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Some Hamiltonian Results in Powers of Graphs*

Arthur M. Hobbs **
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In this paper we show that the connectivity of the kth power of a graph of connectivity m is at
least km if the kth power of the graph is not a complete graph. Also, we prove that removing as many
as k— 2 vertices from the kth power of a graph (k = 3) leaves a Hamiltonian graph, and that removing
as many as k—3 vertices from the kth power of a graph (k= 3) leaves a Hamiltonian connected
graph. Further, if every vertex of a graph has degree two or more, then the square of the graph contains
a 2-factor. Finally, we show that the squares of certain Euler graphs are Hamiltonian.
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1. Introduction

We use the notation and terminology of [11]', with the terms “point”, “line’’, and “‘cycle”
replaced by vertex, edge, and circuit. Further, we denote the set of edges of a graph G by E(G).
We follow the practice of representing a path by the sequence of vertices of the path. To distinguish
between a path (circuit) p and the graph whose vertices and edges are exactly those of p, we denote
the graph by /p/, and we call the graph a pathoid (circuitoid). We denote the distance between
two vertices « and B in a graph G by d¢(«, 8), and we denote the degree of a vertex a in G by
ve (). The undirected edge joining vertices a and B is denoted by (e, B) or (8, @) interchangeably.

Given an integer k = 1, the kth power G* of a graph G is a graph with V(G*) =V (G) and
(a, B) e E(G*) iff d(a, B) €{1,2, . . ., k}. G*is called the square of G, and G3 is called the cube
of G. Given a path p=ay, a1, . . ., ax, we let F(p) = ao, L(p) = ax, V(p) ={ao, a1, . . ., ax},
and I(p) =V(p) —{F(p), L(p)}. We call p an [a, ax]-path iff F(p) = ap and L(p) = ay. Paths
p and q are internally disjoint iff I(p) N I(q) is empty. The number of elements in a set S is
denoted by |S].

2. Connectivity

Our first two theorems give useful information about a property of raising a graph to a kth
power and the structure of a graph once the operation has been carried out. The first theorem is
an easy consequence of the definition of power of a graph.

THEOREM 1: Let G be a graph and let k = mn, where m and n are both positive integers. Then
Gk= (G™)n,

We will use this theorem to show that the next theorem is best possible. The connectivity
k(G) of a graph G is the minimum over all pairs «, 8 of distinct vertices in G of the maximum
number of distinct internally disjoint [a, 8]-paths in G. Since raising a graph G to the power k
usually increases the number of edges present, it is not unreasonable to conjecture that G* has
higher connectivity than G has. Thus,
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THEOREM 2: Let G be a finite graph, and let k be a positive integer. Then
k(G¥) = min (|V(G)|—1, kx(G)).

ProOF: If k(G) =0 or k=1, the theorem is immediate. Similarly, if G* is complete, the theorem
holds because in that case, k(G¥) = |V (G)| —1.

Now suppose G* is not complete, k(G) > 0, and k> 1. Let ¢ and n be vertices of G which
are not adjacent in G*. Then by the definition of G*, d;(&, n) > k. Let a1, as, . . ., ax) be k(G)
internally disjoint [¢, n]-paths in G, with a;i=¢, vi,1, Vi,2, . - -, Yi.r;, M- Since d¢(é,m) >k, ri=k
whenever i€{1, 2, . . ., k(G)}. Suppose ri=kt;+s;, with 0<s; <k—1. Then in G*, ¢ and 7 are
joined by the paths

E, Vi1, Vik+1, Vi 2k+1s - - 5 Vi,tik+1, 1= Di, 1,

€, Vi2, Vik+2, Vi,2k+25 -« -5 Vitik+2, M= Di,2,
&, Vi s;s Yiok+sis Vi 2ktsps + « s Yi,tik+s;» M= Di,s;
&, Vi,si+1, Vioktsi+1s Vi, 2k+si+1s - -« Vi, (t;=Dk+s;+15 M= Di,s;+15
&, Vi,si+2, Viok+si+2s Vi 2ktsj+2y - « - Vi, (t;—Dk+s;+25 1= Di,s;+2,

f’ Yiks Vi, 2ks « - - ‘)’i,(tifl)k, 7 = Pk-

Each of these k paths contains only vertices of a; and each path a; contains vertices which can
be used to form k internally disjoint [¢, n]-paths in G* in this way. Since the paths a1, . . ., ax(q)
are internally disjoint, between & and m in G* there are kk(G) internally disjoint [£, n]-paths.
Thus, G* is kk(G)-connected.

COROLLARY 2A: If G is a finite graph with connectivity k(G) =1, if k is a positive integer,
and if ke (G) = |V(G)| —1, then G* is a complete graph.

Theorem 2 is best possible in the sense that additional conditions are needed to improve it,
as the following examples show. If P is a pathoid with n vertices, if £ € V(P) and has degree 1, and
if r is a positive integer less than n, then ¢ is of degree r in P". Thus, by Theorem 2, P" has con-
nectivity exactly r. Given positive integers £ and m, and given n = km + 1, let P be a pathoid of
length n—1. Then (P™)*=Pm by Theorem 1, and so it is a graph of connectivity km which is
the kth power of an m-connected graph. Finally, let C, be a circuitoid with n vertices. Let m > 0
and even, and let k be a positive integer and n be an integer no less than km + 1; then Ck™)/2
= (C™2)k and is a minimally km-connected graph which is the kth power of a minimally m-con-
nected graph.

3. r-Hamiltonian Powers of Graphs

Following [4] and [17], we call a graph G Hamiltonian connected iff every two distinct vertices
of G are joined by a Hamiltonian path in G, and we call G r-Hamiltonian iff |V(G)| = r+ 3 and
G —{&, ..., &} is Hamiltonian for every set of r vertices {&1, . . ., &} C V(G). Given a path p,
we let [(p) denote the length of p. Given disjoint paths p=§&1, &, . . ., & and ¢ = 1, M2, - . ., M5,
if £ is adjacent in G to m;, we denote the path &, . . ., &, M1, M2, . . ., ms by (p), (q). Let £ be a cut
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vertex of a connected graph G, and let Hy, . . ., H, be all of the components of G — £. Then for each
je{l, ..., r}, we call the subgraph

G— U V(H)
5

of G a &-section of G.

CONJECTURE 1: If G is a finite connected graph, k is an integer no less than 3, and A C V(G)
such that |A| < kw(G)— 3, then G — A is Hamiltonian connected.

CONJECTURE 2: If G is a finite connected graph, k is an integer no less than 3, and r < min
(JV(G)| =3, kx(G) —2), then G¥ is r-Hamiltonian.

Because Theorem 2 is best possible and at least 2-connectedness is required for the presence
of a Hamiltonian circuit in a graph, Conjecture 2 is best possible if it is true. Furthermore, if
0=<|V(G)| —3 < krk(G) —2, then |V (G)| — 1 < kx(G) and G* is complete by Corollary 2A. In such
a case, for any set A C V(G) with |4| < |V(G)| — 3, G* — 4 is Hamiltonian. Thus we need only
consider Conjecture 2 for the case in which |V(G)| —3 = kx(G) — 2 and |4| < kx(G) — 2. We
have not yet proven these conjectures in general, but in the next portion of this paper we give
proofs for the case of k(G) = 1.

Let G be a graph, k a positive integer, and A a subset of the vertices of G. Two distinct vertices
¢ and m of G are A-joined iff there exists a path p in G joining ¢ and 7 such that I(p) C A. Note that
two adjacent vertices are A-joined for every set A of vertices in G. A path p of Gis (4, k)-solid iff
{F(p), L(p)} C V(6) — 4, [I(p) — A| <2, and I(p) > k.

LEMMA 1: Let k = 3 be an integer, G a finite graph, and A C V(G) with |A| < k— 3. Then G
contains no (A, k)-solid paths.

ProoF: This lemma is immediate from the definition of (A4, k)-solid paths.

LEMMA 2: Let k = 3 be an integer, let G be a graph, and let A C V(G) such that |A| <k — 2.
If a is a path of G such that |I(a) —A| < I, then l(a) < k.

PRoOOF: Since |A|<k—2 and |I(a) —A| <1, |[(a)|<k—1. But L (a)=|[(a)|+1<k—
1+1=¢k.

We next prove a very strong result that holds for special subsets A of vertices of a tree. Let
¢ be the empty set.

LEMMA 3: Let k = 3 be an integer, let T be a finite tree, and let A C V(T). Suppose no path in
T is (A, k)-solid. If ¢ and m are distinct A-joined vertices in V(T)— A, then TX — A contains a
Hamiltonian [&, n]-path.

Proor: If |V(T)| < k+ 1, then T* is complete by Corollary 2A. Hence 7% — A4 is a complete
graph with at least the two vertices ¢ and m, and so there is a Hamiltonian [£, n]-path in 7% — A.

Suppose the lemma is true for all trees 7" with |V(T")| < q, and let T be a tree with g vertices
which satisfies the conditions of the lemma. Let 7y, T2, . . ., T, r =1, be the &-sections of T for
-which V(T;) —A # ¢, and suppose m € V' (T}). Since a path which is (4, k)-solidin T;, 1 <i <,
is (A4, k)-solid in T, the lemma holds for all subtrees T; which have at least 2 vertices not in 4. In
tree Ti, 1 <i<r—1,let vy beavertex of ¥(T;) — A which is A-joined to £ in T, and let y,,; = 7,
which is A-joined to & by assumption. In tree Ti, 1 <i=<r, if V(Ti;) — (4 U {yi1}) # ¢, let
vi,» be a vertex of V(Ti) — (A U {vyi,:}) which is A-joined to 7y;,; in T, and if V(7T;) — (4 U
{vi,i}) =, let yi,a =i,

Since T'is a tree, there is a unique [&, 1,2 |-path ain T, and vy, is the only vertexin I (a) — A;
by the definition of (A4, k)-solid path, ¢ (a) < k since a is not (4, k)-solid. Thus dr (&, y1,2) < k.
Further, at most two vertices, & and vy;,;, are in I(s;) — A, where s;is the unique [yi_1,1,yi,2]-path
in T, 2 <i<r; since T contains no (A4, k)-solid path, s; cannot have length greater than £, so

dr(yi-1,1, Vi,2) <k forie{2,. . .,r}. Since Ty, . . ., T, satisfy the conditions of this lemma
and have fewer than ¢ vertices each, in T/ — A there is a Hamiltonian [7;,2, vi,:]-path ai. Thus,
¢, (ay), (as), . . ., (ar) is a Hamiltonian [£, n]-path in Tk — 4.
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Examples of trees T and sets A which satisfy the conditions of Lemma 3 are shown in figure 1,
where the vertices in the sets A are contained in dashed curves.
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COROLLARY 3a: Let T be a finite tree with at least 3 vertices, let k be an integer no less than 3,
and let A C V(T) such that no path of T is (A, k)-solid. Then, for each edge N e E(T —A), Tk —A
contains a Hamiltonian circuit ¢ with A e E(c).

THEOREM 3: Let T be a finite tree, let k be an integer no less than 3, and let A C V (T). Suppose
T has no (A, k)-solid paths. Then T — A is Hamiltonian connected.

PRrRoOF: The theorem is clearly true for a tree with 1 or 2 vertices, and it is vacuously true for
a tree with no vertices. Suppose the theorem is true for every tree with fewer than ¢ vertices, and
let T be a tree with q vertices. By Lemma 3, we need only show that, for any two distinct vertices
which are not 4-joined in T, T* — A contains a Hamiltonian path joining them. Let £ and 7 be two
vertices of V(T) — A which are not A-joined. Let a be the [¢, n]-path in T and let @ € [(a) — A.
Let the components of 7 — o which contain vertices not in 4 be Cy, . . ., C,, with ¢ e V(C,) and
neV(C;).

For ie{2, 3, ..., r—1}, let p; be a vertex of C;—A which is Ajoined to a in T. Let p;=&. If
there is a vertex of C,,—A other than m which is A-joined to «, let p, be such a vertex, and if 7 is
the only vertex in C,— A4, let p,= . Otherwise, let p, be a vertex of C, —A which is Ajoined to 7.
For ie{2,3,...,r—1}, let §; be a vertex of C;— A other than p; which is A-joined to p; (if no such
vertex exists, let 8= p;). If there is a vertex of C;—A other than ¢ which is 4-joined to a in T,
let 8; be such a vertex, and if ¢ is the only vertex in C; — A4, let 8 = £. Otherwise, let 8; be a vertex
which is 4-joined to £. Let 8,=m. By these choices, ¢ is the only vertex not in 4 which can be on
the path of T joining & and @, and 7 is the only vertex not in A which can be on the path of T join-
ing « and p,.

Each component C; is a tree with fewer than g vertices. Further, since T contains no (4, k)-
solid paths, C; contains no (A, k)-solid paths, for each i. Thus the theorem holds for each tree
Ci, and C¥— A contains a Hamiltonian [p;, &;]-path p;.

We note that in a tree S with no (4, k)-solid paths, if p is a path for which {F(p), L(p)} C
V(S)—A and |I(p) —A| <2,then [(p) < k. Hence, dr(8:, p:) < k since at most & and a of V'(T) — A
can be on the [8;, p2]-path of T. Also, dr(8;, pi+1) <k wheneverie{2, 3, ..., r—2}, since at most
pi and a of V(T) —A can be on the [§;, pi+1]-path in T. Further, dr(8,_1, @) <k since p,_; is the
only vertex not in 4 which can be on the [8,_1, @]-path of T, and dr(«, p,) <k since 7 is the only
vertex not in A which can be on the [, p,]-path in T. Therefore, (p1), (p2),. . ., (pr-1), a, (pr)
is a Hamiltonian [£, n]-path in Tk —A4.



COROLLARY 3A: Let G be a connected finite graph, tet k be an integer no less than 3, and let
A C V(G) with |A| <k —3. Then G*— A is Hamiltonian connected.

ProoF: Let T be a spanning tree in G. Since |A| < k—3, T contains no (4, k)-solid paths by
Lemma 1. Therefore, T*— A is Hamiltonian connected by Theorem 3. But Tk — A4 is a spanning
subgraph of G¥ —A4; thus G¥— A4 is Hamiltonian connected.

Corollary 3A proves Conjecture 1 for the case of k(G)=1. We can improve this result slightly
in the direction of Conjecture 1 as follows:

COROLLARY 3B: Let G be a connected finite graph and let k be an integer no less than 3. Let
A C V(G) with |A| <k+«(G) —4. Then G*— A is Hamiltonian connected.

PROOF: A can be expressed as the union of disjoint sets B and C such that |B| < k>3 and
|C| < k(G) —1. From the definition of k(G), G—C is connected; thus (G— C)¥— B is Hamiltonian
connected by Corollary 3A. But (G —C)* is a spanning subgraph of G*x—C and B U C=A4; hence
(G—C)*—B is a spanning subgraph of G¥— A4, and G*— A is Hamiltonian connected.

LEMMA 4: Let k be an integer no less than 2, let G be a graph, and let A C V(G) such that
|A| <k—2. Let p be an (A, k)-solid path in G. Then A C I(p).

PrRoOF: By definition, /(p)=|I(p)|+1 and |[(p) —A| <2. Therefore, k< I(p)=|I(p)|+1
=|I(p) N A|+|I(p) —A|+1=<|I(p) NA|+3, or k—2=<|I(p) N A|. But |A|<k—2. Thus,
A CI(p).

In a paper published in 1960, Sekanina [18] proved

THEOREM (Sekanina’s Theorem): If G is a connected finite graph, then G* is Hamiltonian
connected.

This theorem was proved again by Karaganis in a paper [15] published in 1968. Using this
result, Chartrand and Kapoor [2] proved

THEOREM A: If G is a connected finite graph with at least 4 vertices, then G* is 1-Hamiltonian.

A proof by construction for the next theorem was recently published in [1]. However, the
following proof is belived to have points of sufficient interest to warrant its publication. Recall
that if p is a path, then /p/ is the graph whose edges and vertices are precisely those of p.

THEOREM 4: Let k be an integer no less than 3, and let G be a connected finite graph with at
least k+ 1 vertices. Then G* is r-Hamiltonian for every integer r in {0, 1, ..., k—2}.

Proor: Let A C V(G) with |4| < k—2. If [4| <1, then G® — A contains a Hamiltonian circuit
by Theorem A. Since G* —A is a spanning subgraph of G¥ —A, G¥ — A is Hamiltonian.

Suppose |4| =2. Since G is connected, we may choose a spanning tree T of G. If T has no
(A, k)-solid paths, then T*—A is Hamiltonian connected by Theorem 3, and so it contains a
Hamiltonian circuit. Since 7% — A is a spanning subgraph of G¥— A4, G*— A is Hamiltonian.

Now we assume that T contains an (4, k)-solid path a; by Lemma 4, 4 C I(a). Since |4| =2,
there is an edge A= (&), &2) in E(a) such that each component of /a/ —\ contains one or more
vertices of A. Let T; be the component of 7—\ which contains ¢&;, i€{1, 2}. For ie{1, 2}, if &¢ A,
we let pi=¢&;, and if £;€4, we let p; be a vertex of T; which is not in 4 and which is 4-joined to &;
(such a vertex exists because the ends of a are not in 4). Let 8; be a vertex of V' (T;) — A4 different
from p; which is 4-joined to p; (if no such vertex exists, let 8;= p;). Since both of T, and 7’ contain
vertices of A, |V (T;) N A| < k—2 for each i; hence T; satisfies the conditions of Lemma 1 and
contains no (A4, k)-solid arc. Then applying Lemma 3 to 7}, ie{1, 2}, let a; be a Hamiltonian path
in Tk — A from p; to §; (if pi=23;, let ai=p;). Since p, is the only vertex of V' (T) —A which can lie
on the [8,, p2]-path of T, dr(8:, p2) < k by Lemma 2. Similarly, dr (8., p:) < k. Hence (a1), (a2),
pi1 is a Hamiltonian circuit in 7% — A4, and it is also a Hamiltonian circuit in Gk — 4.

The following example shows that Theorem 4 cannot be strengthened to the level of Theorem
3, and Corollary 3A is best possible in the usual sense. In the tree T shown in figure 2A, the five
vertices surrounded by the dashed curve are the vertices in 4, and k=7. T? — A is shown in figure
2B. In T, « and B are 4-joined, but it is easily shown that in 77 — 4, there is no Hamiltonian [e, B]-
path (y would have to be both the successor of a and the predecessor of 8 in any such path).
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The following corollary provides a slight weakening of the conditions of Theorem 4, with a
corresponding weakening of the conclusion:

¥« B . s P
o—o o—{o———o——o0——o0—0)—o0—>0

FIGURE 2A

)
@

FIGURE 2B

COROLLARY 4A: Let G be a connected finite graph with at least 3 vertices, let k be an integer
no less than 3, and let A be a subset of V(G) such that |A| < min (k—1, |V(G)|—2). Then Gx—A
contains a Hamiltonian path.

ProoF: We simply remove all but one of the vertices of A4 from G*. By Theorem 4, the resulting
graph contains a Hamiltonian circuit. Removing one more vertex converts the circuit into a Hamil-
tonian path in the resulting graph, which is G¥x— 4.

While we have not proved Conjecture 2, Theorem 4 allows us to come a little closer to the
statement of the conjecture, as the following corollary shows:

COROLLARY 4B: Let k be an integer no less than 3 and let G be a connected finite graph with
at least k + k(G) vertices. Then G is r-Hamiltonian for every rin {0, 1,. . ., k+ x(G) — 3}.

The proof of this corollary is similar to the proof of Corollary 3B.

Conjecture 2 might be extended to include the following:

CONJECTURE 3: Let G be a graph with k(G) = 2 and with at least 2k(G) + 1 vertices. Then G?
is 2k(G) — 2)-Hamiltonian.

I suspect that Conjecture 3 does not hold (although it is valid if G is a circuitoid). However,
the following weaker theorem was recently proved [3, 14]:

THEOREM: Let G be a graph with k(G) = 2 and with at least 4 vertices. Then G2 is 1-Hamiltonian.

4. Squares of Graphs

The set of all vertices of G having degree k is denoted by Vi (G). A caterpillar is a tree T such
that T — V;(T) is a pathoid or the empty graph. A 2-factor of a graph G is a subgraph H of G such
that V(H) = V(G) and every vertex in H has degree 2.

In contrast to the situation for higher powers of graphs, we do not yet know which graphs have
Hamiltonian squares. Neuman [16] has characterized those trees for which a Hamiltonian path
joining two specified vertices will exist in the square of the trees. An easy consequence of his
characterization is the following result:

THEOREM 5: The square of a tree is Hamiltonian if and only if the tree is a caterpillar with at
least 3 vertices.?

H. Fleischner [6, 7, 8, 9] has proved that the square of a block is Hamiltonian, and he has
characterized those cubic graphs with Hamiltonian squares [5, 10]. A few other more special results
are known. The remainder of this paper contains two further theorems connected with the problem
of determining which graphs have Hamiltonian squares.

2 Neuman’s result can also easily be used to show that the square of a tree is Hamiltonian connected if and only if the tree is a caterpillar with at most one vertex
of degree greater than one.



If the square of a graph contains a Hamiltonian circuit, it certainly contains a 2-factor. Thus,
it is reasonable to consider the question of which squares of graphs contain 2-factors (S(K, 3) is
an example of a graph whose square does not contain a 2-factor). In this connection, the following
theorem is of interest. Given a path p, the internal vertices of p are the vertices in I(p). We denote
the degree in G of a vertex & by v;(€).

THEOREM 6: Let G be a graph with minimum degree at least 2. Then G?* contains a 2-factor.

ProoF: By Theorem 5, it is sufficient to find a spanning forest in G in which each tree is a
caterpillar with at least 3 vertices. We note first that since G has minimum degree at least 2, each
component of G contains at least 3 vertices, and a longest path in G must have length at least 2.

k
Choose a longest path a; in G. Having chosen paths a1, . . ., ax in G, if H, = G — U V(a;) is
i=1

not empty, choose a longest path @y, in Hy. Note that the end vertices of ax+1 can be adjacent

k
only to vertices in U I(a;) U V(ak+1). Eventually, since G is finite, we find we have chosen paths

i=1
ai, . . ., ar such that H, is the empty graph. Now for each end vertex w of each path of length O or 1,
choose an internal vertex of a longer path to which w is adjacent through an edge A\, (such an internal
vertex must exist since v, (€) = 2 for all ¢ € V(G)). We form a spanning forest whose trees are
caterpillars by deleting the edges from those pathoids in {/ai/, . . ., /a,/} which have length 1 and
adding the edges A\, to form the caterpillars. Since each of these caterpillars includes the vertices
of a path with an internal vertex, each caterpillar has at least three vertices.

An Euler graph is a graph in which every vertex has even degree. In a path p = (r), &, (s),
the neighbors of the vertex ¢ are the vertices L(r) and F(s). Given a pathp=¢&;, &, .. ., &1, &,
we let p~! denote the path &, &1, . . ., &2, &1 We call a path x a section of a path p iff there exist
paths y and z such that p = (y), (x), (z) (y or z may be empty). Recall that all walks in this paper
are denoted by sequences of vertices.

The next theorem is a beginning for the study of the question of which Euler graphs have
Hamiltonian squares. Fleischner’s proof that the square of a block is Hamiltonian involves finding
a Hamiltonian circuit in the square of an Euler graph (see especially [7]); thus, a thorough under-
standing of Euler graphs with Hamiltonian squares would be quite desirable. The following Theorem
7, whose statement is quite long, can be summarized as follows: “If G is an Euler graph with at
least 3 vertices such that G — V> (G) is a forest, then G2 is Hamiltonian. Further, G2 contains a
Hamiltonian circuit which includes many of the edges of G.”

THEOREM 7: Let G be a connected Euler graph with at least 3 vertices such that G — V(G) is
a forest with trees T1, ..., T,,r = 0. Let e be an Euler trail in G. In each tree T;,i€{1,2,...,r},
choose one vertex m; and call it the root of T;. Then G2 contains a Hamiltonian circuit h such that:

(1) h is a subsequence of e, where both h and e are denoted by a sequence of vertices;

(2) the root m; of each tree T; is adjacent in G to its two neighbors in h; and

(3) for each path s in G such that V(s) C V2(G), either s or s~! is a section of h.

PRrOOF: The theorem is trivial if G is a circuitoid. Thus we may assume r = 1. Define a function
WV, with domain V(G) — (V2(G) U {m1, M2, . . ., m:}), as follows: for & # n; in V(T}), let W(¢) be
the second vertex on the unique [£, mi]-path in T;. In e, mark each vertex of V»(G), and mark
one occurrence of each of 1, . . ., m,. Also for each vertex £ € V(G) — (Vao(G) U {m1, ..., n}),
mark precisely that occurrence of £ in e for which W(¢) is a neighbor of ¢ at that location in e. Form
h from e by deleting all unmarked vertices in e. This choice of & satisfies condition (1) of the theorem.

Since we left in h one occurrence of each of the distinct vertices in e, and since V(e) =V (G),
V(h) = V(G). Note that the unmarked vertices of e are all in the forest G — V»(G). Two vertices of
G — V»(G) which are successive in e and are adjacent in that subgraph are in the same tree 7T'.
Hence one is the second vertex in the path joining the other to 7;, so that one of them is necessarily
marked at that part of e. Thus no two successive vertices in e are both unmarked, and for every
section w, x of h, there is at most one vertex between w and x in e at the corresponding location in
e. Since e is atrailin G, d;(w, x) =< 2. Thus, A is a Hamiltonian circuit in G2.
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For each i€ {1,2, . . .,r}, since m; is W(¢) for every vertex ¢ adjacent to m; in T, and since no
vertex of degree 2 in G is deleted in obtaining k& from e, no neighbors of 1; in e are deleted when
forming h. Thus, in the one occurrence of 7; in k, both neighbors of ; in A are neighbors of 7; in e
and hence are adjacent to m; in G. Finally, for each path s in G such that V(s) C V»(G), either s or
s~1is a section of e. Since no vertices of degree 2 in G are deleted in forming A, s or s~! remains a
section of A. Thus A satisfies conditions (2) and (3) of the theorem.

For any ¢ € V(G), if ¢ and m; are adjacent in G they must be neighbors at some occurrence of
mi in e. Then at that occurrence of 1;, n; can be marked. Thus, for each root m;, we may select one
vertex adjacent to m; in G which will be a neighbor of %; in A.

Let G be a graph whose square is Hamiltonian, let A~ be a Hamiltonian circuit in G, and let A be
an edge of G in h. Let £ be one of the ends of \. Further, let H; and H» be disjoint caterpillars disjoint
from G, and let m; be a vertex of degree no more than 1 in H;—V,(H;), fori € {1, 2} (if H; has only
two vertices, let 7; be one of them). Form a graph M from H,; and G by identifying n; and ¢. Then M2
is Hamiltonian as indicated by figure 3, where the dashed line indicates the sequence inserted
between the ends of A in h, (in this and following figures, a wavy line is used to denote A). Variations
in the length of H; —V,(H,) (particularly variations to odd lengths) and changes in the number of
vertices of degree 1 in H; can be dealt with in an obvious manner. Note that one edge of H; is
included in the Hamiltonian circuit of M?2.

Now let H, and H; be as before, but suppose G? contains a Hamiltonian circuit A which includes
two edges A and u of G, both incident with the same vertex £ of G. In this case, let N be formed from
H,, H;, and G by identifying 71, 12, and £. Then N? contains a Hamiltonian circuit as indicated by
figure 4, where the dashed lines indicate the sequence which is to replace ¢ in A. Variations in H,
and H, are again easily dealt with. Note that an edge of each of H, and H; is in the Hamiltonian
circuit of N2

Now let G and H be disjoint graphs such that G*> and H? are both Hamiltonian. Let A be an edge
of G incident with a vertex £ and in a Hamiltonian circuit g of G2, and let u be an edge of H incident
with a vertex 1 and in a Hamiltonian circuit A of H2. Form a graph P from G and H by identifying &
and 7. Then P? contains a Hamiltonian circuit as indicated by the wavy and dashed curves in
figure 5.

Theorem 7 describes many edges of G which are included in a Hamiltonian circuit of G2, where
G is an Euler graph in which G—V5(G) is a forest. In view of the techniques described in the pre-
ceding three paragraphs, Theorem 7 can thus be used to show many other graphs have Hamiltonian
squares.

An Euler graph G whose square is not Hamiltonian is shown in figure 6. It is easy to see that any
Hamiltonian circuitoid in G* must contain edges joining a vertex other than a cut vertex of G of each
of the small triangles Ty, T2, Ts, T4, and T’s to one of a or B. Thus one of a or 8 must meet three edges

FIGURE 3
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FIGURE

FIGURE 5

of the Hamiltonian circuitoid, which is impossible. I suspect that the graph of figure 6 is the smallest
Euler graph whose square is not Hamiltonian (size being measured in number of vertices or number
of edges).

&

>

T

FIGURE 6



ADDED IN PROOF: Since this paper was submitted, references [6] and [7] have been com-
bined into Fleischner, H., On spanning subgraphs of a connected bridgeless graph and their
application to DT-graphs, J. Combinatorial Theory (to appear), and references [8] and [9] were
combined into Fleischner, H., The square of every two-connected graph is Hamiltonian, J. Com-
binatorial Theory (to appear). Further, references [3] and [14] were combined into Chartrand, G.,
Hobbs, A. M., Jung, H. A., Kapoor, S. F., and Nash-Williams, C. St. J. A., The square of a block is
Hamiltonian connected, J. Combinatorial Theory (to appear). It should be mentioned that the term
“£-section” is similar to the term “J-component” of Tutte, W. T., The Connectivity of Graphs
(Toronto Univ. Press, Toronto, 1967), and that many of the other terms in this paper not found
in [11] were derived from the definitions in Nash-Williams, C. St. J. A., Graph-Theoretic Defini-
tions (unpublished).

My thanks go to Professors W. T. Tutte and C. St. J. A. Nash-Williams for their many useful
suggestions. In particular, I wish to thank Professor Nash-Williams for suggesting the present form
of the proof of Theorem 7.
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