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On the Eigenvalues of A + Band AB 
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U sing the usual field of values and the angular field of values inclusion sets are found for the 
eigenvalues of sums and products of n X n complex matrices. For instance if the field of values of B 
does not contain 0 it is found that the quotient of the field of values of A by that of B contains the 
eigenvalues of AB - I. Applications are made to the polar form (AB where A is unitary and B positive 
semidefinite) and to products AB with A hermitian and B + B* positive definite. 
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This paper contains some simple results connecting the location of the complex eigenvalues 
of the sum and product of two n X n matrices A, B with certain point sets assigned to A and B: the 
familiar field of values and the angular field. 

If M is an n X n complex matrix, its field of values is F(M) == {x*Mxl x a complex n-vector, 
x*x= I}. 

F(M) is known to be a closed bounded convex set containing all the eigenvalues of M; F(M) 
coincides with the convex closure of the eigenvalues if M is normaL Apart from F(M) we introduce 
the angular field W(M): 

W(M) == {x*Mxl x ~ 0 complex n-vector} . 

W(M) clearly contains F (M) and is the union of F (M) together with all open rays with origin 0 
containing a point ~ 0 of F(M). Hence W(M) has one of the following shapes: (1) the whole com
plex plane; (2) an angular area (not necessarily containing 0) with vertex 0 and angle a, 0 < a .;; 7T; 
(3) a half line starting from (and not necessarily containing) 0; (4) a line through 0; and (5) the single' 
point O. Cases (3) and (4) occur when M = e i8H and H ~ 0 is hermitian_ It is easy to see that W(N* 
MN) = W(M) if det N ~ 0, W(M*) = W(M), and W(M- I) = W(M) if det M ~ O. 

In order to state our results easily, we use the following notation. If 51 and 52 are sets of 
complex numbers, we denote by 51 + 52, 5 15 2, 5 1/52, respectively the set of all numbers of the 
form s, +S2, S,S2, SdS2 for SiE5 i (in case of 5d5 2 we assume Of5 2). Clearly, we have F(A+B) 
~ F(A) + F(B) and W(A + B) ~ W(A) + W(B) since x* (A + B) x = x*Ax + x*Bx. 

Let us start with an obvious theorem concerning the eigenvalues of A + B . 
THEOREM 1: If'll. is an eigenvalue of A+B , then AEF(A) +F(B) . 
Proof: AEF(A + B) ~ F(A) + F(B)_ 
We proceed to search for similar theorems holding for products of matrices. Unfortunately 

the corresponding inclusion F(AB) ~ F(A)F(B) is not in general valid; a counterexample will 
appear in remark 3 to follow. 

However, we may note that quotients of matrices behave nicely. 
THEOREM 2: Let 0 ~ F'(B). If A is an eigenvalue of B- 1 A or of AB- I, then A E F(A)/F(B). 
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PROOF: Since ° f F(B), ° is not an eiger Jalue of B, so B is nonsingular. Let B- IAx = Ax, 
Ilxll= 1. Then Ax= ABx, x*Ax= Ax*Bx, x*Bx 7' 0; hence AfF(A)IF(B). In the case of AB-I we 
may refer to the well-known theorem stating that AB- I and B - IA have the same eigenvalues, or we 
may repeat the proof given above using a left-hand eigensolution x* instead of x. 

From theorem 2 we deduce the corresponding theorem for AB under suitable additional 
conditions. 

THEOREM 3: Let A be arbitrary, and B hermitian and positive semidefinite. If A is an eigen
value of AB, then AfF(A)F(B). 

COROLLARY 3': Let A be unitary with eigenvalues 0'1, . • . , an; let B be hermitian and positive 
semidefinite with eigenvalues {31 :%: ••• :%: {3n and let A be any eigenvalue of AB or BA. Then 
{31 :%: I AI :%: {3n, and if all the O'i are contained in an arc <I> of the unit circle of length ~ 1T, then 
arg A f <1>. . 

The statements on {3n and arg A follow immediately from theorem 3 since I ad = 1 and F (A) 
is the convex closure of the O'i. The statement on {31 is trivial if {31 = 0, and is proven by passing 
over to (AB) -I if {31 > 0. 

Proof of theorem 3: Firstlet B be nonsingular, B = C-l. Then A = alc with a f F (A) and c f F( C) 
according to theorem 2. If {31 and {3n are the minimum and maximum eigenvalues of B, then {3t l 

and {3n1 are the maximum and minimum eigenvalues of the positive definite matrix C, so F(C) is 

the interval [{3n1, {3tl], hence c-I f [{31, {3,J = F (B) and A f F (A)F (B). The case det B = ° may be 
reduced to the nonsingular case by replacing B by B + tI, t > 0, t ~ 0. 
REMARK 3//: In theorem 3, the additional condition on B must not be dropped. For instance if 

A = [1 0] ° -1 
B= ,[O 1] 

1 ° , 
we have F(A) =F(B) = [- 1, 1], hence F(A)F(B) = [- 1, 1] which does not contain the eigen
values ± i of AB. However, theorem 3 holds for arbitrary matrices if stated in a modified form in
volving the angular field instead of the field of values. 

THEOREM 4: Let ° ¢ W(B). If A is an eigenvalue of AB or ofBA, then A f W(A) W(B). 
PROOF: Since .O fW(B), B is not singular, B = C-I. By theorem 2 we have A= alc with a 

f F(A) C W(A) and, for some normalized x, we have 

c = x*Cx = (Cx)*B*(Cx) = y*B*y, 

c= y*By f'W(B), c oF- 0, c 1 = C/1c12 E W(B). 

It is worthwhile noting that , in general, we do not have W(AB) C W(A) W(B): for instance 
whenever A and B are hermitian matrices which do not commute, then AB is not hermitian and 
W(AB) is not real though W(A) W(B) is real. • 

Theorem 4 may be used to obtain information concerning the signs of the real parts of 
eigenvalues. 

THEOREM 5: Let C = AB, where A is hermitian and F(B) is contained in the interior of the right 
half plane. Let C+, co, c - denote the number of positive, vanishing, and negative real parts of the . 
eigenvalues of C, and let 4, ao, a_ denote the number of positive, vanishing, and negative ~igen
values of A. Then c+ = 4, Co = ao, and c_ = a_. 

The assumption on B is equivalent to each of the following: F(B) is contained in the right 
half plane; B + B* is positive definite; or B = H + iG, with G and H hermitian and H positive definite. 

COROLLARY 5': Let A be hermitian and B hermitian and positive definite. Then AB has as many 
positive, vanishing and negative eigenvalues as A} 

I This coroUary is not believed to be new, though the author has not been able to find it in the literature. It may be proved alternatively by applyin~ the law of 
inertia to the matrices A and TAT*= TABT- t, where T*T= B. Conversely, the law of ine rtia is a special case of the corollary. 
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PROOF OF THEOREM 5: B is nonsin gular since OiF(B) . Let A be an eigenvalue of AB. By 
theorem 4 we have AEW(A)W(B) . 

(a) Let us first assume A to be positive definite. ThenAB is nonsingular andifYEW(A)W(B) = 
W(B), then Re y > O. This means c+= n= a+, co=O= ao , c_= O=a_. The proof is similar in case 
A is negative definite. 

(b) Let us now treat the case of an indefinite, nonsingular A. Again every eigenvalue of AB 
is nonzero, but now W (A) W (B) is the union of two opposite an gular domains. We change the given 
matrix B continuously into f3I , where f3 is so me fixed value contained in F(B) , by le ttin g B(t) = 

tf3I+ (l-t)B , 0 ,,;::;; t ";::;; 1. The ass umptions of case (b) are satis fi ed for A and B (t) . Thus we know 
the eigenvalues of AB(t) never pass through O. On the other h and, they vary continuously with 
t and never leave the domain W(B) U (-W(B)) . Hence W(B) contains as many eigenvalue's 
of AB(O) = AB as of AB(l) = f3A . This means c+=a+. Similarly c=a_. In addition we have 
Co= 0= ao. 

(c) The last case to consider is det A = O. Without loss of generality we may ass ume A in 
diagonal form. Let 

Here B4 has ao rows and columns. We have 

Therefore AB has ao eigenvalues equal to 0; the re mainin g n - ao eigenvalues of AB are those of 
AIB I. It is clear that F(B I) ~ F (B) , so AI and BI fulfill the ass umptions of theore m 5 , case (a) or 
(b), hence c+= a+, c_= a_. Also we have co= n -(c++ c)= ao whi ch completes the proof. 
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