Some Hamiltonian Results in Powers of Graphs*

Arthur M. Hobbs **

(November 16, 1972)

In this paper we show that the connectivity of the kth power of a graph of connectivity m is at least km if the kth power of the graph is not a complete graph. Also, we prove that removing as many as k-2 vertices from the kth power of a graph ($k \ge 3$) leaves a Hamiltonian graph, and that removing as many as k-3 vertices from the kth power of a graph $(k \ge 3)$ leaves a Hamiltonian connected graph. Further, if every vertex of a graph has degree two or more, then the square of the graph contains a 2-factor. Finally, we show that the squares of certain Euler graphs are Hamiltonian.

Key words: Combinatorics; connectivity; Euler graphs; 2-factors; graph theory; Hamiltonian circuits; Hamiltonian connected; powers of graphs.

Introduction 1.

We use the notation and terminology of [11]¹, with the terms "point", "line", and "cycle" replaced by vertex, edge, and circuit. Further, we denote the set of edges of a graph G by E(G). We follow the practice of representing a path by the sequence of vertices of the path. To distinguish between a path (circuit) p and the graph whose vertices and edges are exactly those of p, we denote the graph by p/p, and we call the graph a pathoid (circuitoid). We denote the distance between two vertices α and β in a graph G by $d_G(\alpha, \beta)$, and we denote the degree of a vertex α in G by $v_{\mathcal{G}}(\alpha)$. The undirected edge joining vertices α and β is denoted by (α, β) or (β, α) interchangeably.

Given an integer $k \ge 1$, the kth power G^k of a graph G is a graph with $V(G^k) = V(G)$ and $(\alpha, \beta) \in E(G^k)$ iff $d_G(\alpha, \beta) \in \{1, 2, \ldots, k\}$. G^2 is called the square of G, and G^3 is called the cube of G. Given a path $p = \alpha_0, \alpha_1, \ldots, \alpha_k$, we let $F(p) = \alpha_0, L(p) = \alpha_k, V(p) = \{\alpha_0, \alpha_1, \ldots, \alpha_k\}$, and $I(p) = V(p) - \{F(p), L(p)\}$. We call p an $[\alpha_0, \alpha_k]$ -path iff $F(p) = \alpha_0$ and $L(p) = \alpha_k$. Paths p and q are internally disjoint iff $I(p) \cap I(q)$ is empty. The number of elements in a set S is denoted by |S|.

2. Connectivity

Our first two theorems give useful information about a property of raising a graph to a kth power and the structure of a graph once the operation has been carried out. The first theorem is an easy consequence of the definition of power of a graph.

THEOREM 1: Let G be a graph and let k = mn, where m and n are both positive integers. Then $G^k = (G^m)^n$.

We will use this theorem to show that the next theorem is best possible. The *connectivity* $\kappa(G)$ of a graph G is the minimum over all pairs α , β of distinct vertices in G of the maximum number of distinct internally disjoint $[\alpha, \beta]$ -paths in G. Since raising a graph G to the power k usually increases the number of edges present, it is not unreasonable to conjecture that G^k has higher connectivity than G has. Thus,

AMS Subject Classification: 0540.

^{*}An invited paper. Partial support for this research has come to me through Professor W. T. Tutte from the National Research Council of Canada.

**Present address: Texas A and M University, College of Science, Department of Mathematics, College Station, Texas 77843.

¹Figures in brackets indicate the literature references at the end of this paper.

THEOREM 2: Let G be a finite graph, and let k be a positive integer. Then

$$\kappa(G^k) \ge \min(|V(G)| - 1, k\kappa(G)).$$

PROOF: If $\kappa(G) = 0$ or k = 1, the theorem is immediate. Similarly, if G^k is complete, the theorem holds because in that case, $\kappa(G^k) = |V(G)| - 1$.

Now suppose G^k is not complete, $\kappa(G) > 0$, and k > 1. Let ξ and η be vertices of G which are not adjacent in G^k . Then by the definition of G^k , $d_G(\xi, \eta) > k$. Let $a_1, a_2, \ldots, a_{\kappa(G)}$ be $\kappa(G)$ internally disjoint $[\xi, \eta]$ -paths in G, with $a_i = \xi, \gamma_{i,1}, \gamma_{i,2}, \ldots, \gamma_{i,r_i}, \eta$. Since $d_G(\xi, \eta) > k$, $r_i \ge k$ whenever $i \in \{1, 2, \ldots, \kappa(G)\}$. Suppose $r_i = kt_i + s_i$, with $0 \le s_i \le k - 1$. Then in G^k , ξ and η are joined by the paths

$$\xi, \gamma_{i,1}, \gamma_{i,k+1}, \gamma_{i,2k+1}, \dots, \gamma_{i,t_{i}k+1}, \eta = p_{i,1},$$

$$\xi, \gamma_{i,2}, \gamma_{i,k+2}, \gamma_{i,2k+2}, \dots, \gamma_{i,t_{i}k+2}, \eta = p_{i,2},$$

$$\vdots$$

$$\xi, \gamma_{i,s_{i}}, \gamma_{i,k+s_{i}}, \gamma_{i,2k+s_{i}}, \dots, \gamma_{i,t_{i}k+s_{i}}, \eta = p_{i,s_{i}},$$

$$\xi, \gamma_{i,s_{i}+1}, \gamma_{i,k+s_{i}+1}, \gamma_{i,2k+s_{i}+1}, \dots, \gamma_{i,(t_{i}-1)k+s_{i}+1}, \eta = p_{i,s_{i}+1},$$

$$\xi, \gamma_{i,s_{i}+2}, \gamma_{i,k+s_{i}+2}, \gamma_{i,2k+s_{i}+2}, \dots, \gamma_{i,(t_{i}-1)k+s_{i}+2}, \eta = p_{i,s_{i}+2},$$

$$\vdots$$

$$\xi, \gamma_{i,k}, \gamma_{i,2k}, \dots, \gamma_{i,(t_{i}-1)k}, \eta = p_{k}.$$

Each of these k paths contains only vertices of a_i and each path a_i contains vertices which can be used to form k internally disjoint $[\xi, \eta]$ -paths in G^k in this way. Since the paths $a_1, \ldots, a_{\kappa(G)}$ are internally disjoint, between ξ and η in G^k there are $k\kappa(G)$ internally disjoint $[\xi, \eta]$ -paths. Thus, G^k is $k\kappa(G)$ -connected.

Corollary 2A: If G is a finite graph with connectivity $\kappa(G) \ge 1$, if k is a positive integer, and if $k\kappa(G) \ge |V(G)| - 1$, then G^k is a complete graph.

Theorem 2 is best possible in the sense that additional conditions are needed to improve it, as the following examples show. If P is a pathoid with n vertices, if $\xi \in V(P)$ and has degree 1, and if r is a positive integer less than n, then ξ is of degree r in P^r . Thus, by Theorem 2, P^r has connectivity exactly r. Given positive integers k and m, and given $n \ge km+1$, let P be a pathoid of length n-1. Then $(P^m)^k = P^{mk}$ by Theorem 1, and so it is a graph of connectivity km which is the kth power of an m-connected graph. Finally, let C_n be a circuitoid with n vertices. Let m > 0 and even, and let k be a positive integer and n be an integer no less than km+1; then $C_n^{(km)/2} = (C_n^{m/2})^k$ and is a minimally km-connected graph which is the kth power of a minimally m-connected graph.

3. r-Hamiltonian Powers of Graphs

Following [4] and [17], we call a graph G Hamiltonian connected iff every two distinct vertices of G are joined by a Hamiltonian path in G, and we call G r-Hamiltonian iff $|V(G)| \ge r+3$ and $G - \{\xi_1, \ldots, \xi_r\}$ is Hamiltonian for every set of r vertices $\{\xi_1, \ldots, \xi_r\} \subseteq V(G)$. Given a path p, we let l(p) denote the length of p. Given disjoint paths $p = \xi_1, \xi_2, \ldots, \xi_r$ and $q = \eta_1, \eta_2, \ldots, \eta_s$, if ξ_r is adjacent in G to η_1 , we denote the path $\xi_1, \ldots, \xi_r, \eta_1, \eta_2, \ldots, \eta_s$ by (p), (q). Let ξ be a cut

vertex of a connected graph G, and let H_1, \ldots, H_r be all of the components of $G - \xi$. Then for each $j \in \{1, \ldots, r\}$, we call the subgraph

$$G - \bigcup_{\substack{i=1\\i\neq j}}^{r} V(H_i)$$

of G a ξ -section of G.

Conjecture 1: If G is a finite connected graph, k is an integer no less than 3, and $A \subseteq V(G)$ such that $|A| \leq k\kappa(G) - 3$, then $G^k - A$ is Hamiltonian connected.

Conjecture 2: If G is a finite connected graph, k is an integer no less than 3, and $r \le min(|V(G)|-3, k\kappa(G)-2)$, then G^k is r-Hamiltonian.

Because Theorem 2 is best possible and at least 2-connectedness is required for the presence of a Hamiltonian circuit in a graph, Conjecture 2 is best possible if it is true. Furthermore, if $0 \le |V(G)| - 3 \le k\kappa(G) - 2$, then $|V(G)| - 1 \le k\kappa(G)$ and G^k is complete by Corollary 2A. In such a case, for any set $A \subseteq V(G)$ with $|A| \le |V(G)| - 3$, $G^k - A$ is Hamiltonian. Thus we need only consider Conjecture 2 for the case in which $|V(G)| - 3 \ge k\kappa(G) - 2$ and $|A| \le k\kappa(G) - 2$. We have not yet proven these conjectures in general, but in the next portion of this paper we give proofs for the case of $\kappa(G) = 1$.

Let G be a graph, k a positive integer, and A a subset of the vertices of G. Two distinct vertices ξ and η of G are A-joined iff there exists a path p in G joining ξ and η such that $I(p) \subseteq A$. Note that two adjacent vertices are A-joined for every set A of vertices in G. A path p of G is (A, k)-solid iff $\{F(p), L(p)\} \subseteq V(G) - A, |I(p) - A| \le 2$, and I(p) > k.

Lemma 1: Let $k \ge 3$ be an integer, G a finite graph, and $A \subseteq V(G)$ with $|A| \le k-3$. Then G contains no (A, k)-solid paths.

PROOF: This lemma is immediate from the definition of (A, k)-solid paths.

Lemma 2: Let $k \ge 3$ be an integer, let G be a graph, and let $A \subseteq V(G)$ such that $|A| \le k-2$. If a is a path of G such that $|I(a) - A| \le l$, then $l(a) \le k$.

PROOF: Since $|A| \le k-2$ and $|I(a)-A| \le 1$, $|I(a)| \le k-1$. But $l(a) = |I(a)| + 1 \le k-1 + 1 = k$.

We next prove a very strong result that holds for special subsets A of vertices of a tree. Let ϕ be the empty set.

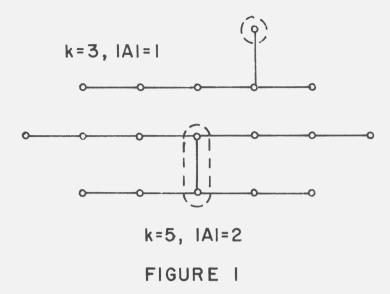
Lemma 3: Let $k \ge 3$ be an integer, let T be a finite tree, and let $A \subseteq V(T)$. Suppose no path in T is (A, k)-solid. If ξ and η are distinct A-joined vertices in V(T) - A, then $T^k - A$ contains a Hamiltonian $[\xi, \eta]$ -path.

PROOF: If $|V(T)| \le k+1$, then T^k is complete by Corollary 2A. Hence $T^k - A$ is a complete graph with at least the two vertices ξ and η , and so there is a Hamiltonian $[\xi, \eta]$ -path in $T^k - A$.

Suppose the lemma is true for all trees T' with |V(T')| < q, and let T be a tree with q vertices which satisfies the conditions of the lemma. Let $T_1, T_2, \ldots, T_r, r \ge 1$, be the ξ -sections of T for which $V(T_i) - A \ne \phi$, and suppose $\eta \in V(T_r)$. Since a path which is (A, k)-solid in $T_i, 1 \le i \le r$, is (A, k)-solid in T, the lemma holds for all subtrees T_i which have at least 2 vertices not in A. In tree $T_i, 1 \le i \le r - 1$, let $\gamma_{i,1}$ be a vertex of $V(T_i) - A$ which is A-joined to ξ in T, and let $\gamma_{r,1} = \eta$, which is A-joined to ξ by assumption. In tree $T_i, 1 \le i \le r$, if $V(T_i) - (A \cup \{\gamma_{i,1}\}) \ne \phi$, let $\gamma_{i,2}$ be a vertex of $V(T_i) - (A \cup \{\gamma_{i,1}\})$ which is A-joined to $\gamma_{i,1}$ in $\gamma_{i,1}$ and if $\gamma_{i,2} = \gamma_{i,1}$.

Since T is a tree, there is a unique $[\xi, \gamma_{1,2}]$ -path a in T, and $\gamma_{1,1}$ is the only vertex in I(a) - A; by the definition of (A, k)-solid path, $\ell(a) \leq k$ since a is not (A, k)-solid. Thus $d_T(\xi, \gamma_{1,2}) \leq k$. Further, at most two vertices, ξ and $\gamma_{i,1}$, are in $I(s_i) - A$, where s_i is the unique $[\gamma_{i-1,1}, \gamma_{i,2}]$ -path in T, $2 \leq i \leq r$; since T contains no (A, k)-solid path, s_i cannot have length greater than k, so $d_T(\gamma_{i-1,1}, \gamma_{i,2}) \leq k$ for $i \in \{2, \ldots, r\}$. Since T_1, \ldots, T_r satisfy the conditions of this lemma and have fewer than q vertices each, in $T_i^k - A$ there is a Hamiltonian $[\gamma_{i,2}, \gamma_{i,1}]$ -path a_i . Thus, ξ , (a_1) , (a_2) , ..., (a_r) is a Hamiltonian $[\xi, \eta]$ -path in $T^k - A$.

Examples of trees T and sets A which satisfy the conditions of Lemma 3 are shown in figure 1, where the vertices in the sets A are contained in dashed curves.



COROLLARY 3a: Let T be a finite tree with at least 3 vertices, let k be an integer no less than 3, and let $A \subseteq V(T)$ such that no path of T is (A, k)-solid. Then, for each edge $\lambda \in E(T-A)$, $T^k - A$ contains a Hamiltonian circuit c with $\lambda \in E(c)$.

Theorem 3: Let T be a finite tree, let k be an integer no less than 3, and let $A \subseteq V(T)$. Suppose T has no (A, k)-solid paths. Then $T^k - A$ is Hamiltonian connected.

PROOF: The theorem is clearly true for a tree with 1 or 2 vertices, and it is vacuously true for a tree with no vertices. Suppose the theorem is true for every tree with fewer than q vertices, and let T be a tree with q vertices. By Lemma 3, we need only show that, for any two distinct vertices which are not A-joined in T, T^k-A contains a Hamiltonian path joining them. Let ξ and η be two vertices of V(T)-A which are not A-joined. Let a be the $[\xi, \eta]$ -path in T and let $\alpha \in I(a)-A$. Let the components of $T-\alpha$ which contain vertices not in A be C_1, \ldots, C_r , with $\xi \in V(C_1)$ and $\eta \in V(C_r)$.

For $i \in \{2, 3, \ldots, r-1\}$, let ρ_i be a vertex of $C_i - A$ which is A-joined to α in T. Let $\rho_1 = \xi$. If there is a vertex of $C_r - A$ other than η which is A-joined to α , let ρ_r be such a vertex, and if η is the only vertex in $C_r - A$, let $\rho_r = \eta$. Otherwise, let ρ_r be a vertex of $C_r - A$ which is A-joined to η . For $i \in \{2, 3, \ldots, r-1\}$, let δ_i be a vertex of $C_i - A$ other than ρ_i which is A-joined to ρ_i (if no such vertex exists, let $\delta_i = \rho_i$). If there is a vertex of $C_1 - A$ other than ξ which is A-joined to α in α , let α is the only vertex in α is the only vertex not in α which can be on the path of α joining α and α , and α is the only vertex not in α which can be on the path of α joining α and α .

Each component C_i is a tree with fewer than q vertices. Further, since T contains no (A, k)-solid paths, C_i contains no (A, k)-solid paths, for each i. Thus the theorem holds for each tree C_i , and $C_i^k - A$ contains a Hamiltonian $[\rho_i, \delta_i]$ -path p_i .

We note that in a tree S with no (A, k)-solid paths, if p is a path for which $\{F(p), L(p)\} \subseteq V(S) - A$ and $|I(p) - A| \le 2$, then $l(p) \le k$. Hence, $d_T(\delta_1, \rho_2) \le k$ since at most ξ and α of V(T) - A can be on the $[\delta_1, \rho_2]$ -path of T. Also, $d_T(\delta_i, \rho_{i+1}) \le k$ whenever $i \in \{2, 3, \ldots, r-2\}$, since at most ρ_i and α of V(T) - A can be on the $[\delta_i, \rho_{i+1}]$ -path in T. Further, $d_T(\delta_{r-1}, \alpha) \le k$ since ρ_{r-1} is the only vertex not in A which can be on the $[\delta_{r-1}, \alpha]$ -path of T, and $d_T(\alpha, \rho_r) \le k$ since η is the only vertex not in A which can be on the $[\alpha, \rho_r]$ -path in T. Therefore, $(p_1), (p_2), \ldots, (p_{r-1}), \alpha, (p_r)$ is a Hamiltonian $[\xi, \eta]$ -path in $T^k - A$.

COROLLARY 3A: Let G be a connected finite graph, let k be an integer no less than 3, and let $A \subset V(G)$ with $|A| \leq k-3$. Then G^k-A is Hamiltonian connected.

PROOF: Let T be a spanning tree in G. Since $|A| \le k-3$, T contains no (A, k)-solid paths by Lemma 1. Therefore, T^k-A is Hamiltonian connected by Theorem 3. But T^k-A is a spanning subgraph of G^k-A ; thus G^k-A is Hamiltonian connected.

Corollary 3A proves Conjecture 1 for the case of $\kappa(G) = 1$. We can improve this result slightly in the direction of Conjecture 1 as follows:

COROLLARY 3B: Let G be a connected finite graph and let k be an integer no less than 3. Let $A \subset V(G)$ with $|A| \leq k + \kappa(G) - 4$. Then $G^k - A$ is Hamiltonian connected.

PROOF: A can be expressed as the union of disjoint sets B and C such that $|B| \le k - 3$ and $|C| \le \kappa(G) - 1$. From the definition of $\kappa(G)$, G - C is connected; thus $(G - C)^k - B$ is Hamiltonian connected by Corollary 3A. But $(G - C)^k$ is a spanning subgraph of $G^k - C$ and $B \cup C = A$; hence $(G - C)^k - B$ is a spanning subgraph of $G^k - A$, and $G^k - A$ is Hamiltonian connected.

LEMMA 4: Let k be an integer no less than 2, let G be a graph, and let $A \subseteq V(G)$ such that $|A| \leq k-2$. Let p be an (A, k)-solid path in G. Then $A \subseteq I(p)$.

PROOF: By definition, l(p) = |I(p)| + 1 and $|I(p) - A| \le 2$. Therefore, $k < l(p) = |I(p)| + 1 = |I(p) \cap A| + |I(p) - A| + 1 \le |I(p) \cap A| + 3$, or $k - 2 \le |I(p) \cap A|$. But $|A| \le k - 2$. Thus, $A \subseteq I(p)$.

In a paper published in 1960, Sekanina [18] proved

Theorem (Sekanina's Theorem): If G is a connected finite graph, then G³ is Hamiltonian connected.

This theorem was proved again by Karaganis in a paper [15] published in 1968. Using this result, Chartrand and Kapoor [2] proved

THEOREM A: If G is a connected finite graph with at least 4 vertices, then G³ is 1-Hamiltonian.

A proof by construction for the next theorem was recently published in [1]. However, the following proof is belived to have points of sufficient interest to warrant its publication. Recall that if p is a path, then |p| is the graph whose edges and vertices are precisely those of p.

Theorem 4: Let k be an integer no less than 3, and let G be a connected finite graph with at least k+1 vertices. Then G^k is r-Hamiltonian for every integer r in $\{0,1,\ldots,k-2\}$.

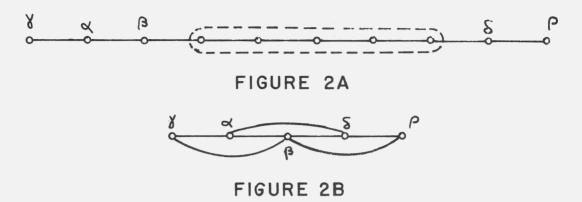
PROOF: Let $A \subseteq V(G)$ with $|A| \le k-2$. If $|A| \le 1$, then $G^3 - A$ contains a Hamiltonian circuit by Theorem A. Since $G^3 - A$ is a spanning subgraph of $G^k - A$, $G^k - A$ is Hamiltonian.

Suppose $|A| \ge 2$. Since G is connected, we may choose a spanning tree T of G. If T has no (A, k)-solid paths, then $T^k - A$ is Hamiltonian connected by Theorem 3, and so it contains a Hamiltonian circuit. Since $T^k - A$ is a spanning subgraph of $G^k - A$, $G^k - A$ is Hamiltonian.

Now we assume that T contains an (A,k)-solid path a; by Lemma 4, $A \subseteq I(a)$. Since $|A| \ge 2$, there is an edge $\lambda = (\xi_1, \xi_2)$ in E(a) such that each component of $|a| - \lambda$ contains one or more vertices of A. Let T_i be the component of $T - \lambda$ which contains ξ_i , $i \in \{1, 2\}$. For $i \in \{1, 2\}$, if $\xi_i \notin A$, we let $\rho_i = \xi_i$, and if $\xi_i \in A$, we let ρ_i be a vertex of T_i which is not in A and which is A-joined to ξ_i (such a vertex exists because the ends of a are not in A). Let δ_i be a vertex of $V(T_i) - A$ different from ρ_i which is A-joined to ρ_i (if no such vertex exists, let $\delta_i = \rho_i$). Since both of T_1 and T_2 contain vertices of A, $|V(T_i) \cap A| < k-2$ for each i; hence T_i satisfies the conditions of Lemma 1 and contains no (A, k)-solid arc. Then applying Lemma 3 to T_i , $i \in \{1, 2\}$, let a_i be a Hamiltonian path in $T_i^k - A$ from ρ_i to δ_i (if $\rho_i = \delta_i$, let $a_i = \rho_i$). Since ρ_1 is the only vertex of V(T) - A which can lie on the $[\delta_1, \rho_2]$ -path of T, $d_T(\delta_1, \rho_2) \le k$ by Lemma 2. Similarly, $d_T(\delta_2, \rho_1) \le k$. Hence (a_1) , (a_2) , ρ_1 is a Hamiltonian circuit in $T^k - A$, and it is also a Hamiltonian circuit in $G^k - A$.

The following example shows that Theorem 4 cannot be strengthened to the level of Theorem 3, and Corollary 3A is best possible in the usual sense. In the tree T shown in figure 2A, the five vertices surrounded by the dashed curve are the vertices in A, and k=7. T^7-A is shown in figure 2B. In T, α and β are A-joined, but it is easily shown that in T^7-A , there is no Hamiltonian $[\alpha, \beta]$ -path (γ would have to be both the successor of α and the predecessor of β in any such path).

The following corollary provides a slight weakening of the conditions of Theorem 4, with a corresponding weakening of the conclusion:



COROLLARY 4A: Let G be a connected finite graph with at least 3 vertices, let k be an integer no less than 3, and let A be a subset of V(G) such that $|A| \le \min(k-1, |V(G)|-2)$. Then G^k-A contains a Hamiltonian path.

PROOF: We simply remove all but one of the vertices of A from G^k . By Theorem 4, the resulting graph contains a Hamiltonian circuit. Removing one more vertex converts the circuit into a Hamiltonian path in the resulting graph, which is $G^k - A$.

While we have not proved Conjecture 2, Theorem 4 allows us to come a little closer to the statement of the conjecture, as the following corollary shows:

COROLLARY 4B: Let k be an integer no less than 3 and let G be a connected finite graph with at least $k + \kappa(G)$ vertices. Then G^k is r-Hamiltonian for every r in $\{0, 1, ..., k + \kappa(G) - 3\}$.

The proof of this corollary is similar to the proof of Corollary 3B.

Conjecture 2 might be extended to include the following:

Conjecture 3: Let G be a graph with $\kappa(G) \ge 2$ and with at least $2\kappa(G) + 1$ vertices. Then G^2 is $(2\kappa(G) - 2)$ -Hamiltonian.

I suspect that Conjecture 3 does not hold (although it is valid if G is a circuitoid). However, the following weaker theorem was recently proved [3, 14]:

THEOREM: Let G be a graph with $\kappa(G) \ge 2$ and with at least 4 vertices. Then G^2 is 1-Hamiltonian.

4. Squares of Graphs

The set of all vertices of G having degree k is denoted by $V_k(G)$. A caterpillar is a tree T such that $T - V_1(T)$ is a pathoid or the empty graph. A 2-factor of a graph G is a subgraph H of G such that V(H) = V(G) and every vertex in H has degree 2.

In contrast to the situation for higher powers of graphs, we do not yet know which graphs have Hamiltonian squares. Neuman [16] has characterized those trees for which a Hamiltonian path joining two specified vertices will exist in the square of the trees. An easy consequence of his characterization is the following result:

Theorem 5: The square of a tree is Hamiltonian if and only if the tree is a caterpillar with at least 3 vertices.²

H. Fleischner [6, 7, 8, 9] has proved that the square of a block is Hamiltonian, and he has characterized those cubic graphs with Hamiltonian squares [5, 10]. A few other more special results are known. The remainder of this paper contains two further theorems connected with the problem of determining which graphs have Hamiltonian squares.

² Neuman's result can also easily be used to show that the square of a tree is Hamiltonian connected if and only if the tree is a caterpillar with at most one vertex of degree greater than one.

If the square of a graph contains a Hamiltonian circuit, it certainly contains a 2-factor. Thus, it is reasonable to consider the question of which squares of graphs contain 2-factors $(S(K_{1,3}))$ is an example of a graph whose square does *not* contain a 2-factor). In this connection, the following theorem is of interest. Given a path p, the *internal vertices* of p are the vertices in I(p). We denote the degree in G of a vertex E by $v_G(E)$.

Theorem 6: Let G be a graph with minimum degree at least 2. Then G² contains a 2-factor.

PROOF: By Theorem 5, it is sufficient to find a spanning forest in G in which each tree is a caterpillar with at least 3 vertices. We note first that since G has minimum degree at least 2, each component of G contains at least 3 vertices, and a longest path in G must have length at least 2.

Choose a longest path a_1 in G. Having chosen paths a_1,\ldots,a_k in G, if $H_k=G-\bigcup_{i=1}^k V(a_i)$ is not empty, choose a longest path a_{k+1} in H_k . Note that the end vertices of a_{k+1} can be adjacent only to vertices in $\bigcup_{i=1}^k I(a_i) \cup V(a_{k+1})$. Eventually, since G is finite, we find we have chosen paths a_1,\ldots,a_r such that H_r is the empty graph. Now for each end vertex μ of each path of length 0 or 1, choose an internal vertex of a longer path to which μ is adjacent through an edge λ_{μ} (such an internal vertex must exist since $v_G(\xi) \geq 2$ for all $\xi \in V(G)$). We form a spanning forest whose trees are caterpillars by deleting the edges from those pathoids in $\{/a_1/,\ldots,/a_r/\}$ which have length 1 and adding the edges λ_{μ} to form the caterpillars. Since each of these caterpillars includes the vertices of a path with an internal vertex, each caterpillar has at least three vertices.

An Euler graph is a graph in which every vertex has even degree. In a path $p=(r), \xi, (s)$, the neighbors of the vertex ξ are the vertices L(r) and F(s). Given a path $p=\xi_1, \xi_2, \ldots, \xi_{r-1}, \xi_r$, we let p^{-1} denote the path $\xi_r, \xi_{r-1}, \ldots, \xi_2, \xi_1$. We call a path x a section of a path p iff there exist paths y and z such that p=(y), (x), (z) (y or z may be empty). Recall that all walks in this paper are denoted by sequences of vertices.

The next theorem is a beginning for the study of the question of which Euler graphs have Hamiltonian squares. Fleischner's proof that the square of a block is Hamiltonian involves finding a Hamiltonian circuit in the square of an Euler graph (see especially [7]); thus, a thorough understanding of Euler graphs with Hamiltonian squares would be quite desirable. The following Theorem 7, whose statement is quite long, can be summarized as follows: "If G is an Euler graph with at least 3 vertices such that $G - V_2(G)$ is a forest, then G^2 is Hamiltonian. Further, G^2 contains a Hamiltonian circuit which includes many of the edges of G."

Theorem 7: Let G be a connected Euler graph with at least 3 vertices such that $G - V_2(G)$ is a forest with trees $T_1, \ldots, T_r, r \ge 0$. Let e be an Euler trail in G. In each tree T_i , $i \in \{1, 2, \ldots, r\}$, choose one vertex η_i and call it the root of T_i . Then G^2 contains a Hamiltonian circuit h such that:

- (1) h is a subsequence of e, where both h and e are denoted by a sequence of vertices;
- (2) the root η_i of each tree T_i is adjacent in G to its two neighbors in h; and
- (3) for each path s in G such that $V(s) \subseteq V_2(G)$, either s or s^{-1} is a section of h.

PROOF: The theorem is trivial if G is a circuitoid. Thus we may assume $r \ge 1$. Define a function Ψ , with domain $V(G) - (V_2(G) \cup \{\eta_1, \eta_2, \ldots, \eta_r\})$, as follows: for $\xi \ne \eta_i$ in $V(T_i)$, let $\Psi(\xi)$ be the second vertex on the unique $[\xi, \eta_i]$ -path in T_i . In e, mark each vertex of $V_2(G)$, and mark one occurrence of each of η_1, \ldots, η_r . Also for each vertex $\xi \in V(G) - (V_2(G) \cup \{\eta_1, \ldots, \eta_r\})$, mark precisely that occurrence of ξ in e for which $\Psi(\xi)$ is a neighbor of ξ at that location in e. Form e by deleting all unmarked vertices in e. This choice of e satisfies condition (1) of the theorem.

Since we left in h one occurrence of each of the distinct vertices in e, and since V(e) = V(G), V(h) = V(G). Note that the unmarked vertices of e are all in the forest $G - V_2(G)$. Two vertices of $G - V_2(G)$ which are successive in e and are adjacent in that subgraph are in the same tree T_i . Hence one is the second vertex in the path joining the other to η_i , so that one of them is necessarily marked at that part of e. Thus no two successive vertices in e are both unmarked, and for every section ω , χ of e, there is at most one vertex between e and e at the corresponding location in e. Since e is a trail in e, e and e and e and e at the corresponding location in e. Since e is a trail in e and e and e are all interpolation in e. Since e is a trail in e and e are all interpolation in e and e are all interpolation in e and e are all interpolation in e. Since e is a trail in e are all interpolation in e and e are all

For each $i \in \{1, 2, \ldots, r\}$, since η_i is $\Psi(\xi)$ for every vertex ξ adjacent to η_i in T_i , and since no vertex of degree 2 in G is deleted in obtaining h from e, no neighbors of η_i in e are deleted when forming h. Thus, in the one occurrence of η_i in h, both neighbors of η_i in h are neighbors of η_i in e and hence are adjacent to η_i in G. Finally, for each path e in G such that $V(e) \subseteq V_2(G)$, either e or e is a section of e. Since no vertices of degree 2 in e are deleted in forming e, e or e remains a section of e. Thus e satisfies conditions (2) and (3) of the theorem.

For any $\xi \in V(G)$, if ξ and η_i are adjacent in G they must be neighbors at some occurrence of η_i in e. Then at that occurrence of η_i , η_i can be marked. Thus, for each root η_i , we may select one vertex adjacent to η_i in G which will be a neighbor of η_i in h.

Let G be a graph whose square is Hamiltonian, let h be a Hamiltonian circuit in G, and let λ be an edge of G in h. Let ξ be one of the ends of λ . Further, let H_1 and H_2 be disjoint caterpillars disjoint from G, and let η_i be a vertex of degree no more than 1 in $H_i - V_1(H_i)$, for $i \in \{1, 2\}$ (if H_i has only two vertices, let η_i be one of them). Form a graph M from H_1 and G by identifying η_1 and ξ . Then M^2 is Hamiltonian as indicated by figure 3, where the dashed line indicates the sequence inserted between the ends of λ in h, (in this and following figures, a wavy line is used to denote h). Variations in the length of $H_1 - V_1(H_1)$ (particularly variations to odd lengths) and changes in the number of vertices of degree 1 in H_1 can be dealt with in an obvious manner. Note that one edge of H_1 is included in the Hamiltonian circuit of M^2 .

Now let H_1 and H_2 be as before, but suppose G^2 contains a Hamiltonian circuit h which includes two edges λ and μ of G, both incident with the same vertex ξ of G. In this case, let N be formed from H_1 , H_2 , and G by identifying η_1 , η_2 , and ξ . Then N^2 contains a Hamiltonian circuit as indicated by figure 4, where the dashed lines indicate the sequence which is to replace ξ in h. Variations in H_1 and H_2 are again easily dealt with. Note that an edge of each of H_1 and H_2 is in the Hamiltonian circuit of N^2 .

Now let G and H be disjoint graphs such that G^2 and H^2 are both Hamiltonian. Let λ be an edge of G incident with a vertex ξ and in a Hamiltonian circuit g of G^2 , and let μ be an edge of H incident with a vertex η and in a Hamiltonian circuit h of H^2 . Form a graph P from G and H by identifying ξ and η . Then P^2 contains a Hamiltonian circuit as indicated by the wavy and dashed curves in figure 5.

Theorem 7 describes many edges of G which are included in a Hamiltonian circuit of G^2 , where G is an Euler graph in which $G-V_2(G)$ is a forest. In view of the techniques described in the preceding three paragraphs, Theorem 7 can thus be used to show many other graphs have Hamiltonian squares.

An Euler graph G whose square is not Hamiltonian is shown in figure 6. It is easy to see that any Hamiltonian circuitoid in G^2 must contain edges joining a vertex other than a cut vertex of G of each of the small triangles T_1 , T_2 , T_3 , T_4 , and T_5 to one of α or β . Thus one of α or β must meet three edges

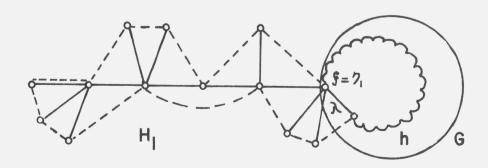
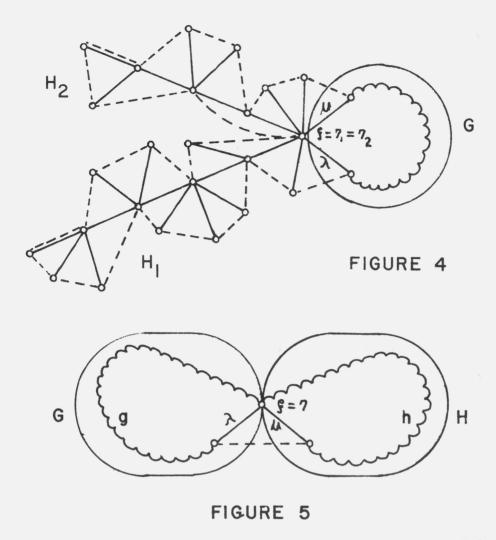
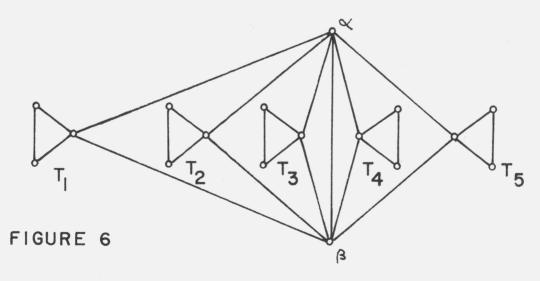


FIGURE 3



of the Hamiltonian circuitoid, which is impossible. I suspect that the graph of figure 6 is the smallest Euler graph whose square is not Hamiltonian (size being measured in number of vertices or number of edges).



ADDED IN PROOF: Since this paper was submitted, references [6] and [7] have been combined into Fleischner, H., On spanning subgraphs of a connected bridgeless graph and their application to DT-graphs, J. Combinatorial Theory (to appear), and references [8] and [9] were combined into Fleischner, H., The square of every two-connected graph is Hamiltonian, J. Combinatorial Theory (to appear). Further, references [3] and [14] were combined into Chartrand, G., Hobbs, A. M., Jung, H. A., Kapoor, S. F., and Nash-Williams, C. St. J. A., The square of a block is Hamiltonian connected, J. Combinatorial Theory (to appear). It should be mentioned that the term "E-section" is similar to the term "J-component" of Tutte, W. T., The Connectivity of Graphs (Toronto Univ. Press, Toronto, 1967), and that many of the other terms in this paper not found in [11] were derived from the definitions in Nash-Williams, C. St. J. A., Graph-Theoretic Definitions (unpublished).

My thanks go to Professors W. T. Tutte and C. St. J. A. Nash-Williams for their many useful suggestions. In particular, I wish to thank Professor Nash-Williams for suggesting the present form of the proof of Theorem 7.

5. References

- [1] Bhat, V. N., and Kapoor, S. F., The powers of a connected graph are highly Hamiltonian, J. Res. Nat. Bur. Stand. (U.S.), 75B (Math. Sci.) Nos. 1 & 2, 63-66 (Jan.-June 1971).
- [2] Chartrand, G., and Kapoor, S. F., The cube of every connected graph is 1-Hamiltonian, J. Res. Nat. Bur. Stand. (U.S.), **73B** (Math. Sci.) No. 1, 47–48 (Jan.–Mar. 1969).
- [3] Chartrand, G., and Kapoor, S. F., The square of every 2-connected graph is 1-Hamiltonian (to appear).
 [4] Chartrand, G., Kapoor, S. F., and Lick, D. R., n-Hamiltonian graphs, J. Combinatorial Theory 9, 308-312 (1970).
 [5] Fleischner H., Über Hamiltonsche Linien im Quadrat kubishcer und pseudokubischer Graphen (to appear).
- Fleischner, H., On a certain spanning subgraph of a connected bridgeless graph (to appear). Fleischner, H., The total graph of a block is Hamiltonian (to appear).
- [8] Fleischner, H., On line-critical blocks (to appear).
- [9] Fleischner, H., The square of every non-separable graph is Hamiltonian (to appear). [10] Fleischner, H., Zum Quadrat kubischer Graphen (to appear).
- [11] Harary, F., Graph Theory (Addison-Wesley Publishing Co., Reading, Mass., 1969).
- [12] Hobbs, A. M., Some Hamiltonian results in the square of a graph, Notices Amer. Math. Soc. 18, 397 (1971).
- [13] Hobbs, A. M., A catalog of minimal blocks (to appear).
 [14] Hobbs, A. M., and Nash-Williams, C. St. J. A., The square of a block is Hamiltonian connected (to appear).
 [15] Karaganis, J. J., On the cube of a graph, Canad. Math. Bull. 11, 295–296 (1968).
- [16] Neuman, F., On a certain ordering of the vertices of a tree, Časopis Pěst. Mat. 89, 323-339 (1964).
- [17] Ore, O., Hamiltonian connected graphs, J. Math. Pures Appl. 42, 21–27 (1963).
- [18] Sekanina, M., On an ordering of the set of vertices of a connected graph, Publ. Fac. Sci. Univ. Brno, Tchecoslovaquie, No. 412, 137-141 (1960).

(Paper 77B1 & 2-374)