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Le t a, 13, y be th ree d is tin c t complex numbers of mod ulus 1. It is shown that th ere is essent ially 
one e xception to the followin g s tat e ment: For some posi t ive int eger Ill , 0 is in th e c losed convex hull of 
a"', 13"' , y"'. The exception occurs for the normalized tripl e 

1, e'l 1T i/7, e2krri/7, 

whe re k = 3 or 5. Thi s qu es tion was motivated by the proble'm of determining when a pos itive intege r III 
and a nonze ro n X l vee'tor X e xist such tha i 

X * A IIIX = 0, 

whe re A is a given matrix of M,,(C). 

Key word s: Convex hull; lInit ci rcle; \V ey l's Theorem. 

In connect ion with dete rmining for what A EMII(C) the equat ion 

x*A IIIX= 0 

is solvable by some positive integer [11 In and some n X 1 vector x ¥= 0, the following question arose: 
How man y di s tin ct points a" ... ,a, on the unit c ircle are in general required to insure that for 
some posi tive integer In, 0 li es in the convex hu II of {a;", ... , a'f'} ? We find that in generall = 4 
such points are requ ired. However, our main result is that und er appropriate normalization in the 
case l = 3 there is exac tly one exceptional set. 

Throughout a, {3 , y will denote three d is tin ct points on the unit c ircle in the complex-plane. 
We shall de note the triangular solid generated by their m th powers by 

T m(a, (3 , y) = Co{a lll , 13 m , y"'}. 

Our goal is to dete rmine for which triples a, {3, y, there is a positive integer In such that 

OET",(a, (3, y). 

For thi s purpose we shall identify two triples (a, (3, y), and (a', (3', y') if one may be obtained from 
the othe r via any com bination of permutation, re fle c tion , and simultaneous rotation. We shall also 
ide ntify these two triples if 

{Till (a, {3, y)llnEI+}={T",(a', {3', y')llnd+}. 
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Subsequent to this identification there is exactly one exception (a, (3, y) to the statement: 

There is an mEl+ such that OETIIl(a , (3, y). 

With respect to the identification mentioned above, we shall take our triples to be in normalized 
form: 

where 0 < ZI < Z2 < 1. Letting {r} denote the fractional part of the real number r, we shall then 
say that the positive integer m is a solution to the normalized problem (*) if 

and 

where (JI, j~) = (1, 2) or (2, 1) . It is clear that m is a solution to the normalized problem (*) if 
and only if OETII/(a, (3 , y). 

Example. If Z I = ~ and z~ = ~ or ~ , then the sys te m (*) is not solvable. Only the values 1 ,;;; m ,;;; 7 

need be cons idered and it is routine to c heck that for each of these values at least one of (i), (ii), 
or (iii) is not sati sfied. 

Our main result is: 

THEOREM: Let a, {3 , y be distinct compLex numbers such that lal = 1{31 = Iyl = 1. Then there is a 
positive integer m such that OET m(a, (3 , y) if and onLy iJ the normaLized Jorm oj {a, {3, y} is not 

27Tj 2 k1Tj 

{e 7 ,e 7 ,I}, k = 3 or 5. 

PROOF: It suffices to consider the normalized problem (*). The necessity then follows from the 
given example. For the sufficiency we distinguish 5 possibilities (1) ZI and Z2 are irrational and 
rationally inde pe nde nt; (2) ZI and Zz are irrational and rationally dependent; (3) exactly one of 
ZI and Z 2 is rational; (4) ZI and Z 2 are rational with distinct denominators in reduced form; (5) Zj and 
Z2 are rational with the same denominator in reduced form. 

For cases 1,2, and 3 we shall e mplo y a well-known theore m ofW eyl: 
LEMMA 1 (Weyl [2]): (a) If Z is irrational , then the sequence {nz},%! is uniformly distributed on the 

unit interval. (b) If Zj and Z2 are rationally independent, then the ordered pairs ({nzd, {nzz}), 
n = 1,2, .. . , are uniformly distributed on the unit square. 

In case 1, the normalized problem (*) is easily solved because of Lemma 1, part (b). For case 
2 we assume without loss of generality that the pair ZI , Z2 is of the form 

bz, az + r 
I 

where Z is irrational , r = -II is rational , and a, b, LI, 12 are integers with a, b, L2 > O. If a = b, this 
2 

case may be transformed into case 3 by rotation. Thus we also assume without loss of generality 
that a > b. Suppose In = Ill ' L2 , In' > 0 and integral, and let 

c = {lnz} = {In' (l2Z)}, 
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Th en by Lemma 1, part (a), we may obtain e arbitrarily c lose to any real number be tween 0 and 1 
by c hoice of /11 '. Since {/ > b > 0 , we may choose EI , Et so th at 

and 

Next choose 

The n choose m I so that 

We th en have 

and 

Since 

and 

it follows that 

and 

b 1 - 2Et 
--- . 

(/ 1 + 2 EI 

0 < E < min - - -, --=- . {
lEI f.J } 

20 a b 

O ~ e- -+- < E. ( 1 EI ) 

2a a 

{ m ( az + r)} = { ae} = ae 

{ m (bz) } = { be} = be 

{m(az+r)} -{ m(bz}} =ae- be. 

1 1 
"2 + E I ~ ae < "2 + E I + €a 

1 o ~ be ~-
2 

1 o ~ ae-be~-
2 

so that (*) is solvable in case 2. In case 3, (*) may be solved using Lemma 1, part (a). 
For the re maining cases we assume th at in reduced form 

h k 
Zl =- ,Zt=- ' 

nl n2 

Without loss of generality we may assume that h or k is 1. If either ni is eve n, th en OET"i/t (lX , /3 , 1) 
and we are fini shed. Thus we may ass ume that n I and nt are odd. Suppose (case 4) that n I 0/= nt, 
and n= g.c.d. (nl , ( 2). B y the Chin ese Re maind er Theorem, the congruences 
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and 

have a solution In, which may be taken positive. It then follows that for such an m, (i), (ii), and (iii) 
are satisfied which completes the discussion of this case. 

Finally we assume (case 5) that n, = n 2 = n which is odd. Without loss of generality we take 
h = 1 and since Z2 is in reduced form we have g.c.d. (k, n) = l. 

. 1 k 
LEMMA 2: If 11 > 2, 1 < k < n are integers, z, = -, Z2 = -, and (k, 11) = 1, then the following are 

11 n 

equivalent: 

(1) the system (*) is solvable for k = x; 

(2) the system (*) is solvable for k = x', where xx'== 1 (mod n); and 
(3) the system (*) is solvable for k == (l - x) (mod n). 

PROOF: The equivalence of (1) and (2) follows from the fact 

21Ti 27T ix 

27fi 2rrix' 

= {T,) e " , e 11 ,1) 1m El + } . 

The equivale nce of (1) and (3) follows from the fact that 

l1d 'l1T; 27Ti.1' 217;(' - xl 217 i 

en (e n , en, 1) = (1, e n, eli). 

n-1 
Now if k is even, we may choose 111 = -2- to satisfy (*) since n ¥ 1 is odd. Thus we may 

assume because of Lemma 2 that k and k' are both odd, where 1 < k' < n is the unique solution 
to kk' == 1 mod n. Because of Lemma 2, we may also assume that 

p +l 
l < k~ --' 

2 

( ~+ 1 )' However since T = 2 which is even, we need only consider 

p-l 
l < k~ --' 

2 

We now wish to determine for which n (*) is solvable under our present assumptions. 

+. 
Let 111 == k' ( n 2 ] ) mod n where j is odd and n < k ' j < 2n. Then since k' is odd, we have 

{ fIl} {I k'j} { k'j -n} {k'j-n} k'j-n n 1 
- = -+-, - = 1 +--- = --- =--- < -=- which means that (i) is satisfied. 
n 2 2n 2n 2n 2n 2n 2 

. { mk} {n + j} {I j} 1 j 1 If 1 < ] < n also, then - = -- = -+- =-+- > - so that (ii) is satisfied. 
n 2n 2 2n 2 2n 2 
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{ mk} {m} 1 j k '} - n ( (k' - I)} ) 1 
Finally - - - =-2+---2-=1- 2 whichislessthan - if(k' - I)j > n. 

11 n n n n 2 
We now have 4 requirements on j for (*) to be solvable. Since k' 7'=- 1 is odd they reduce to 

j odd 
and 

n . 2n 
k ' -1 < } < k' 

Thus if the interval (k' ~ 1 ' ~~) is of length greater than or equal to 2, there will be a solution 

with} odd and integral. Thus we require 

or 

or 

2(k' -1)n - nk' >- 2 
k' (k' -1) ~ 

k'(k' -1) 
n ;3 2 (k' - 2) 

, k' (k' - 1) n - 3 
As a fun ction of k ,2 (k' _ 2) is increasing for k' > 2 + v2. If k' = -2-' our req irement 

becomes 

n ;3 

or 

(n-3)(n-5) 
(n - 7) 

n ;3 15. 

11 - 1 
It remains to check th e cases in whi ch k' = 3 or - 2 - for general odd n a nd the cases 11 = 3. 

5 , 7, 9,11,13. By straightforward co mputation , the latter yield that (*) is solvable in all cases except 
that mentioned in the example. In the former case we have th at 

( n - 1)' 1 - -2- == 3 mod n 

since n is odd. Thus by Lemma 2 it suffices to c heck k = 3. 

In case k = 3, it is easily checked that m = [~J + 1, where [.J denotes the greates t in teger 

function , satisfies (*) for n ;3 12. The remaining case n < 12 have already been checked so that the 
proof is co mplete. 
COROLLARY : Ifl ;3 4 and ai, (X2, • • • , (XI are distinct complex numbers of absolute value 1, then 
there is a positive integer m such that 

27Ti (i1T i J Orri 

PROOF: Because of the Theorem, it suffices to check the se t of four points e 7 , e 7 , e 7 ,l. 
Since 0 is actually in their convex hull, th e result is confirmed. 

References 

[1.1 J ohnson, <;: .. R., Powers of Matrices with Positive De finite Real Part , to appear. 
[21 Weyl, H. Uber die Gleichvertei lun g von Zahl en mod E ins, Math . Ann. 77 (1916), pp. 313-352. 

(Paper 77B3&4-389) 

141 

- --,. 


	jresv77Bn3-4p_137
	jresv77Bn3-4p_138
	jresv77Bn3-4p_139
	jresv77Bn3-4p_140
	jresv77Bn3-4p_141
	jresv77Bn3-4p_142

