
JOURNAL OF RESEARCH of the Notional Bureau of Standards-B. Mathematical Sciences 

Vol. 77B, Nos. 1 & 2, January- June 1973 

A Catalog of Minimal Blocks* 

Arthur M. Hobbs ** 

(November 16, 1972) 

In this paper we provide a catalog of the minimal blocks with 10 and fewer vertices , togel her with 
a discussion of the methods and theorems used to produce the catalog. In addition, we prove a theore m 
which is a strengthening of a similar theorem of Fleischner [2] on the structure of minimal blocks. 
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1. Description of the Catalog 

The majority of the definitions used here will be found in (3),1 with the terms "point", "line", 
and "cycle" replaced by vertex, edge, and circuit. In particular, a block is a connected graph with 
no cut vertex, and a block is minimal if no spanning subgraph of the block with fewer edges is also 
a block. We consider the graph with one vertex and no edges (the vertex graph) and the graph with 
two vertices and a single edge joining them (the link graph) to be minimal blocks. To distinguish 
between a path p and the graph which contains exactly the edges and vertices of p, we denote the 
graph by Ipl; for simplicity of terminology, we will refer to both p and Ipl as "paths." If p is a path, 
F (p) denotes the first vertex of p, and L (p) denotes the last vertex of p. The undirected edge 
joining vertices p and (J" is denoted by (p, (J") or ((J", p) interchangeably. 

Let A!, . .. , Ak be k disjoint graphs which are paths, with k ;;,; 2, such that path A i contains 
mi vertices, for each i E {I, ... , k}, with m, ;;,; m2 ;;,; ... ;;,; mk ;;,; 1. Let a and,B be vertices not in 
k 

U V(Ai). For each i E {I, ., k}, let ai be a Hamiltonian path inAi. Let the graph P(ml, m2, .. "' 
i=' 

k k 

mk) be the graph with V(P)=U V(Ai) U {a,,B} andX(P)=U [X(Ai) U {(a,F(ai)), (L(a;) , 
i= 1 i= 1 

,B)}] (where X(G) denotes the edge set of graph G) such that A" ... , Ak are sub graphs of P. 
We call P(ml, ... , mk) a partition graph; clearly a partition graph with n vertices is completely 
determined up to isomorphism by a partition of the integer n - 2. Further, it is clear that each 
partition graph is a minimal block. 

In the sequence m" ... , mk, if m s+, = ms+2 = ... = m s+,. for some integer s and integer 
r;;'; 2, we may write m" ... , mk in the form m" . .. m s, r X ms+l, ms+r+I, . . . , mk. For ex-
ample, P(3, 4 X 2) is shown in figure 1. Using this notation, the catalog at the end of this paper 
gives all minimal blocks with 10 and fewer vertices_ Above each of the drawings of a graph with 7 
or more vertices is a sequence in parentheses_ This sequence is the degree sequence of the as­
sociated graph, i_e_, the sequence of degrees of the vertices of the graph in descending order. The 
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minimal blocks presented in the catalog are all planar simply because both of the smallest non­
planar minimal blocks (5 (K5) and 5 (K3, 3)) have 15 vertices. 

P(3, 4x2) 

2. Theory and Method for Constructing the Catalog 

A suspended path in a graph G is a path p of G such that all of the vertices in V(p) - {F (p), 
L(p)} have degree 2 in G. The re moval from and addition to a graph of a suspended path is similar 
to the re moval from and addition to a graph of an edge. A graph G with blocks B I, ... , Bk is a 
block-path chain iff either k = 1 or k > 1, Bi and Bj have exactly one common vertex if j E {i - 1, 
i + l}, and Bi and Bj have no common vertices if j t {i -1, i, i + 1}. Following [1], two vertices 
a and f3 in a graph G are compatible in G iff, for every path p with F (p) = a and L (p ) = f3 , two 
vertices of p are joined by an edge of G iff the edge is in p. 

Whitney [6] proved that in any block with three or more vertices there is an edge or a suspended 
path whose removal from the block results in a smaller block or a link graph. Thus a block with k 
vertices and m edges can be constructed from one with k - 1 or fe wer vertices or k ve rtices and 
m - 1 edges by a process of adding an edge or a suspended path joining some distinct pair of ver­
tices_ If the block to be constructed is to be minimal, the removal of an edge from the constructed 
block cannot yield a block; thus each minimal block with k vertices can be constructed from a 
block with k - 1 or fewer vertices by the addition of a suspended path joining some pair of distinct 
vertices. Further, it is easily shown that if G is a minimal block constructed from a block B by the 
addition of a suspended path joining some pair of distinct vertices of B, then B is a minimal block. 

Dirac [1] has shown that re moving an edge from a minimal block G res ults in a block-path 
chain in which any two nonadjacent cut vertices are compatible. Further, he has shown that if 
5 is a block of this block-path chain, then either 5 is a link graph or the cut vertices in 5 of the 
block-path chain are not adjacent.2 In particular , if a minimal block G is constructed from a block 
B by the addition of a suspended arc, then either B is a link graph or the two vertices in B of the 
suspended path are not adjacent in G and are compatible in B . 

2 Dirac also showed that any ci rc uit in a minimal block cont ains a vertex of degree two. This fact can be used to give a very short proof of the theorem that a 
non planar minimal block has thickness two , where the thickness of a graph G is the s mallest number of planar sub graphs of G whose union is C. See also Plummer 
[4J and Tuite [51. 
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Thus to construct all minimal blocks with k vertices, it is sufficient to find all minimal blocks 
with k - 1 or fewer vertices, identify all nonadjacent compatible pairs of vertices in each of these 
minimal blocks, and join each such pair of vertices with a suspended path of length sufficient to 
produce a graph with k vertices. The resulting collection of graphs can be reduced by eliminating 
all but one graph in each isomorphism class of graphs. 

The program described in the preceding paragraph is the one used for finding the catalog 
included in this paper. Some reductions in the labor of carrying out the program are easily found. 
It is easy to show that if the removal of two vertices from a minimal block results in a disconnected 
graph, then the vertices are compatible. Most compatible pairs of vertices can be detected simply 
by finding all such sets of two vertices. Further, the partition graphs with k vertices can be found 
immediately by finding all partitions of the integer k - 2 into two or more parts. Since a partition 
graph can only be obtained from the link graph or from a smaller partition graph by the addition 
of a suspended path, it is easy to avoid producing any further copies of these particular graphs. 
Finally, it is clear that if there is an automorphism of a graph B which carries one pair of vertices 
of B into another pair of vertices of B, and if G (G') is formed from B by joining the first (second) 
pair of vertices by a suspended path of length m, then G and G' are isomorphic. Thus many iso­
morphic copies of graphs can be avoided by using only one compatible pair of vertices from a 
block B among all those pairs which can be carried into one another by automorphisms of B. 

Once all minimal blocks with k vertices have been found, the job of eliminating the isomorphic 
copies produced in spite of the earlier tricks is considerably eased by first classifying the graphs 
by their degree sequences. Within each class, the isomorphic copies can then be eliminated with 
a small amount of additional labor. 

3 . Structure of Minimal Blocks 

An end block of il block-path chain G is a block of G which contains at most one cut vertex 
of G. Following the terminology of [2], given a graph G, D(G) is the set of all edges of G which are 
not incident with vertices whose degree in G is two. A DT-subgraph of a graph G is a sub graph H of G 

such that every edge of H is incident with a vertex whose degree in G is two. In [2], Fleischner 
proved a theorem which can be put in the following form: 

THEOREM A: Let G be a minimal block with ID(G)I ;:;. 2, and suppose {AO, Ad ~ D(G) with Al 
contained in an end block Bo ofG - AO. Then an end block ofG - Al is a subgraph ofBo. 

Using this result, Fleischner obtained an interesting theorem on the structure of minimal 
blocks. The following theorem is a strengthening of his theorem, using a modification of his proof. 

THEOREM: Let G be afinite minimal block with ID(G)I ;:;. 1. Then either 
(1) there exists A e D(G) such that both end blocks of G- A are DT-subgraphs of G, or 
(2) there exists {A, JL} ~ D(G) such that one end block B" of G - A and one end block BiJ. of 

G - JL are DT-subgraphs ofG and V(B,,) n V(BiJ.) contains at most one vertex. 
PROOF: If ID(G) 1= 1, the theorem is trivial. Suppose ID(G) I;:;. 2 and suppose that (1) does not 

hold, so that for every A e D( G), one of the end blocks of G - A is not a DT-subgraph of G. 

Let AO be an element of D (G) with end blocks B I, 0 and B 2 , 0 in G - AO such that B 2, 0 is not a 
DT-subgraph of G. For i e {l, 2}, if B i , 0 is not a DT-subgraph of G, let Ai , I eX(Bi , 0) n D( G) (recall 
that X (B) is the set of edges of graph B). By Theorem A, one end block B i , I of G - Ai, I is a sub­
graph of Hi, o. Continuing, for i d 1, 2}, if Bi,j is not a DT-subgraph of G, then X (Bi,j) n D (G) is 
not empty; let Ai , j + 1 eX(Bi,j) n D( G) . Then by Theorem A, one e nd block B i,j+1 of G- A; , j+1 is 
a subgraph of Bi ,j' Since G is finite, we must eventually reach an edge A; ,k e X(B;,k - .) n D(C) 
such that one end block B j,k of C- Ai , k is a subgraph of Bi ,k- I and is a DT-subgraph of C. But 
since B; ,j is a subgraph of B; ,j _ 1 for alljE{I, ... , k}, Bi ,k is a subgraph of B; ,o . 

If B 1 ,0 is a DT-subgraph of G, let A = AO and B" = B 1 ,0. If B 1,0 is not a DT-subgraph of G, by 
the above argument there exists A e X(BI,o) n D(G) such that an end block B " of C - A is a sub­
graph of B1 ,0 and B" is a DT-subgraph of G. Also there exists JL e X(B2 ,0) n D(C) such that an 
end block BIL of C - JL is a subgraph of B 2 ,0 and is a DT-subgraph of G. Then, since V(B1,0) n 
V(B2 ,0) contains at most one vertex, V(B,,) n V(BiJ.) also contains at most one vertex. 
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4. Appendix. Catalog of Minimal Blocks With 10 and Fewer Vertices 

yERTEX 2 VERTICES ~ VERTICES 4 VERTICES 

o o o DO 
5 VERTICES 6 VERTICES 7 VERTICES 

P(2, I) P(2,2) 
(4, '3,3,4 x2) P(3,2) 

CD P(3, I, I) 

P( I, I, I) P(2,1,1) P(2.2.1) 

P ( I. I. I, l) 
P(2. I, I, I ) 
p(5)( I) 

8 VERTICES 

<D 
(5,4,3,~x2) 

® 
( 4,3,3,5)(2) 

@ 
(4,3,3, 5x2) 

® 
(4x3,4x2) 

P( 3, 3) P('3,2,1) P(2,2,2) P(2,4xl) 

P(4,1,1) P(3,1,1,!) P ( 2,2, I, I) P(6xl) 

9 VERTICES 

Q){6,5,3,6X2) ® (6,4,4,6)(2) (5,4,3,6x2) 
@ 

56 



9 VERTICES (CONTINUED) 

(5,4,3,6)(2) 

(4,4,3,3,5x2) 

(4,3,3,6 x 2) 

@ 

P (4,3) 
P\5,1,1) 
P(4,2,1) 

(5,3,3,~,5x2) 

(4,3,3,6 x2) 

(4,3,3,6)(2) 

@ 

P(3,2,2} 
P (3,3, I) 
P (4. I. l. I) 
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(4,4,4,6x2) (4,4,3,3,5)(2) 

® 

(4,3,3,6x2) (4,3,3,6x2) 

(4)(3,5)(2) (4)(3,5)( 2) 

@ @ 

P(3,2,I,I} 
P(2,2,2,1} 
P\3,4x I) 

P(2,2,1,I,I) 
P{2,5xl) 
P(7x I) 



1-
10 YERTICES 

(7,6,3,7x2) (7,5,4,7)(2) (6,5,3,7 x2) (6,5,3, 7x 2) 

<D ® @ @ 

(6,5,3, 7)(2) (6,4,4,7)(2) (6, 4,4, 7 x 2) (6,4,3,3,61(2) 

® <V ® 

(6,4,3,3,6)(2) (5,5,4, 7x 2) (5,5,3,3,6x2) 

.@ ® ® 

(0,4,4,3,6)(2) 

@ 
(5,4,3, 7 x2) e ® 

(5,4,3, 7)(2) (5,4,3,7)(2) 

@ 

(5,4,3,1x2) (5,4,3,7)(2) (5,4,3,7)(2) (5,4,3,7)( 2} 

® @) @ @ 
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10 VERTICES (CONTINUED) 
(5, 4,3, 7x 2) (5,3,3,3,6x2) ~5,3, 3, 3,6x2) (5,3,3,3,6)(2) 

@ @ @ o 

(4)(4,6x2) (4,4,4,7)(2) (4,4,3,3,6x2) (4, 4, 3, 3,6)(2) 

@ 
QP.--o---=-o 

@ @ 

(4,4,3,3,6)(2) 

@ 
(4,4,3,3,6)(2) 

@ 
(4,4,3,3,6)(2) (4,4,3,3,6)(2) 

@ @ 

(4,4,3,3,6)(2) (4,3,3,7x2) (4, 3,3,7)(2) 

@ @ 

(4,3,3,7)(2) (4,3,3,7)(2) (4,3,3,7)(2) (4,3,3,7)(2) 

@ @ 
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10 VERTICES (CONTINUED) 
(4,3,3 , 7x2) (4,3,3,7x2) (4, 3, 3 , 7x2) 

® @ @ 

(4x3,6x2) (4x 3, 6x 2) (4x3,6x2) 

@ @ @ 

P(4,4) P(4,3, I) P(3,3, I, I) 

P(S,I,I) P(3,3,2) P(4x2) 

P(5,2, I) P(5, I, I, I) P(4,4xl) 

P(4,2,2) P(4,2,I, I) P(3,2,I,I,1} 

P(3, 2,2,1} P ( 2, 2,2,1, I) 
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