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A computer program is described for calculating Bessel functions /,(z) and I,(z), for z complex,
and n a nonnegative integer. The method used is that of backward recursion, with strict control of error,
and optimum determination of the point at which to begin the recursion.
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1. Method

Given a complex number z and a positive integer NB, BESLCI calculates either

1.(z), n=0,1, ..., NB—1

or

.]n(z)9 nZO, 1, .. ,NB—l

using double-precision arithmetic. The method used is described in [1]! and is based on algorithms
of Olver [2] and Miller [3], applied to the difference equation

2
yn—lz_znyn_SIGN “Ynti1s (])

where SIGN is +1 for J’s, —1 for I'’s.

The program sets MAGZ= [|z]| ], the integer part of |z|, Pmacz=0, Pmacz + 1=1, and then
successively calculates

pn+1=SIGN'<2—:pn—pn‘1>, n=MAGZ+1, MAGZ+2, . . .. 2)

The sequence is strictly increasing in magnitude [1, sec. 6]. The program takes N to be the least
n such that |p,| exceeds a number TEST defined in section 2 and section 3. It then sets
yM=0, ¥\, = 1/py, and recurs backward using (1). To the working accuracy, the computed

sequence Y™, y\¥_ . . . is the recessive solution of (1) which satisfies the boundary condition

¥macz= 1. From this solution, the I’s or J ’s are found by normalizing:
Jn(z2) =9 Mu n=0,1,.. . ,NB—1

In(z) =M/ n=0,1, .. .,NB—1
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where

N
,u=e"z<y§,“"+2 S (—i)"y‘,;")) J's,Imz>0
n=1
L
B2 A J's, Tm 2=0
n=1
. > >\‘ 5
,ll«:e"z<y‘0"’+2 2 i“y‘”“"> Js,Imz<0
n=1
3)
N
ﬂzefz(}'f,‘\')+2 D y‘,,"") I’s,Rez>0
n=1
L ,
p=y"+2 > (=1)"yY I’s, Re z=0
n=1
y A\‘ i3
,u=ez<y*”~"+22 (—1)"3",1‘\)) I’s, Re 2<0.
n=1
2. Error Bounds for the y,
For n > MAGZ, the truncation error in Y\ is
TN = Vo — ‘,(‘\~): D i SI(’—N\irq
n - In ! Dot
see [2]; equations 5.01 and 5.02. This error is bounded by using the following
LEMMA: For n > MAGZ, let
k, = Pn+1 :z_n_ Pn-1 i
Pn z Pn
and let
o
W Sl U (n_) _
| z| |z
Let p,= min (| k, |, \y). Then form =n, | ky | > pn.
The lemma, for real z, is lemma 2 of [1]. The proof for complex z is essentially the same.
The program insures that
TEST: = V2-108p, p,,, (4)

where L = max (MAGZ + 1, NB —1), and NSIG is the maximum number of significant decimal
digits in a double-precision variable on the computer being used. Then N’ is the least n such that
|pn| > TEST,, and N is the least n =N" such that

|pu| > TEST = \/p—‘;% . TEST;- (5)
N
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In consequence of (4) and (5), the relative truncation error |T("‘V)/_\'n' is less than 3 - 10-N51¢ for

all n in the range MAGZ < n < L; see [1. sec. 5].

For n < MAGZ, it may be impossible to bound the relative truncation error in the above manner,
owing to loss of precision due to cancellation in (1). Experience indicates that this loss is negligible
except when the magnitude of 'V oscillates as n =MAGZ,MAGZ —1, . . .., 0in the back-recursion
(e.g., calculating J’s. with Re z> Im z). In this case, there will be about D decimals of precision
in the values _)"';"’. where D is the number of decimals in Jyaaz(z) (Iyacz(z)) which corresponds

to NSIG significant figures in the same quantity [1, sec. 5].

3. Normalization and Error Bounds for
The equations (3) were chosen to keep cancellation under control. Now

I' =00

Jn(z) =— f eiz s 0 cos (nf)do
0

w

[4], 9.1.21. The integrand never exceeds e™ #!in magnitude, so |/, (z) | < /™ I, Similarly, |1, (z) |
< el® 2l Thus each term of the sums (3) has magnitude less than twice that of the whole sum.
In fact, these bounds on the magnitudes of /,(z) and /,(z) are rather weak. and cancellation in
(3) is less than this would indicate.

Besides bounding the truncation error of the algorithm, the program provides an estimated
bound for the truncation error of the normalization sum, defined by eq (3). In the first of these equa-
tions, this error is

SW) = eiz {_m = < % i (yn— ,\"‘,\,")} .
n=1

For n = MAGZ, a bound for the error term y, — yV) is unavailable. For MAGZ < n < N,
| v =y | < pupu/ (p2—1); see [1, sec. 5]. To avoid storing all the p,. the program allows only

for terms for which n = N. Here yV=0, and

= 1
Yn=— Pn g
S P
Therefore,
YW=yl {1+ Pu )y | Lo Do)y }
Pn+1 Pn+2 Pnt2 Pn+3
1 1 1 2
s——}1+7+7+...‘s —— _
'1)"+1| P P (p\’_l) |[)“+1 |

compare section 2 above. Now let

R(\'j:z i |>“N’~

n=N

Then
1

2p% 1 1
= 5 B (1+7+7+...)
(P —1)|py+1]

Pi'"‘l n_n | Prn+1

¢ 2
< — 2o :
(pX—1) (px—1) | px|
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The program sets TEST; = 2 - 10¥5'%, The normalization factor w is e ~%/Jyacz(2) [1,sec. 5], s0

RW RV '
{ - ‘ waz(z) | - e < RW
M e |
2 ?" 2 2', 1 B
PN PN - = . 10-NSIG (6)

= = =
(px+1) (py—1)2|py|  (py+1) (py—1)2 2

The bound (6) holds for the first. third, fourth and sixth equations of (3); the derivations are
the same. Similarly, the second and fifth equations yield

3
2pA\" l . 10-NSIG_

(p}—1)2 2

=

‘ R
nw

1 .
These bounds are rather weak, and the error | S™)/u | turns out to be less than 3 T(Q="2E
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