
JOUR NAL OF RESEARCH of the Nati ona l Bureau of Standard s- B. Mathematical Sciences
Vo l. 77B, Nos. 3 & 4, July-December 1973

Performa nce
matical

Testing of a FORTRAN Library of Mathe
Function Routines - A Case Study in the
Application of Testing Techniques

D. W. Lozier, l. C. Maximon, and W. l. Sadowski

Institute for Basic Standards, National Bureau of Standards, Washington, D.C. 20234

(April 12, 1973)

Thi s pape r describes a n app lication of tes ting methodology a nd te c hniques de ve loped by th e
a uthors to a id in impro vi ng the qu a lity of mathem ati ca l soft wa re. These techni q ues diffe r rad ica ll y in
se vera l as pects from techni q ues pre vious ly used . the most import a nt d iffere nce be ing th at th e testin g
is not based e xc lus ivel y Oil random a rgume nt s. Ins tead , throughou t the range of eac h fun c tio n use is
ma de of s pec ia l a rgum e nt s that a re des ig ned to d etec t progra mming e rrors and to tes t the pe rfnrm a nce
of an algorithm in diffe re nt regions. T he fu nction values a re tes ted aga ins t refe re nce valu es whic h are
s tored o n re fe re nce tapes ge ne ra ted b y a hi ghl y au the nti ca ted s yste m of s ubro utin es.

S ince the eff ec tive ness of s uch a tes tin g sys te m in di scove ring e rrors and pe rform a nce limit ati ons
can be fu ll y ascert a ined o nl y th rough ac tu a l use , we report the res ult s of e m ploying our s ys tem to tes t
an exi stin g FORTRAN library of ma the matica l fun c tion routines. S pec if, c a s pects of the num e ri ca l
accurac y of the libJ·a ry used in thi s te st case are di sc ussed in orde r to ill :~5tra t e the e ffec ti ve ness of a
we ll -d es igned tes ting s yste m as a n ana lyti c tool for the e valuation of mathe matica l so ft wa re.

S ince docum e nt ati on prov ides information necessary to perform testing and cont ain s s pecifica
tions th at re flect the result s of testin g, our stud y inc ludes com me nts on th e doc ume nt at ion.

No information on timing or storage re quire me nts is present ed in thi s case s tud y.

Ke y words : Auto mated tes ting; bit comparison; FO RTR AN library; fun ct ion va lida ti on; mathe mati ca l
fun ctions; pe rforma nce tes ts .

1. Introduction

This paper prese nt s the results of a case s tudy of a FORTRAN libra ry of mathe mati cal fun c
tion routines whic h serves to demonstrate the e ffective ness of a testing progra m de veloped by
the authors [1] '. To ac hieve thi s purpose we in clude in the paper a general e valuation of the
library and its docume ntation as well as data on its numerical accuracy. Programming errors
discovered by the application of our techniques are pointed out and suggestions for improve me nt
are made. The particular library which served as our test case is the UNIVAC ll08 FORTRAN
library of mathematical fun ctions. This library was released by UNIVAC for the EXEC 8 ope rating
system in 1971; the RL 24 version reported on in thi s pape r is a release that contains modifica tions
e nabling it to run under EXEC II .

This case study should not be cons trued as a validation or certification of the man ufacturer's
software and the authors would like to s tress the fac t that no e ndorsement of the manu·
facturer's library is implied.

AMS Subject Classification: 68A I O.
I Fi gures in brackets indicate th e li te rature refe rences a t th e end of th is paper.

101

2. Testing Techniques

Below is a short discussion of some of the salient features of our testing approach.
1. The library function values were tested by comparing them with reference values. The

latter were obtained through the use of a software system containing an arbitrary precision arith·
metic package and a set of arbitrary precision algorithms developed by us at the National Bureau
of Standards [2]. This eliminates the necessity of recourse to the software on a computer with
higher precision to supply the reference values, and permits the testing of software on a computer
with any wordlength. To minimize the effect of the local computer environment on the performance
of our software testing system, we store the reference function values on tape. The comparison
between library function values and the reference values is performed by our Bit Comparison
Program designed for highly automated testing [1].

2. The performance of the testing system has been authenticated by a series of rigorous tests
that included checks with published tables [1].

3. To avoid conversion errors in the arguments, only exact machine (octal) arguments were
used to test the mathematical function subroutines. For the same reason, fun ction values are
displayed in octal form. In this way all conversion errors are avoided.

4. Since no theory exists at the present time that would make it possible to construct a set
of random arguments that are certain to be representative of the total population of allowable
arguments, thus providing a statistical basis for testing, exclu sive use of random arguments must
currently be considered inadequate for function testing. Special arguments must be used to test
certain aspects of performance. It is for this reason that we do not use statistical terms in evaluating
the performance of the library. We test functions on a logarithmic scale by supplying arguments
in each power of two throughout the entire argument range. Among these are both special and
random arguments. Arguments with special bit configurations are designed to probe for weaknesses
caused by specific features of the hardware. In view of the testing on a logarithmic scale, the
percentages quoted in our breakdown of errors may differ significantly from those give n by the
manufacturer. Whereas the percentage of full bit accuracy in the various argument ranges is of
importance to the tester and the mathematician who does research in algorithms, the user very
frequently may not know the range in which his program will generate arguments as a part of a
larger calculation. For such a user the most important index of the accuracy of a mathematical
function subroutine is its maximum error and this is the index adopted in this study.

5. It is very important to have a clear definition of the error measure used in describing the
results of any given performance test. If the definition given in the manufacturer's literature
(UP-7876, pp. 2-3, 2-4) were applied to the results of their tests it would show the library in a
worse light than it deserves. In fact, interpreting their performance results according to our defini·
tion of error measure gives a good agreement with our test results. Therefore , comparison between
the manufacturer's test data and ours is made on the basis of our definition of the measure of
error. We call our measure of error the "mantissa error." It is the difference resulting from a
fixed point subtraction of the mantissa of the reference function value from the mantissa of the
library function value. Prior to this subtraction the library function value is normalized to the
characteristic of the reference value. The difference is expressed in units of the last bit position
(ULP) [3] , [4]. For example, an error of 3 ULP implies that the last two binary digits of the library
value are in error but not the last three. The mantissa error is equal to the relative error to within
a factor depending on the normalization of mantissas in the computer used (a factor of 2 in this case,
where mantissas are normalized to lie between 1/2 and 1).

3. Comments on Manufacturer's Documentation

The documentation will be commented upon from two points of view, namely from that of the
user and that of the tester [5]. The documentation contained in the FORTRAN V Library manual
provides information deemed necessary for the user. It is well written and contains a wealth of infor·
mation on each routine, including the test data. However, in a few instances the documentation con·

102

tain s in accuracies. For example, the state me nt r 2+ 52 < 2 128 on p. 2-51 (sec. on C LOG, s ubsec tion
Argume nt and Function Range) should read 2- 12!J ~ f2 + 52 < 2127. On p. 2-52 the state me nt th at
e rror te rmin ation results if r 2 + s2 > 2 128 or U < 2 - 128 is incorrect. It should read r2+s2;:;':2 127 or
f2 + S2 = O. No error termin ation results for th e real part of the function less tha n 2- 128.

The task of tes ting would be facilita ted by t he the ide ntifi cation of mathe matical me thods and
cons tants with appropri ate references , suc h as Ha rt et a i. , Co mpute r Approxim ati ons [8]. Further
more, in listing the fun ctions refe renced b y a give n libra ry routine, a li stin g of librar y routines
whic h call the given function would aid in the c ross-refe re ncing and the tracing of the effects
that errors in a given routine have on the perfo rma nce of other ro utines. Modifications of the
source code should be re fl ec ted in use r docume nta tion more promptly. For example , the Septe mber
1972 update of the use r ma nual (UP-7876) does not contain me ntion of the crossover point for
s mall arguments incorporated into the source code DSINC O at leas t since January 1971.

The source code and the com ments contain ed therein constitute docume ntation for the tester.
They are concerned with the co mputer imple mentation of the mathe matical algorithms. Two
practices , if adopted uniforml y throughout the library, would save time and effort in testing and
e valua tion: The clear ide ntifi cation of aU constants in octal- those used to compute function values
as well as those used for logical decisions, exa mples bein g crossover points and points at whic h
e rror tracin g begins - and the ide ntification at the appropriate point in the codin g of the quantities
being tes ted against these la tter consta nts.

4 . General Evaluation of the Library

The present library shows that a tte ntion has been paid to the c hoice of good algorithm s
based on numerical a nalys is. The co mpute r imple menta ti on of these algo rithm s s hows attention
to the loss of s ignificance, parti c ularl y in the process of argume nt reduction.2 Exte nded prec is ion
coding has genera ll y been supplied to avo id loss of accuracy, whic h requires s pecial progra mmin g
to circ umve nt the limitations of hardware (l ack of guard d igit s, finite word le ngth , fl oatin g point
normali zation , e tc.) and of ins tru c ti on re pe rtoire (l ack of doubl e precis ion fi xed point ins truc tion
fo r multiply a nd divide, etc.).

It is appropria te at thi s po int to stress the importance of good testin g techniques in de velopin g
a mathe matical library of high quality. Those subroutines th at have bee n tested with the techniques
developed a t the J e t Propulsion Laboratory [6], namely the sin gle and doubl e precision subrou
tines [7], exhibit painstaking atte ntion to de tail and have fewer programming e rrors th an th e
complex function routines.

To mini mize the effect of hardware limitations, some constants are " fine-tuned" by slightl y
modifying the ir bit re presentation. For example, in the DSINH routine, the oc tal machine constant
200140 .. _ 00, representin g unity on lines 93 a nd 94 of th e source code, was chan ged to 200140 ... 01
to decrease th e number of two bit e rrors. This technique could be used to a still greate r exte nt ,
howe ver , and we occasionally make recommendations to that effect in the bod y of thi s re port.
The effect of these reco mmendations has been explicitly e valuated only for the routines DSI NH
and DSINCO_

The specifications for mos t ro utines in the library are very good. The ge neral philoso phy of
accepting all argum ents for whi ch the fun ction value can be held in the machin e is adhered to
for the mos t part. However , the specifications for ce rtain complex function s (C LOG, CCBRT)
are unduly restri c tive in that th e limit of the argument range is based on a n ove rflow condition
for f2 + S2 rather tha n (f2 + 52) 1/ 2 .

W e found the performance of the subroutines to be generally in conformity with th e specifica
tions, although, where the maximum error is concerned , the subroutines do not always co me
up to s pecifications. One partic ular example of thi s concerns the single precision fun ctions, where

the s pecifications give a maximum error of one ULP. This is indeed verified , with the s in gle ex-

2 This is in marked cont ras t 10 ils im mediat e predecessor (Marc h 23, 1966 update of the model 1107 FO RTR AN Li bra r y Subrou t ines rnan ual - UP- 3947). whic h
like seve ra l lib ra ri es of d iffe re nt origin cont ai n cert ain weaknesses due 10 inadequa te numerical analys is, suc h as the loss of a ll s ign ifica nce in the ca lcula tiun of
sinh x fo r slTl all x by the use uf s inh x = 1/2(e.r - e- .r).

103

I

......
o
~

Entry point

SIN
DSIN
CSIN

real
imag

COS
DCOS
CCOS

real
imag

TAN
DTAN
CTAN

real
imag

COTAN
DCOTAN
ASIN
DASIN
ACOS
DACOS
ATAN
DATAN
ATAN2(X"X,)

DATAN2(X" X,)

SINH
DSINH
CSINH

real
imag

COSH
DCOSH
CCOSH

real
imag

TANH
DTANH

No. of Max
argu- error
ments ULP

2888 1
8140 2
2874

1
4

2888 4
8140 2
2877

4
2

5693 1
8174 4
2881

1
1

5678 1
8159 5
1839 1
9037 6
1839 1
9037 4
3870 1

11353 5
699 1

1384 1
5906 3
2874

4
1

1384 1
5906 2
2877

4
2

1426 1
5906 1

TABLE 1. Performance of library fu.nctions

Percentage of values with ULP error of Suggested Programming

improvement s errors Comments
0 1 2 3 4

Percent Percent Percent Percent Percent

98 2 x
34 63 3 x

x x 4- ULP errors due to COS routine.
97 3
76 20 3 € €

99 € € € X Max. error exceeds specs.
83 12 5 x

x x 4- ULP errors due to COS routine.
97 1 € € €

78 19 € 4
95 5 x
78 12 8 2 €

x Error traceable to T ANCOT routine.
96 4
99 1
96 4 x Fails strict monotonicity in range 2- 26 to 2- '4.
57 37 5 1 € X Max. error exceeds specs.

99.7 €

54 39 6 1 € Max. error exceeds specs.
99.5 €

74 23 3 € € Max. error exceeds specs.
96 4
68 27 5 € € Max. error exceeds specs.
98 2 The arguments were heavily weighted towards

X dX , very small or very large to test the
management fun ction of the entry point.

x See section on Suggested Improvements ,
Errors and Specific Comments.

99.7 €

8 9] € € x
x x Max. error exceeds specs.

76 20 3 € € 4-ULP e rrors due to COS routine.
97 €

99.6 €

93 7 €

I x x Max. error exceeds specs.
98.6 1 € € € 4-ULP errors due to COS routine.

78 19 3

I
99 1
99 1

~
o
7'
:;:
o

;;j
,
"'

~

o
<:ll

Entry point

CTANH
real
imag

EXP
DEXP
CEXP

real
imag

ALOG
DLOG
CLOG

real
imag

ALOG1O
DLOG1O

SQRT

DSQRT
CSQRT

real
imag

CBRT
DCBRT
CCBRT

real
imag

CABS

No. of Max
argu· error
ments ULP

2881
1
1

2810 1
11812 2
2875

4
2

1973 1
14706 3
2101

1
2

1973 1
14706 3

1281 1

10242 0
3715

7 +
7 +

1537 1
12290 2
2106

3726 1

TABLE 1. Performance of library functions- Continu ed

Percentage of vaIues with ULP error of Sugge~ted Programming
improvements e rrors Comments

0 1 2 3 4

Percent Percent Percent Percent Percent

x Max. error exceeds specs.
99 1 4 - ULP e rrors due to COS routine.
96 4
99 E x
97 3 E

x x Max. erro r exceeds specs.
98 1 E E E 4- ULP e rrors due to COS rou tin e.
97 3 E

99.9 E

98 1.5 E E

x Argument range unnecessaril y restrictive.
85 E

97 3 E

99.3 E

71 28 E E The disparity in 1 ULP errors between DLOG
and DLOG1O is due to the double precision
floating point multiply to convert from base
e to base 10.

90 10 See section on Suggested Im provements ,
Errors and Specific Comments.

100
x

84 6 E E E

84 5 E E E

99 1
69 31 E x

x Max. error arbitraril y large. Argument range
14 23 18 13 7 unnecessaril y restrictive.
16 22 19 13 7

99.6 E

ception of the subroutine COS, where a misplaced crossover point results in a maximum error of
4 ULP in an extremely narrow range of the argument. In view of the narrowness of the range it is
not surprising that tests based exclusively on random arguments missed this region.

In view of the fact that the operating system in almost every installation is modified to some
extent, we would like to point out that such practices as branching on an overflow condition to
return a special value of the function (such as is done in DAT AN2) may lead to the printing of
overflow messages and termination of execution, in a great many computer centers, whether or
not such an error tracing capability is supplied by the manufacturer.

5. Tabulation of Results

In this section the results of our testing are presented in tabular form for quick reference.
The functions are listed under the entry point name and are in the sequence in which they appear
in the manufacturer's manual. A cross· reference table of entry points versus element names follows
the tables. The comments on suggested improvements and errors contained in the section entitled '
Suggested Improvements, Errors and Specific Comments refer primarily to assembly listings and
are therefore arranged by element name; the cross· reference table is given to facilitate reference
to this later section. The suggested improvements describe for the most part modifications that can
be made to the existing algorithms with very little effort and that often lead to substantial improve·
ment in accuracy. They are included because they have come to light as a result of exhaustive
testing based on our specialized testing techniques and may be of interest to anyone working on
further refinement of these subroutines.

TABLE 2. Cross-reference table of entry points versus element name

En try point Element name Entry point Element name

SIN SINCO EX? EXP
DSIN DSINCO DEXP DEXP
CSIN CSINCO CEXP CEXP
COS SINCO ALOG ALOG
DCOS DSINCO DLOG DLOG
CCOS CSINCO CLOG CLOG
TAN TANCOT ALOGIa ALOG
DTAN DTANCO DLOGIO DLOGIO
CTAN CTNTNH SQRT SQRT
COTAN TANCOT DSQRT DSQRT
DCOTAN DTANCO CSQRT CSQRT
ASIN ASINCO CBRT CBRT
DASIN DASNCO DCBRT DCBRT
ACOS ASINCO CCBRT CCBRT
DACOS DASNCO CABS CABS
ATAN ATAN
DATAN DATAN
ATAN2(X"X2) ATAN
DATAN2(X" X,) DATAN
SINH SINH CO
DSINH DSINH
CSINH CSINCO
COSH SINHCO
DCOSH DCOSH
CCOSH CSINCO
TANH TANH
DTANH DTANH
CTANH CTNTNH

6. Suggested Improvements, Errors and Specific Comments

SINCO
Suggested improvements: Relocate crossover point from 2 - 12 to 2 - 13 (line 139 of assembly

li sting).

106

- -- -- --

Comm en ts: The large maximum e rror in COS is due to the misplaced crossover point men
tioned above.

DSINCO

S uggested improve me nts:
L The crossover point at 2 - ~!44 on line 210 of the asse mbly li stin g should be moved to 2- 30_
2_ The constant on lines 224 and 225 should be c hanged from 2001400 ... 0 to 2000777 .. 7.
3. The constant on line 229 should be changed from 544067210334 to 544067210335.
The crossover point at 2- 944 is set too low. This results in co mputing the fun ction valu e in stead

of simply returning the argument for arguments between 2 - ~!44 and 2- 30, leadin g to in crease in
execution time and loss of accuracy. The suggested change of the crossover constant 121 to 1743
on lin e 210 of the assembly listing leads to the following statistics:

o ULP error
1 ULP e rrur
2 ULP e rror

DSI N

85.7 % (6976)
12.2 % (995)
2.1 % (169)

DCOS

82.7 % (6730)
12. 1 % (986)
5.2 % (424)

Fine tuning the consta nt 200140 . . 0 to the valu e 200077 ... 7 is to euminate unde r certain
condition s the renormalization in the calculation of th e cosine . Th e polynomial re presentation used
above the crossover point to ca lc ulate th e cos i ne is of the form 1 - (.308. . .)x2 + . . . [8]. Whe n
unity is represented by 200140 .. . 0 , the result of s ubtractin g the next te rm in the polynomial
mu st be renormalized no matter how smalJ x is. This brin gs in a ze ro in the las t bit. Fine tunin g
avoids thi s problem for a U x. (Note that th e redu ced argument is less than unity .) The stati sti cs
with this cha nge , in addition to th e fir st chan ge, are:

o ULP error
1 ULP error
2 ULP e rror

DSIN

87.6 % (7132)
12.2 % (995)
0.2 % (13)

DCOS

87.7 % (7136)
12.2 % (995)
0.1 % (9)

Chan ging th e consta nt 544067210334 to 544067210335 is a furth er s te p in fin e tunin g. C han gin g
th e constant that represents uniry , to avoid renormalization, res ults in some negative one- a nd
two-ULP errors that can be avoided by decreas in g by one bit the magnitude of the coeffici e nt of
x 2 in the polynomial representation. The fin al stati sti cs are as follows:

CSINCO

o ULP error
1 ULP error
2 ULP error

DSIN

89.1 % (7254)
10.7 % (874)
0.1 % (12)

DCOS

89.2 % (7258)
10.7 % (874)
0.1 % (8)

Suggested Improve me nts : Improve ment sugges ted in SINCO will improve th e pe rformance of
CSINCO.

Errors:
1. Whe never the real or th e imaginary part of the fun ction valu e is in th e fir st bicade (characte r

isti c 000), a zero is returned in place of the correct valu e for that part of the fun ction. This is caused
by testing only the characteristi c whe n checkin g for underflow.

Comments: The 4- ULP errors come from the SINCO routine.

107

TANCOT
Errors:
1. The routine returns the incorrect sign for function values whose arguments are in the first

seven bicades (characteristics 000 through 006) in TAN.
2. The routine fails to reject the argument 002400000000 for which the correct function value

overflows in COT AN. An unnormalized result is returned.
Comments: Routine regularly fails to exhibit strict monotonicity in COTAN in the argument

range 2- 26 through 2- 14

DTANCO
Errors:
1. The routine fails to trace overflow values of the function for arguments 0 < x "s; 2-1023 in

DCOTAN.

CTNTNH
Errors:
1. Wrong sign is returned in real part of answer in the first seven bicades (characteristics

000 through 006) in CT AN. The error is traceable to TAN COT routine.
2. Whenever the real or imaginary part of the function value is in the first bicade (character·

istic 000) , a zero is returned in CT ANH in place of the proper value for that part of the function.
This error is caused by testing only characteristics when checking for underflow.

DATAN
Errors:
1. The entry point DAT AN2 (XI, X2) has serious programming errors. Whenever X2 = 0 (and

XI ¥- 0) the run is terminated due to an illegal operation instead of returning ± hr.

DSINH
Suggested improvements: The function value should be set equal to the argument whenever

the characteristic of the argument is less than or equal to 2-30 (characteristic 1743). This would
decrease execution time and eliminate most of the l-ULP errors in this range.

EXP
Errors:
1. The crossover constant to return zero (see lines 71 and 72 of the assembly listing) is placed

incorrectly, neglecting to take account of the asymmetry in the storage of positive and negative
characteristics. That is , the smallest normalized floating point number is 2- 129 (octal 000400000000)
and the largest is 2127 (l - 2- 27), (octal 377777777777).

CEXP
Suggested Improvements: Improvement suggested in SINCO will improve the performance

of CEXP.
Errors:
1. Zero is returned for some non·zero function values.
Comments: The 4-ULP errors come from the SINCO routine.

CLOG
Errors:
1. Failure to check for underflow in converting ,.2 + S2 from double precision to single precision

results in returning erroneous values for the real part of the function.
2. Poor handling of arguments ,.2 + S2 = 1 + E with E small, prior to passing them to ALOGC$,

leads to an arbitrarily large loss of significance in the real part of the function value. These argu ·

108

ments are represented by 34 bits, thus providing 7 guard bits instead of the 127 that are required
by the method used here to provide enough significance to comply with the manufacturer's speci
fi cations after unity has been subtracted_

SQRT

Comments: The difference between our stati s ti cs, whic h show 90 pe rce nt full length accuracy,
and those given in the FORTRAN V Library manual (UP - 7876), whi ch shows 100 percent full
length accuracy, arises from certain of our nonrandom argum ents_ For exampl e, for arguments
of the form 22N(l + 2- 26) (where N is an arbitrary integer), i_ eo, for argum e nts having the mantissa
400000001 , the square root of the argument, when written in the form corresponding to the normali
zation used, is 2N+1(t + 2- 28 - 2- 56 + - _ ..). In view of the term - 2- 56 , the properly rounded
mantissa of the square root is 400000000 rather than 400000001, as given by the library fun ction.
However , since our decision on how to round is based on the knowledge of the value in the 56th
bit position , we do not consider that the expense of carrying the extra precision is worthwhile.

CSQRT

Errors:
1. For the argume nts (- 0, 0) and (0 , - 0) a result of large magnitude is re turned with no

indi cation of e rror. 3 The argum ent - 0 exists because th e compute r used in the case stud y is a
one's compleme nt machine. Th e octal re presentation of + 0 is 000000000000. The octal re presenta

tion of - 0 is 777777777777.
2_ Erroneous res ults are return ed for some argum e nts with a s mall characte ri sti c. For example,

Argument Reference value Library value

r: 200434545172 u: 200575625447 u: 200575625447
s: 000777777777 v: 000527235230 v: 377527235230
r: - 02040000000 1 u: 210400000000 u: 207552023632
s: 220400000001 v: 210400000000 v: 210552023632
r: 375777777777 u; 277552023631 u: 277552023651
s: -100400000000 v: - 000552023632 v: - 377552023632

DCBRT

Errors:
L Whenever th e ch aracteristi c of the argument is 0000, the routine re turn s wrong results.

This is due to failure to check characteri sti c for zero before subtracting 1 on line 70 of asse mbly

li sting.

This work was supported in part by th e In stitute for Computer Science and T echn ology of th e
National Bureau of Standards.

We want to express our deep appreciation for th e contribution to thi s projec t by A. Liao who
wrote several of the extended precision algorithms used in thi s work and designed tes ts for se ve ral
of the functions. We would also like to express our appreciation to David Sookne for ad vice in so me
phases of this work.

3 A similar result was obtained by Je t Propuls ion Laborato ry (c. L. Lawson, private communica tion, manufacturer notified).

109

-I

7. References

[1] Lozier. D. W .• Maximon . L. c., and Sadowski , W. L. , A bit comparison program for algorithm testing, The Computer
Journ al 16, No.2 , 111-117 (May 1973).

[2] Maxim on. L. c., Fortran program for arbitrary precision arithmetic, unpublished data.
[3] Clark, N. A., Cody , W. J., Hillstrom , K. E., and Thieleker , E. A. , Perform a nce stati sti cs of the Fortran IV (H) library for

the IBM System/360, Argonne National Laboratory Report ANL-7321 (Ma y 1967).
[4] Kahan, W. , A survey of error analysis , Information Processing 71 , Proceedi ngs of the IFI P Congress 71, 2, 1214- 1239

(1971).
[5] Lozier , D. W., Maximon, L. c., and Sadowski , W. L. , Documentation of ma thematical function ro utines, presented

at the joint SIAM-SIGNUM meeting in Austin , Texas, Oct. 16- 18, 1972 .
[6] Devine , Jr., C. J. , and Lawson , C. L. , Accuracy of single precision UNIVAC 1108 subroutine library fu nctions, JPL Space

Programs Summary 37-56. II, 115-121 (Jan.-Feb. 1969).
[7] Cox, M. W., UNIVA C library , SIGNUM Newsletter, 6, No.3 , 9 (Nov. 197 1).
[8] Hart , J. F., et aI. , Computer Approximations (John Wiley and Sons, Inc .. New York , 1968).

(Paper 77B3 &4-384)

110

	jresv77Bn3-4p_101
	jresv77Bn3-4p_102
	jresv77Bn3-4p_103
	jresv77Bn3-4p_104
	jresv77Bn3-4p_105
	jresv77Bn3-4p_106
	jresv77Bn3-4p_107
	jresv77Bn3-4p_108
	jresv77Bn3-4p_109
	jresv77Bn3-4p_110

