _2n
K—1-°%

. . 2n\ .
Thus if the interval (k’—’:T’ k—,,l) is of length greater than or equal to 2, there will be a solution

withj odd and integral. Thus we require

2n n
¥ K =12
or
2(k' - l,)n —nk =9
Y —1)
or
K(k"—1)
n=2 ————(k, 9
As a function of k', 2 %:_;21% is increasing for k' > 2+ V2. If k' = nT—S , our requirement
becomes
- (n—3)(n—75)
(n—17)
or
n = 15.
=

It remains to check the cases in which £'=3 or for general odd n and the cases n=3.

5,7,9, 11, 13. By straightforward computation, the latter yield that (*) is solvable in all cases except
that mentioned in the example. In the former case we have that

1_<n-2-l) = 3 mod n

since n is odd. Thus by Lemma 2 it suffices to check k= 3.
w
6
function, satisfies (*) for n = 12. The remaining case n < 12 have already been checked so that the
proof is complete.

COROLLARY: If 1 =4 and «y, as, . . ., ay are distinct complex numbers of absolute value 1, then
there is a positive integer m such that

In case k= 3, it is easily checked that m = [ ] + 1, where [*] denotes the greatest integer

0eCofal™, . . ., a}.

2wi 6mi 10mmi

PROOF: Because of the Theorem, it suffices to check the set of four pointse 7 ,e 7 ,e 7 , 1.
Since 0 is actually in their convex hull, the result is confirmed.
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