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In this paper we show that the connectivity of the kth power of a graph of connectivity m is at 
least km if the kth power of the graph is not a complete graph. Also, we. prove th at removing as many 
as k - 2 vertices from the kth power of a graph (k ;;. 3) leaves a Hamiltonian graph, and that removing 
as many as k - 3 vertices from the kth power of a graph (k;;' 3) leaves a Hamiltonian con nected 
graph. Further, if every vertex of a graph has degree two or more, then the square of the graph contai ns 
a 2-factor. Finally, we show that the squares of certain Euler graphs are Hamiltonian. 
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1. Introduction 

We use the notation and terminology of [11]I, with the terms "point", "line", and "cycle" 
replaced by vertex, edge, and circuit. Further, we denote the set of edges of a graph G by E(G). 
We follow the practice of representing a path by the sequence of vertices of the path. To distinguish 
between a path (circuit) p and the graph whose vertices and edges are exactly those of p, we denote 
the graph by /p/, and we call the graph a pathoid (circuitoid). We denote the distance between 
two vertices a and (3 in a graph G by dc;(a, (3), and we denote the degree of a vertex a in G by 
vc;( a). The undirected edge joining vertices a and {3 is denoted by (a, (3) or ({3, a) interchangeably. 

Given an integer k ;;;. 1, the kth power Gk of a graph G is a graph with V( Gk) = V (G) and 
(a, (3) E E(Gk) iff dr;(a, (3) E {I, 2, .. " k}. G2 is called the square of G, and G3 is called the cube 
of G. Given a path p = ao, a1, . .. , ak, we let F(p) = ao, L(p) = ah:, V(p) = {ao, aI, ... , ad, 
and /(p) = V(p) - {F(p), L(p)}. We call p an [ao, ak]-path iff F(p) = ao and L(p) = ak. Paths 
p and q are internally disjoint iff /(p) n /(q) is empty. The number of elements in a set 5 is 
denoted by 151. 

2. Connectivity 

Our first two theorems give useful information about a property of raising a graph to a kth 
power and the structure of a graph once the operation has been carried out. The first theorem is 
an easy consequence of the definition of power of a graph. 

THEOREM 1: Let G be a graph and let k = mn, where m and n are both positive integers. Then 
Gk= (Gm)n. 

We will use this theorem to show that the next theorem is best possible. The connectivity 
K(G) of a graph G is the minimum over all pairs a, {3 of distinct vertices in G of the maximum 
number of distinct internally disjoint [a, ,B]-paths in G. Since raising a graph G to the power k 
usually increases the number of edges present, it is not unreasonable to conjecture that Gk has 
higher connectivity than G has. Thus, 
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THEOREM 2: Let G be a finite graph, and let k be a positive integer. Then 

K(G") ~ min (W(G)I-l, kK(G». 

PROOF: If K( G) = ° or k = 1, the theorem is immediate. Similarly, if G" is complete, the theorem 
holds because in that case, K(Gk) = W(G)I-l. 

Now suppose Gk is not complete, K(G) > 0, and k> 1. Let g and YJ be vertices of G which 
are not adjacent in Gk. Then by the definition of Gk, du(g, YJ) > k. Let aI, a2, ... , aK(G) be K(G) 
internally disjoint [g, YJ] ·paths in G, with ai = g, Yi, I, Yi, 2, ... , Yi, riO YJ. Since dc(g, YJ) > k, ri ~ k 

whenever idl, 2, ... , K(G)}. Suppose n=kti+si, with O";;;si,,;;;k-l. Then in Gk, g and YJ are 
joined by the paths 

g, Yi,l, Yi ,k+l, Yi,2k+I, .. " Yi ,tik+1, YJ=Pi ,l, 

g, Yi,2, Yi,k+2, Yi ,2k+2, ... , Yi,tik+2, YJ=Pi,2, 

g, Yi,si' Yi,k+si' Yi,2k+si" . " Yi,tik+si' YJ=pj,si' 

g, Yi,sj+l, Yi,k+sj+l, Yi,2k+si+1, . . " Yj ,(ti-1)k+si+l, YJ=Pi,si+1, 

g, Yi,sj+2, Yj,k+si+2, Yj,2k+s j+2, . .. , Yj,(tj-l)k+s j+2, YJ=pj,Sj+2, 

Each of these k paths contains only vertices of ai and each path ai contains vertices which can 
be used to form k internally disjoint [g, YJ] -paths in Gk in this way. Since the paths aI, ... , aK(G) 
are internally disjoint, between g and YJ in Gk there are kK (G) internally disjoint [g, YJ] ·paths. 
Thus, Gk is kK(G)-connected. 

COROLLARY 2A: If Gis a finite graph with connectivity K(G) ~ 1, if k is a positive integer, 
and if kK( G) ~ IV (G) 1-1, then Gk is a complete graph. 

Theorem 2 is best possible in the sense that additional conditions are needed to improve it, 
as the following examples show. If P is a pathoid with n vertices, if g € V(P) and has degree 1, and 
if r is a positive integer less than n, then g is of degree r in pro Thus, by Theorem 2, pr has con
nectivity exactly r. Given positive integers k and m, and given n ~ km + 1, let P be a pathoid of 
length n-l. Then (pm)k=pmk by Theorem 1, and so it is a graph of connectivity km which is 
the kth power of an m-connected graph. Finally, let CIl be a circuitoid with n vertices. Let m > 0 
and even, and let k be a positive integer and n be an integer no less than km + 1; then c\~rn)/2 
= (C;;'/2) k and is a minimally km-connected graph which is the kth power of a minimally m-con

nected graph. 

3. ,-Hamiltonian Powers of Graphs 

Following [4] and [17], we call a graph G Hamiltonian connected iff every two distinct vertices 
of G are joined by a Hamiltonian path in G, and we call G r-Hamiltonian iff W(G)I ~ r+ 3 and 
G - {gJ, ... , gr} is Hamiltonian for every set of r vertices {gl, ... , g,.} ~ V( G). Given a path p, 
we let l (p) denote the length of p. Given disjoint paths p = gl, g2, ... , g,. and q = YJI, YJ2, ... , YJs, 
if gr is adjacent in G to YJI, we denote the path gl, ... , gr, YJI, YJ2, ... , YJs by (p) , (q). Let g be a cut 
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vertex of a connected graph G, and let HI, ... , HI" be all of the components of G -~. Then for each 
j E {I, ... , r}, we call the s ubgraph 

of G a ~-section of G. 

r 

G - U V( H j ) 

;= 1 
i "' j 

CONJECTURE 1: If G is afinite connected graph, k is an integer no less than 3, and A l:;::; V(G) 
such that I A I ~ kK(G) - 3, then Gk - A is Hamiltonian connected_ 

CONJECTURE 2: If G is a finite connected graph, k is an integer no less than 3, and r ~ min 
(IV(G)I-3 , kK(G) -2) , then Gk is r-Hamiltonian. 

Because Theorem 2 is best possible and at leas t 2-connectedness is require d for the presence 
of a Hamiltonian ci rcuit in a graph, Conjecture 2 is best possible if it is true. Furthermore, if 
o ~ I V( G) I - 3 ~ kK( G) - 2, then I V( G) I - 1 ~ kK( G) and Ck is complete by Corollary 2A_ In such 
a case, for any set A ~ V( G) with IA I ~ I V( C) I - 3, Gk - A is Hamiltonian. Thus we need only 
consider Conj ecture 2 for the case in which W(G)I - 3 ~ kK(C) - 2 and IAI ~ kK(G) - 2. We 
have not yet proven these conjectures in general, but in the next portion of this paper we give 
proofs for the case of K(G) = 1. 

Let G be a graph, k a positive integer, and A a subset of the vertices of C. Two distinct vertices 
g imd 1/ of G are A-joined iff there exists a path p in G joining g and 1/ such that I (p) l:;::; A. Note that 
two adjacent vertices are Ajoined for every set A of vertices in C. A path p of C is (A, k)-solid iff 
{F(p) , L(p)} l:;::; V(G) -A, II(p) -AI ~ 2, and l(p) > k. 

LEMMA 1: Let k ~ 3 be an integer, G afinite graph, and A ~ V(G) with IAI ~ k - 3. Then G 
contains no (A, k )-solid paths. 

PROOF: This lemma is immediate from the definition of (A, k)-solid paths. 
LEMMA 2: Let k ~ 3 be an integer, let G be a graph, and let A ~ V(G) such that IA I ~ k - 2_ 

If a is a path of G such that II(a) - A I ~ 1, then l(a) ~ k. 
PROOF: Since IAI~k-2 and lI(a)-AI~I, II(a)l~k-1. But Ha)=II(a)l+l~k-

1 + 1 = k_ 
We next prove a very strong result that holds for special subsets A of vertices of a tree_ Let 

Ij> be the empty set. 
LEMMA 3: Let k ~ 3 be an integer, let T be afinite tree, and let A l:;::; V(T). Suppose no path in 

T is (A, k)-solid. If ~ and 1/ are distinct A-joined vertices in V (T) - A, then Tk - A contains a 
Hamiltonian [~ , 1)]-path. 

PROOF: If IV(T) I ~ k + 1, then Tk is complete by Corollary 2A. Hence pc - A is a complete 
graph with at least the two vertices ~ and 1), and so there is a Hamiltonian [~, 1) ]-path in Tk - A. 

Suppose the le mma is true for all trees T' with IV(T') I < q, and let T be a tree with q vertices 
which satisfies the conditions of the lemma. Let T" T2,. . ., T r , r ~ 1, be the f sections of T for 
-which V(T;) -A ¥-Ij>, and suppose 1) E V(Tr). Since a path which is (A, k)-solid in Ti , 1 ~ i ~ r, 

is (A, k) -solid in T , the lemma holds for all subtrees Ti which have at least 2 vertices not in A. In 
tree T i , 1 ~ i ~ r - 1, let 'Yi, 1 be a vertex of V(T;) - A which is A-joined to gin T, and let 'Yr , 1 = 1/, 
which is A-joined to ~ by assumption. In tree T;, 1 ~ i ~ r, if V(Ti) - (A U {Yi,d) ¥- Ij>, let 
'Yi ,2 be a vertex of V(Ti) - (A U {yu} ) which is A-joined to 'Yi,1 in T, and if V(T;) - (A U 
{Yi, I}) = cp, let 'Yi,2 = 'Yi, I· 

Since T is a tree , there is a unique [~, 'YI ,2 ]-path a in T, and 'YI, I is the only vertex in I (a) - A; 
by the definition of (A, k)-solid path , t' (a) ~ k since a is not (A, k )-solid. Thus dr (g, 'YI , 2) ~ k. 
Further, at most two vertices, ~ and 'Yi ,,, are in I(s;) - A, where s;is the unique [Yi -I, ,, 'Yi,2 ]-path 
in T, 2 ~ i ~ r; since T contains no (A, k )-solid path, Si cannot have length greater than k, so 
d T ('Yi - 1,1, 'Yi,2) ~ k for i E {2, . . ., r}. Since T 1 , • • ., Tr satisfy the conditions of this lemma 
and have fewer than q vertices each, in T/'" - A there is a Hamiltonian ['Yi, 2, 'Yi , 1 ]-path ai. Thus, 
~, (ad, (a2),' .. , (a r ) is a Hamiltonian [~, 1)]-path in PC-A. 
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Examples of trees T and sets A which satisfy the conditions of Lemma 3 are shown in figure 1, 
where the vertices in the sets A are contained in dashed curves. 

k=3, IAI= I l 0 0 0 0 

O~: : [1] : :~O 
-

k=5 IAI=2 I 

FIGURE 

COROLLARY 3a: Let T be a finite tree with at least 3 vertices, let k be an integer no less than 3, 
and let A ~ V (T) such that no path ofT is (A, k)-solid. Then, for each edge A ~ E(T - A), P - A 
contains a Hamiltonian circuit c with A ~ E (c). 

THEOREM 3: Let T be a finite tree, let k be an integer no less than 3, and let A ~ V (T). Suppose 
T has no (A, k)-solid paths. Then Tk - A is Hamiltonian connected. 

PROOF: The theorem is clearly true for a tree with 1 or 2 vertices, and it is vacuously true for 
a tree with no vertices. Suppose the theorem is true for every tree with fewer than q vertices, and 
let T be a tree with q vertices. By Lemma 3, we need only show that, for any two distinct vertices 
which are not A-joined in T, Tk - A contains a Hamiltonian path joining them_ Let ~ and YJ be two 
vertices of VeT) -A which are not A-joined. Let a be the [~, YJ]-path in T and let a €l{a) -A. 
Let the components of T - a which contain vertices not in A be C h • • . , C r, with ~ E V (C d and 
YJEV(C r ). 

For iE{2, 3, ... , r-l}, let Pi be a vertex of Ci-A which is A-joined to a in T. Let PI =f If 
there is a vertex of Cr-A other than YJ which is A-joined to a, let pr be such a vertex, and if YJ is 
the only vertex in Cr - A, let pr = YJ. Otherwise, let pr be a vertex of Cr - A which is A -joined to YJ. 

For i E{2, 3, .. . , r - I}, let 8i be a vertex of Ci - A other than Pi which is A -joined to Pi (if no such 
vertex exists, let 8i = Pi). If there is a vertex of CI - A other than ~ which is A -joined to a in T, 
let 81 be such a vertex, and if ~ is the only vertex in CI - A, let 81 = f Otherwise, let 81 be a vertex 
which is A -joined to f Let 8r = YJ. By these choices, ~ is the only vertex not in A which can be on 
the path of T joining 81 and a, and YJ is the only vertex not in A which can be on the path of T join
ing a and pr. 

Each component Ci is a tree with fewer than q vertices. Further, since T contains no (A, k) 
solid paths, Ci contains no {A, k)-solid paths, for each i. Thus the theorem holds for each tree 
Ci , and q - A contains 8. Hamiltonian [Pi, 8i ] -path Pi . 

We note that in a tree S with no (A, k)-solid paths, if p is a path for which {F{p), L{p)} ~ 

V{S) -A and II(p) -AI"s; 2, then l{p) "s; k. Hence,drUh, P2) "s; k since at most~ anda ofV{T)-A 

can be on the [81 , P2] -path of T. Also, dd 8;, pi+d "s; k whenever iE{2, 3, ... , r - 2}, since at most 
Pi and a of VeT) -A can be on the [8i , Pi+I]-path in T. Further, dd8r- l , a)"s; k since pr-I is the 
only vertex not in A which can be on the [81'-1, a]-path of T, and dda, pr) "s; k since YJ is the only 
vertex not in A which can be on the [a, Pr] -path in T. Therefore, {pd, (pz), ... , (Pr-d, a, (Pr) 
is a Hamiltonian [~ , YJ]-path in Tk_A. 

4 



COROLLARY 3A: Let G be a connected finite graph , iet k be an integer no less than 3, and let 
A ~ V(G) with IAI ";;;k-3. Then Gk-A is Hamiltonian connected. 

PROOF: Let T be a spanning tree in G. Since IAI ,,;;; k-3, T contains no (A, k)-solid paths by 
Lemma 1. Therefore, Tk-A is Hamiltonian connected by Theore m 3. But Tk_A is a spanning 
subgraph of Gk-A; thus Gk-A is Hamiltonian connected. 

Corollary 3A proves Conjecture 1 for the case of K(G) = 1. We can improve this result slightly 
in the direction of Conjecture 1 as follows : 

COROLLARY 3B: Let G be a connected finite graph and let k be an integer no less than 3. Let 
A ~ V (G) with I AI ,,;;; k + K (G) - 4. Then Gk - A is Hamiltonian connected. 

PROOF: A can be expressed as the union of disjoint sets Band C such that IBI ,,;;; k'c.... 3 and 
I CI ,,;;; K (G) -1. From the definition of K (G), G - C is connected; thus (G - C)k - B is Hamiltonian 
connected by Corollary 3A. But (G-C)k is a spanning subgraph of Gk-C and B U C=A; hence 
(G-C)k-B is a spanning sub graph of Gk-A, and Gk-A is Hamiltonian connected. 

LEMMA 4: Let k be an integer no less than 2, let G be a graph, and let A ~ V (G) such that 
IAI,,;;; k-2. Let p be an (A, k)-solid path in G. Then A ~ I(p). 

PROOF: By definition, l (p) = II(p) I + 1 and II(p) - A I,,;;; 2. Therefore, k < l(p) = II(p) 1+ 1 
= II(p) n AI + II(p) -AI + 1 ,,;;; II(p) n AI +3, or k-2 ,,;;; II(p) n AI· But IAI ,,;;; k-2. Thus , 
A ~ I(p). 

In a paper published in 1960, Sekanina [18] proved 
THEOREM (Sekanina's Theorem): If G is a connected finite graph, then G3 is Hamiltonian 

connected. 

This theorem was proved again by Karaganis in a paper [15] published in 1968. Using this 
result, Chartrand and Kapoor [2] proved 

THEOREM A: If G is a connected finite graph with at least 4 vertices, then G3 is i-Hamiltonian. 

A proof by construction for the next theorem was recently published in [1]. However, the 
following proof is belived to have points of sufficient interest to warrant its publication. Recall 
that if p is a path, then /pl is the graph whose edges and vertices are precisely those of p. 

THEOREM 4: Let k be an integer no less than 3, and let G be a connected finite graph with at 
least k + 1 vertices. Then Gk is r-H amiltonian for every integer r in {O, 1, .. " k - 2}. 

PROOF: Let A ~ V( G) with IA I ,,;;; k - 2. If IA I ,,;;; 1, then G3 - A contains a Hamiltonian circuit 
by Theorem A. Since G3 - A is a spanning subgraph of Gh' - A , Gk - A is Hamiltonian. 

Suppose IA I ;.?; 2. Since G is connected, we may choose a spanning tree T of G. If T has no 
(A, k)-solid paths, then Tk - A is Hamiltonian connected by Theorem 3, and so it contains a 
Hamiltonian circuit. Since Tk - A is a spanning subgraph of Gk - A, Gk - A is Hamiltonian. 

Now we assume that T contains an (A, k )-solid path a; by Lemma 4, A ~ I (a). Since IA I ;.?; 2, 
there is an edge A= (tJ, 6) in E(a) such that each component of /al- A. contains one or more 
vertices of A. Let T; be the component of T-A. which contains ti, idl, 2}. For idI, 2}, if t;;A, 
we let Pi = ti, and if tiEA, we let p; be a vertex of T; which is not in A and which is A-joined to ti 
(such a vertex exists because the ends of a are not in A). Let 8i be a vertex of V (Ti) - A different 
from Pi which is A-joined to p; (if no such vertex exists, let 8;= Pi). Since both of TI and T2 contain ' 
vertices of A, W(Ti) n AI < k-2 for each i; hence Ti satisfies the conditions of Lemma 1 and 
contains no (A, k)-solid arc. Then applying Lemma 3 to T;, idI, 2}, let ai be a Hamiltonian path 
in Tt - A from Pi to 8; (if Pi = 8;, let ai = p;). Since PI is the only vertex of V (T) - A which can lie 
on the [8t, P2]-path of T, dT (8t, P2) ,,;;; k by Lemma 2. Similarly, d7'(~' pd,,;;; k. Hence (ad, (a2), 
PI is a Hamiltonian circuit in Tk - A , and it is also a Hamiltonian circuit in Gk - A. 

The following example shows that Theorem 4 cannot be strengthened to the level of Theorem 
3, and Corollary 3A is best possible in the usual sense. In the tree T shown in figure 2A, the five 
vertices surrounded by the dashed curve are the vertices in A, and k = 7. T1 - A is shown in figure 
2B. In T, a and {3 are A-joined, but it is easily shown that in T7 - A, there is no Hamiltonian [a, {3]
path ('Y would have to be both the successor of a and the predecessor of (3 in any such path). 
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The following corollary provides a slight weakening of the conditions of Theorem 4, with a 
corresponding weakening of the conclusion: 

~ ~ ~ 
O---~O)-----<O)---~(-<~- - - ~ - - -0 - -- -0 - - -0\ 

\ .... _- -- -- - --- ---_/ 
s P 
O)---.......jO 

FIGURE 2A 

FIGURE 28 

COROLLARY 4A: Let G be a connected finite graph with at least 3 vertices, let k be an integer 
no less than 3, and let A be a subset of V (G) such that IA I :S; min (k -1, IV (G) 1-2). Then Gk - A 
contains a Hamiltonian path. 

PROOF: We simply remove all but one of the vertices of A from Gk. By Theorem 4, the resulting 
graph contains a Hamiltonian circuit. Removing one more vertex converts the circuit into a Hamil· 
tonian path in the resulting graph, which is Gk-A. 

While we have not proved Conjecture 2, Theorem 4 allows us to come a little closer to the 
statement of the conjecture, as the following corollary shows: 

COROLLARY 4B: Let k be an integer no less than 3 and let G be a connected finite graph with 
at least k + K(G) vertices. Then Gk is r-Hamiltonianfor every r in {O, 1, ... , k + K(G) - 3}. 

The proof of this corollary is similar to the proof of Corollary 3B. 
Conjecture 2 might be extended to include the following: 
CONJECTURE 3: Let G be a graph with K(G) ~ 2 and with at least 2K(G) + 1 vertices. Then G2 

is (2K(G) - 2)-H amiltonian. 
I suspect that Conjecture 3 does not hold (although it is valid if G is a circuitoid). However, 

the following weaker theorem was recently proved [3, 14]: 
THEOREM: Let G be a graph with K(G) ~ 2 and with at least 4 vertices. Then G2 is J-H amiltonialJ. 

4. Squares of Graphs 

The set of all vertices of G having degree k is denoted by Vk (G). A caterpillar is a tree T such 
that T - VI (T) is a pathoid or the empty graph. A 2Jactor of a graph G is a sub graph H of G such 
that V(H) = V( G) and every vertex in H has degree 2. 

In contrast to the situation for higher powers of graphs, we do not yet know which graphs have 
Hamiltonian squares. Neuman [16] has characterized those trees for which a Hamiltonian path 
joining two specified vertices will exist in the square of the trees. An easy consequence of his 
~haracterization is the following result: 

THEOREM 5: The square of a tree is Hamiltonian if and only if the tree is a caterpillar with at 
least 3 vertices.2 

H. Fleischner [6, 7, 8, 9] has proved that the square of a block is Hamiltonian, and he has 
characterized those cubic graphs with Hamiltonian squares [5, 10]. A few other more special results 
are known. The remainder of this paper contains two further theorems connected with the problem 
of determining which graphs have Hamiltonian squares. 

2 Neuman's result can also easily be used to show that the square of a tree is Hamiltonian connected if and only if the tree is a caterpiUar with at most one vertex 
of degree greater than one. 
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If the square of a graph contains a Hamiltonian circuit, it certainly contains a 2-factor. Thus, 
it is reasonable to consider the question of which squares of graphs contain 2-factors (5 (K1,3) is 
an example of a graph whose square does not contain a 2-factor). In this connection, the following 
theorem is of interest. Given a path p, the internal vertices of p are the vertices in I (p). We denote 
the degree in G of a vertex { by vd 0 . 

THEOREM 6: Let G be a graph with minimum degree at least 2. Then G2 contains a 2factor. 
PROOF: By Theorem 5, it is sufficient to find a spanning forest in G in which each tree is a 

caterpillar with at least 3 vertices. We note first that since G has minimum degree at least 2, each 
component of G contains at least 3 vertices, and a longest path in G must have length at least 2. 

k 

Choose a longest path al in G. Having chosen paths ai, ... , ak in G, if Hk = G - U V(Ui) is 
i = 1 

not empty, choose a longest path aNI in Hk. Note that the end vertices of ak+1 can be adjacent 
k 

only to vertices in U I(ai) U V(ak+I). Eventually, since Gis finite, we find we have chosen paths 
i = 1 

ai, . .. , ar such that Hr is the empty graph. Now for each end vertex I.L of each path of length 0 or 1, 
choose an internal vertex of a longer path to which I.L is adjacent through an edge AJ1. (such an internal 
vertex must exist since vdO ~ 2 for all { f V(G)). We form a spanning forest whose trees are 
caterpillars by deleting the edges from those pathoids in {lad, ... , la,·/} which have length 1 and 
adding the edges AJ1. to form the caterpillars. Since each of these caterpillars includes the vertices 
of a path with an internal vertex, each caterpillar has at least three vertices. 

An Euler graph is a graph in which every vertex has even degree. In a path p = (r), g, (s), 
the neighbors of the vertex { are the-vertices L(r) and F(s). Given a path p = {I, 6, ... , {r- I , {r, 
we let p - I denote the pith {'" {r- I, ... , 6, 6. We call a path x a section of a path p iff there exist 
paths y and z such that p = (y), (x), (z) (y or z may be empty). Recall that all walks in this paper 
are denoted by sequences of vertices. 

The next theore m is a beginning for the study of the question of which Euler graphs have 
Hamiltonian squares. Fleischner's proof that the square of a block is Hamiltonian involves finding 
a Hamiltonian circuit in the square of an Euler graph (see es pecially [7]); thus , a thorough under
standing of Euler graphs with Hamiltonian squares would be quite desirable. The following Theorem 
7, whose statement is quite long, can be summarized as follows: "If G is an Euler graph with at 
least 3 vertices such that G - V2 (G) is a forest , then G2 is Hamiltonian. Further, G2 contains a 
Hamiltonian circuit which includes many of the edges of G." 

THEOREM 7: Let G be a connected Euler graph with at least 3 vertices such that G - V2(G) is 
a forest with trees TJ , ••• , Tn r ~ O. Let e be an Euler trail in G. In each tree T;, i E {I, 2, ... , r}, 
choose one vertex 1/; and call it the root ofT;. Then G2 contains a Hamiltonian circuit h such that: 

(1) h is a subsequence of e, where both hand e are denoted by a sequence of vertices; 
(2) the root 1/; of each tree T; is adjacent in G to its two neighbors in h; and 
(3) for each path sin G such that V(s) ~ V2(G), either ~ or S- I is a section of h. 
PROOF: The theorem is trivial if G is a circuitoid. Thus we may assume r ~ 1. De fine a function 

'1', with domain V( G) - (V2 (G) U {1/I, 1/2, ... , 1/r} ), as follows: for { oF- 1/i in V(T;) , let '1'(0 be 
the second vertex on the unique [{, 1/iJ -path in Ti• In e, mark each vertex of V2 (G), and mark 
one occurrence of each of 1/1 , ... ,1/,-. Also for each vertex {E V(G) - (V2(G) U {1/I, ... , 1/,.}) , 
mark precisely that occurrence of {in e for which '1'(0 is a neighbor of { at that location in e. Form 
h from e by deleting all unmarked vertices in e. This choice of h satisfies condition (1) of the theorem. 

Since we left in h one occurrence of each of the distinct vertices in e, and since V(e) = V( G), 
V(h) = V(G). Note that the unmarked vertices of e are all in the forest G - V2(G). Two vertices of 
G - V2(G) which are successive in e and are adjacent in that subgraph are in the same tree T j • 

Hence one is the second vertex in the path joining the other to 1/i, so that one of them is necessarily ' 
marked at that part of e. Thus no two successive vertices in e are both unmarked, and for every 
section w , X of h, there is at most one vertex between wand X in e at the corresponding location in 
e. Since e is a trail in G, dc;(w, X) ,;;; 2. Thus , h is a Hamiltonian circuit in G2. 
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For each i € {I, 2, . . ., r}, since TJi is 'I'(~) for every vertex ~ adjacent to TJi in Ti, and since no 
vertex of degree 2 in G is deleted in obtaining h from e, no neighbors of TJi in e are deleted when 
forming h. Thus, in the one occurrence of TJi in h, both neighbors of TJi in h are neighbors of TJi in e 
and hence are adjacent to TJi in G. Finally, for each path s in G such that V(s) ~ V2 (G), either s or 
S - I is a section of e. Since no vertices of degree 2 in G are deleted in forming h, s or s -I remains a 
section of h. Thus h satisfies conditions (2) and (3) of the theorem. 

For any ~ € V(G), if ~ and TJi are adjacent in G they must be neighbors at some occurrence of 
TJi in e. Then at that occurrence of TJi, TJi can be marked. Thus, for each root TJi, we may select one 
vertex adjacent to TJi in G which will be a neighbor of TJi in h. 

Let G be a graph whose square is Hamiltonian, let h be a Hamiltonian circuit in G, and let A be 
an edge of G in h. Let ~ be one of the ends of A. Further, let HI and H2 be disjoint caterpillars disjoint 
from G, and let TJi be a vertex of degree no more than 1 in Hi - VI (Hi), for i € {l, 2} (if Hi has only 
two vertices, let TJi be one of them). Form a graph M from HI and G by identifying TJI and~. Then M2 
is Hamiltonian as indicated by figure 3, where the dashed line indicates the sequence inserted 
between the ends of A in h, (in this and following figures, a wavy line is used to denote h). Variations 
in the length of HI - VI (HI) (particularly variations to odd l~ngths) and changes in the number of 
vertices of degree 1 in HI can be dealt with in an obvious manner. Note that one edge of HI is 
included in the Hamiltonian circuit of M2. 

Now let HI and H2 be as before, but suppose G2 contains a Hamiltonian circuit h which includes 
two edges A and JL of G, both incident with the same vertex ~ of G. In this case, let N be formed from 
HI, H2, and G by identifying TJI, TJ2, and g. Then N2 contains a Hamiltonian circuit as indicated by 
figure 4, where the dashed lines indicate the sequence which is to replace ~ in h. Variations in HI 
and H2 are again easily dealt with. Note that an edge of each of HI and H2 is in the Hamiltonian 
circuit of N2. 

Now let G and H be disjoint graphs such that G2 and H2 are both Hamiltonian. Let A be an edge 
of G incident with a vertex ~ and in a Hamiltonian circuit g of G2, and let JL be an edge of H incident 
with a vertex TJ and in a Hamiltonian circuit h of H2. Form a graph P from G and H by identifying ~ 
and TJ. Then p2 contains a Hamiltonian circuit as indicated by the wavy and dashed curves in 
figure 5. 

Theorem 7 describes many edges of G which are included in a Hamiltonian circuit of G2, where 
G is an Euler graph in which G - V2 (G) is a forest. In view of the techniques described in the pre· 
ceding three paragraphs, Theorem 7 can thus be used to show many other graphs have Hamiltonian 
squares. 

An Euler graph G whose square is not Hamiltonian is shown in figure 6. It is easy to see that any 
Hamiltonian circuitoid in G2 must contain edges joining a vertex other than a cut vertex of G of each 
of the small triangles TI , T2 , T3 , T4 , and T5 to one of a or f3. Thus one of a or f3 must meet three edges 

- --,.. 

FIGURE 3 
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HI FIGURE 4 

G H 

FIG.URE 5 

of the Hamiltonian circuitoid, which is im possible. I sus pect that the graph of figure 6 is the smallest 
Euler graph whose square is not Hamiltonian (size being measured in number of vertices or number 
of edges). 

FIGURE 6 
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ADDED IN PROOF: Since this paper was submitted, references [6] and [7] have been com
bined into Fleischner, H., On spanning subgraphs of a connected bridgeless graph and their 
application to DT-graphs, J. Combinatorial Theory (to appear), and references [8] and [9] were 
combined into Fleischner, H., The square of every two-connected graph is Hamiltonian, 1. Com
binatorial Theory (to appear). Further, references [3] and [14] were combined into Chartrand, G., 
Hobbs, A. M., Jung, H. A., Kapoor, S. F., and Nash-Williams, C. St. J. A., The square of a block is 
Hamiltonian connected, J. Combinatorial Theory (to appear). It should be mentioned that the term 
"g-section" is similar to the term "}-component" of Tutte, W. T., The Connectivity of Graphs 

(Toronto Univ. Press, Toronto, 1967), and that many of the other terms in this paper not found 
in [11] were derived from the definitions in Nash-Williams, C. St. 1. A., Graph-Theoretic Defini
tions (unpublished). 

My thanks go to Professors W. T. Tutte and C. St. J. A. Nash-Williams for their many useful 
suggestions. In particular, I wish to thank Professor Nash-Williams for suggesting the present form 
of the proof of Theorem 7. 

5. References 

[1] Bhat, V. N., and Kapoor , S. F., The powers of a connected graph are highly Hamiltonian , J. Res. Nat. Bur. Stand. 
(U.S.), 758 (Math. Sci.) Nos. 1 & 2, 63-66 (Jan.-June 1971). 

[2] Chartrand, G., and Kapoor, S. F., The cube of every connected graph is I-Hamiltonian, J. Res. Nat. Bur. Stand. (U.S.), 
738 (Math. Sci.) No.1, 47-48 (Jan. - Mar. 1969). 

[3] Chartrand, G., and Kapoor, S. F. , The square of every 2-connected graph is I-Hamiltonian (to appear). 
[4] Chartrand, G., ~apoor , S. F ., and Lick , D. R., n-Hamiltonian graphs, J. Combinatorial Theory 9,308-312 (1970). 
[5] Fleischner H., Uber Hamiltonsche Linien im Quadrat kubishcer und pseudokubischer Graphen (to appear). 
[6] Fleis chner, H., On a certain spanning subgraph of a connected bridgeless graph (to appear). 
[7] Fleischner, H., The total graph of a block is Hamiltonian (to appear). 
[8] Fleischner, H., On line-critical blocks (to appear). 
[9] Fleischner, H., The square of every non-separable graph is Hamiltonian (to appear). 

[10] Fleischner, H. , Zum Quadrat kubischer Graphen (to appear). 
[11] Harary, F., Graph Theory (Addison-Wesley Publishing Co., Reading, Mass., 1969). 
[121 Hobbs , A. M., Some Hamiltonian results in the square of a graph, Notices Amer. Math. Soc. 18,397 (1971). 
[l3] Hobbs, A. M., A catalog of minimal blocks (to appear). 
[14] Hobbs , A. M., and Nash-Williams, C. SI. J- A., The square of a block is Hamiltonian connected (to appear). 
[15] Karaganis, J. J., On the cube of a graph, Can ad. Math. Bull. J 1,295-296 (1968). 
[16] Neuman, F., On a certain ordering of the vertices of a tree, Casopis Pest. Mat. 89,323-339 (1964) _ 
[17] Ore, 0 ., Hamiltonian connected graphs, J. Math. Pures AppJ. 42,21-27 (1963). 
[18] Sekanina, M., On an ordering of the set of vertices of a connected graph, PubJ. Fac. S ci. Univ. Bmo, T checoslovaquie, 

No. 412,137-141 (1960). 

(Paper 77Bl & 2-374) 

10 


	jresv77Bn1-2p_1
	jresv77Bn1-2p_2
	jresv77Bn1-2p_3
	jresv77Bn1-2p_4
	jresv77Bn1-2p_5
	jresv77Bn1-2p_6
	jresv77Bn1-2p_7
	jresv77Bn1-2p_8
	jresv77Bn1-2p_9
	jresv77Bn1-2p_10

