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Matroids are investigated in which equicardinality conditions are imposed on the flats. S uch 
matroids are shown to be closely related to ce rtain types of BIB D's . Existe nce and unique ness theorems 
for these structures are derived, toge ther with a bounded ness crit erion on their rank. Several classes 
are exhibited , in cluding finite proj ective and affine geo metries, certain t·des igns (S teiner sys te ms) 
and so-called trivi oids. By vie wing certain t -des igns as matroids, new ways of constructing BIBD's 
are derived. Three ne w series of 3·designs a nd two new 4·designs are obtained by these methods. A 
matroid analysis of the 5·(24,8,1) desi gn of Witt is prese nte d, and exam ples are obtained from it of 
matroids havin g equi cardin al hyperplanes but not equi cardina l fl ats in lower rank s. Several ge neral 
conjectures a nd existe nce prob lems for these t ypes of matroids are sugges ted. 
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1. Introduction 

In this paper we shall investigate mathematical structures that bring together matroid theory 
and the theory of balanced incomplete block designs (BIBD's). From this unification we shall derive 
a number of new results in both of these fields. We shall be interested in two special types of 
matroids: those in which the hyperplanes are equicardinal , (called matroid designs), and those in 
which the flats of any given rank are equicardinal, (called perfect matroid designs). Matroid de· 
signs were first introduced under the name "equicardinal matroids" by U.S.R. Murty [10].1 

Perfect matroid designs exhibit the high degree of regularity found in the classical finite 
projective and affine geometries; however, they comprise a variety of other structures, including 
t-designs (Steiner-systems) and so·called trivioids. They also represent a highly specialized class 
of BIBD's. Indeed , their complexity is indicated by the fact that the families of flats of any two 
different ranks form a BIBD. We shall develop a useful parametric description of perfect matroid 
designs that provides a classification of known examples and systematic framework for the search 
for new ones. Consistency conditions on the parameters are derived as well as additional types of 
existence conditions arising from the matroid structure. These conditions are used to tabulate 
all perfect matroid designs with less than forty-five points. We also explore the structure of peJfect 
matroid designs, and show how certain known t-designs , when regarded as matroids , yield con­
structions of new t-designs. 

Matroid designs in general may be viewed as variants of BIBD's. Frequently they consist of 
BIBD's that have been modified by the addition of certain objects and blocks. In this paper we show 
that matroid designs do indeed encompass a wider class of s tructures than perfect matroid designs , 
and we shall present a number of examples that will be derived from a matroid analysis of the 
famous 5-(24, 8, 1) design of Witt [13]. 
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We begin with a development of the necessary theory, and then present the theory of perfect 
matroid designs. In the last section, we shall analyze the Witt design and give constructions of 
other types of matroid designs. 

2. Motroids 

A matroid M = (E, f) is defined to be a finite set E together with a nonempty set f of subsets 
of E, called independent sets, such that: 
(I 1) 0 is independent and every subset of an independent set is independent; 
(12) for every A ~ E, all maximal independent subsets of A have the same cardinality, called the 
rank of A, r(A). 

A maximal independent subset of A is called a basis of A, or M-basis of A, if we wish to specify 
the matroid under consideration. A basis of M is just an M-basis of E , and r(M) , the rank of M, is 
equal to r(E). For convenience, it will always be assumed in the sequel that the function designated 
by r is the rank function of the matroid designated by M. 

A subset of E that is not independent is said to be dependent, and the minimal dependent sets 
are called circuits. 

A fundamental relation between independent sets and circuits is the following: 
(l) THEOREM: For any independent subset J of a matroid (E, f), and any x E E - J, J U {x} con­
tains at most one circuit. 
PROOF: Suppose to the contrary that x is contained in two distinct circuits CI and C2• Let l' be any 
basis of 1 U {x} containing CI n C2• Then ICI -1'I:;;,: 1 and IC2-1'1:;;,: 1, so 

11' I ~ 11 U {x} I - 2 < 11 I· 

But then l' and 1 are two bases of 1 U {x} of different cardinalities, contradicting (12). 
(2) THEOREM: Let ~ be a family of subsets of a finite set E. ~ is the circuitjamily of a matroid on 
E if and only if 

(C1) 0 $. ~ and no member ofC(! is a proper subset of another. 

(C2) For any two distinct members C I and C2 of C(! and x E C I n C2, CI U C2 - {x}. contains 
a member ofC(!. 

PROOF: Let (E, f) be a matroid with circuit family C(!. 0 is independent, so 0 tF C(!. Then (C 1) 

follows from the definition of circuit, and (C2) is an immediate consequence of (1). Conversely, 
let C(! satisfy (C1) and (C2), and let f be the family of subsets of E containing no members of C(!. 
Then 0 E ,$ and (11) clearly holds. Suppose that (12) does not hold for some subset A. Let ,$ 
be the family of maximum cardinality members of f in A, and ,$' the family of all other maximal 
members of f in A. Let 111 n 12 I be maximum among all 11 E ,$,12 E ,$'. Then for x E 12 - 11, 
11 U {x} contains a member C of C(! containing x. If C' were another such member of~, then by 
(C2), 11 would contain a member of C(!, contradicting 11 E f. Hence C is unique. Further, C t 12, 
so let y E C n (]I - 12)' By the uniqueness of C, 1: = (JI - {y}) U {x} E f. Then 11:1 = 1111, 
so 1; E ,$', but 11' n 121> III n 121, a contradiction. Hence ,$'=0, and (12) is proved. 

Let M= (E, f ) be a matroid. For any x E E and A ~ E, x is said to depend on A if x E A or 
{x} U A contains a circuit containing x. The closure of A, cl (A), is the set of all elements that de­
pend on A, and A is said to be a closed set, or fiat, if cl (A) =A. We write clM(A) if we wish to 
emphasize that closure is taken with respect to M. 
(3) It follows easily from the above definition that the intersection of a family of closed sets is closed. 
We may characterize the closure of a set as follows. 
(4) THEOREM: For any A ~ E, cl (A) is the unique maximal set S such that A ~ S ~ E and r(A)= 
r(S). 
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PROOF: Let S be some maximal set such that A (;::; S (;::; E and r(A) = r(S). Let x E cl (A) - A, C 
a circuit such that x E C (;::; A U {x}. By definition of circuit, C - {x} is independent in A, hence it is 
contained in a basis] of A. Since rCA) = reS) and A (;::; S,] is also a basis of S. However] U {x} 
is dependent, hence] is a basis of S U {x} and reS U {x}) = r(S). By the maximality of S, it 
follows that xES. Hence cl (A) (;::; S. On the other hand, let xES - A and let) be any basis of A. 
Then] U {x} is dependent, so] U {x} contains a circuit C containing x; hencex E cL (A). There· 
fore S (;::; cl (A) (;::; s, so S= cl (A), and S is unique. 
(5) COROLLARY: cl (el (A) U B) = cl (A U B) for any subsets A,B of E. 
(6) A k·flat of a matroid M = (E, J) is defined to be a closed subset of E having rank k, or (by 
(4)) a maximal subset of E having rank k. The hyperplanes of M are its (r(M) -1) - flats. The fol· 
lowing relationship between the hyperplanes and bases of M is immediate. 
(7) The hyperplanes of a matroid M are the maximal subsets containing no basis, and the bases of 
M are the minimal subsets contained in no hyperplane. 
(8) THEOREM: If f!lJ is the basis family of a matroid M = (E, JO), then f!lJ * = {E - B: B E f!lJ } is the 
basis family of a matroid M*, ca"lled the dual of M. The circuits of M* are precisely the set·comple· 
ments of the hyperplanes ofM. 
PROOF. Let 'G'*= {E-H: H is a hyperplane of M}. Clearly, 'G'* satisfies (eI). 

Applying (7), we also see that the members of f!lJ* are precisely the maximal subsets of E con· 
taining no member of 'G'*. For any distinct C~, C~ E 'G'* and x E C~ n C~, suppose S = C~ U C~­
{x} contains no member of 'G'*. Then S (;::; B* for some B* E f!lJ*, and x $- B*. Letting HI = E - ct, 
H2=E-c;, and B=E - B*, we have that B - {x} S HI n H2. Since r(B- {x}) = r(H)) = r(H2), 
it follows from (4) that HI = H2 and Ci = C;, a contradiction. Thus 'G'* also satisfies (C2), so it is the 
circuit family of a matroid M*. By the first sentence above, it follows that f!lJ* is the basis-family of 
M*. 

We note that M**=M. The complements of the hyperplanes of M (i.e., the circuits of M*) are 
also called the co-circuits of M. Using (2) and (8), we may characterize the hyperplane-family of a 
matroid as follows. 
(9) THEOREM: Let fit' be afamily of subsets of a finite set E, E $. fIf. fIf is the hyperplanefumilyo/a 
matroid on the set E if and only if 
(Hl) No member of fIf is a proper subset 0/ another. 

(H2) For any two distinct members Hland H2 of fIf, and any x E E, {x} U (HI n H2) is contained in 
some member of fIf. 

Although a matroid may be equally well characterized by its independent sets, its circuits, or 
its hyperplanes, we shall find it most useful to present it "geometrically" in terms of its hyperplanes, 
or more generally, its flats. We shall henceforth denote a matroid on the set E with hyperplane­
family fit' by (E, fIt'). 

Let M = (E, fIt') be any matroid. 
(0) The O-flat of M, P, is unique and consists of all elements not contained in any basis of M. 
Such elements are called loops. By the definition of closure, FO is a subset of every flat. Hence we 
may exclude all loops from M without essentially altering the set relationships among the various 
flats. 
(ll) To simplify the presentation of later results, we shall therefore always assume in the sequel 
that M has no loops. 
(2) The I-flats or points, of M are analogous to geometric points in the sense that every flat F is par­
titioned by the points that meet it. This follows immediately from (3), (4), and the assumption that 
the O-flat of M is null. 
(3) A 2-flat of M is called a line. For any two distinct points a and b of M, rea U b) = 2, because 
{x, y} is a basis of a U b for any x E a and y E b. Hence a and b are contained in a unique line of 
111, namely cl (a U b). 

The following theorem expresses a basic fact about the structure of flats in a matroid. 
(4) THEOREM: Let M be a rank n matroid. For any i-flat fi and k-flat P ofM such that Fi C P, 
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0:;;; i < k :;;; n, Fk - fi is partitioned by the sets of form fi+l - fi where Fi+! is an (i + I)-flat contain­

ing fi and contained in P. 
PROOF: Let Fi and FA- be given as above, and let J be a basis of Fi . For any x E Fk - Fi and basis J 
of Fi, J U {x} is independent, and, by (5), cl(J U {x}) =cl(Fi U {x}). HenceF~+l=cl(Fi U {x}) 
is an (i + 1) ·flat containing Fi and x. If F~+! cJ. FA-, then F~+ l n FA- would be a flat properly containing 
the i-flat Fi, and properly contained in the (i + I) ·flat F~+l, which is absurd. Hence every element 
x E Fk - Fi is contained in an (i + 1) ·flat F~+l such that Fi <: F~+l <: FA'. Finally, if A and B are any 

two distinct (i + 1) -flats that contain Fi and are contained in Fk, then A n B is a flat containing the 
i-flat Fi and properly contained in the (i + 1 )-flat A. Hence A n B = Fi, and (A - Fi) n (B - Fi) = 
~. Thus the sets of form Fi+l - Fi, where Fi+l is an (i + I )-flat containing F i and contained in Fk, 
partition p' - p. 

3. Perfect Matroid Designs 

3.1. The Geometry of Flats in a Perfect Matroid Design 

The geometric structure imposed on the flats of a matroid by (14) is not nearly as restrictive as 
the structure of the classical finite affine and projective geometries. We propose to investigate 
matroids that bear a closer resemblance to the classical geometries, in that equicardinality condi­
tions are imposed on their flats. We shall find that these structures constitute a very special and 
intriguing class of block designs. 
(15) A matroid M is said to be a matroid design if all of its hyperplanes have the same cardinality , 
which we denote by k (M). If, for every integer j, 0 :;;; j :;;; reM), all of the j-flats of M have the same 
cardinality a(j), then M is called a perfect matroid design, abbreviated by PMD. Like the finite 
geometries whose properties it generalizes, PMD's exhibit strong regularities of structure in addi­
tion to the equicardinality of the flats of a given rank. 
(16) THEOREM: Let M be a rank n PMD. For any integers i, j, k, such that 0 :;;; i:;;; j:;;; k:;;; n, and 
any i-./lat fi and k-flat Fk such that fi <: Fk, the number tM(i,j, k) ofj-flats fi such that P <: fi <: Fk 
is independent of the choice of P and P. Moreover, the function tM(i, j, k) so defined satisfies the 
following relations. 

(TO) 

and 

(Tl) 

(T2) ( .. k) - tM(i, I, k)tM(/, j, k) o,c:::',c::: I ,c::: . ,c::: k,c::: 
tM I,J, - (. I') ,~ 1 ~ ~ J ~ ~ n. 

tM I, ,J 

PROOF: For given i and k, 0:;;; i:;;; k:;;; n, and any given i-flat Fi and k-flat Fk such that Fi <: Fk, 
Fi is clearly the only i-flat containingFi and contained in Fk. Hence tM(i, i, k) = I for every choice 
of Fi and Fk. Moreover, where Fi+l is any (i + I)-flat containing Fi, we have pi C Fi+!, and hence, 
by (12), p +l contains more points than does P. -F-
(17) Where a(k) is the number of elements in any k-flat of M, the number of points in any k-flat of 
M is clearly a(k)/a(l), and hence tM(O, 1, k) is well-defined for every k, 1 :;;; k:;;; n. For any i and 
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k, 1 ,,;;; i < k ,,;;; n, and for any i-flat Fi and k-flat P such that Fi ~ P, it follows from (14) that the 
number of (i+ I)-flats Fi+1 such that Fi ~ Fi+ 1 ~ Fk is 

a(k)-a(i) _ tM(O,I , k)-tA'I(O,I,i) 
a(i+ 1) -a(i) tM(O, 1, i+ 1) -tA'I(O, 1, i)' 

which is independent of the particular Fi and Fk chosen. Thus we have shown that tM(i, i+ 1, k) 
is well-defined for every i and k, 0,,;;; i < k,,;;; n, and that (Tl) holds. 

Now let i be fixed, 0 ,,;;; i ,,;;; n. We shall prove by induction on j, i,,;;;j ";;; n, that for every k, 
j,,;;; k,,;;; n, tM(i, j, k) is well-defined. We have already shown this for j= i andj= i + 1. Suppose we 
have shown that tM(i,j, k) is well-defined for everyj, i ,,;;;j ";;; jo. Ifjo=n, we are done. Otherwise, 
choose k ;3 jo + 1 and let pi be an i-flat, F k a k-flat such that Fi ~ F k. Let V j 0 denote the set of jo- flats 
Fjo such that pi ~ Fjo ~ Fk, and let Vjo+! denote the set of (jo+ 1) - flats Fjo+1 such that pi ~ Fjo+ 1 

~ P. 
(18) Every member of Vjo is contained in tMUO, jo+ 1, k) members of Vjo+!, by (17), and every 
member of Vjo+1 contains tM(i, jo, jo+ 1) me mbers of Vjo, by the inductive hypothesis on j. Since 
/Viol = tM(i, jo, k), also by the hypothesis on j, we have 

/Vj +11 = tM(i ,jo, k)t,IIUO , jO+ 1, k) 
o tM(i,jo,jo+ 1) , 

and hen ce t ,I'I(i, jo+ 1, k) = /Vi.+! I is well-defined. This proves by induction that tM(i,j, k) is well­
defined whenever 0 ,,;;; i ,,;;; j ,,;;; k ,,;;; n. 

Finally, (T2) follows from a countin g argument similar to that used in (18). 
(19) The function t,I'1 (i, j, k) of (16) is called the tjunction of M. 

3.2. t-Designs 

Perfect matroid designs form a special class of structures called t-designs, which are a generali­
zation of balance incomplete block designs (BIBD's). (They have also been called tactical configu­
rations by Hanani [6]. See also [4] and [7].) 
(20) For t ;3 2 let t be an integer greater than 1. A t-design, or more specifically, at - (v, k, A) 
desigR, (V, '11"), is a v-set V and a system 'II" of k-subsets of V, k < v, called blocks, such that every 
t-subset of V is contained in exactly A blocks. 
Repeated blocks are admissible in the system 'If/. We shall sometimes refer to any such pair 
(V, 'If/ ) as aD/ (v, k, A). A BIBD is precisely a 2-design. 
(21) For any t- (v, k, A) design (V, 'If/) and integer i, 0,,;;; i,,;;; t, we let Ai denote the number of 
blocks containing any fixed i-subset of V. A( is identical with A, and, in general (see, for example, 
[7]) , 

(22) 
( v-~ ) 
t-~ 

Ai = A (k _ ~) for 0,,;;; i ,,;;; t. 

t-~ 

In particular, (V, 'If/ ) is also an i- (v, k, Ad design for 2,,;;; i,,;;; t. Moreover, it follows that, for a 
given set of parameters t, v, k, A, the numbers Ai given by (22) must be integers for a t- (v, k, A) 
design to exist. 
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(23) A particularly useful result is the well-known Fisher Inequality, which states that, if a t - (v, k, A) 
design exists, then the number of blocks, 11. 0 , is greater than or equal to the number of elements, 
v_ Using (22), we may then state this condition as 

(24) 

3.3. Consequences of Fisher's Inequality for PMD's 

Let M be a rank n PMD. For any i-flat Fi and k-flat Fk of M such that Fi ~ Fk, let Ii (Fi, Fk) 
denote the set of allj-flats F i of M such that Fi ~ F i ~ F k. 
(25) THEOREM: For any PMD M and integers, i, j, k, such that 2:s;; i+2:S;;j < k:s;; r(M), and any 
i-flat Fi and k-fiat fk of M such that Fi ~ fk, the set W = {Ii+l (fi, fi): Fi ~ Fi ~ fk and fi is a 
j-flat of M} is the system of blocks of a BIBD on the set V=l i+1 (Fi, fk) with A=t M (i+2, j, k). 
PROOF: For any member Ii+I(Fi, Fi) ofW, Fi ~ Fi C Fk becausej<k. Hence, for x E Fk_Fi, 

=1= 

the (i+I)-flat A=cl(Fi U {x}) is contained in V, but is not contained in Ii+I(Fi, Fi). Thus the 
members ofW are proper subsets of V. 

For any two distinct (i+I)-flats FI andF2 in V, FI n F2=Fi, by (14). Let) be a basis ofFi, 
and let x E FI-Fi, y E F 2-Fi. Then] U {x} is a basis of F I, and] U {y} is a basis of F 2. Since 
x f$.F2=cl(J U {y}),] U {x, y} is an independent set of rank i+2 in FI U F 2, and in fact it 
must be a basis of FlU F 2, because every element of FlU F 2 depends on either] U {x} or on 
] U {y}. Hence cl(FI U F 2 ) is the unique (i+2)-flat containing FI U F 2, and cl(FI U F 2) ~ Fk. 
Further, every (i + 2)-flat is contained in exactly t M (i + 2, j, k) j-flats contained in Fk. Hence every 
two (i + 1 )-flats in V are contained together in exactly t M (i + 2, j, k) j-flats contained in Fk, which 
proves that (V, W) is aBIBD with A= tM(i+2,j, k). 
(26) In (25), the members of Ware in one-to-one correspondence with the j-flats Fi such that 
Fi ~ Fj ~ Fk. Hence IWI = tM(i, j, k). Likewise, IVI = tM(i, i + 1, k). Applying Fisher's Inequality 
to the results of (25) and (26), we obtain, for any perfect matroid design M 

(T3) tM(i,i+I,k):S;;tM(i,j,k) for 2;;: i+2:S;;j<k:s;; n. 

(27) A function t(i, j, k) of integers i,j, k such that O:S;; i:S;;j:S;; k:s;; n for some integer n is said to 
be T-consistent if it is positive integer-valued and satisfies the relations (TO), (Tl), (T2) of (15) and 
(T3) above. In particular, the t-function of a PMD is T-consistent. 
(28) Any T-consistent function that is actually the t-function of some PMD will be called a realiz­
able T-consistent function. 

3.4. Further Properties of Matroids and Perfect Matroid Designs: Reduction, Contraction, Truncation 

Let M = (E,.)1) be a fixed matroid of rank n. 
(29) For any subset E' of E, let .)1' = {J E .)1:] ~ E'}. M' = (E' , .)1') clearly satisfies (11) and (12), 
hence it is a matroid, called the sub matroid of M on E', or the reduction of M to E', and denoted 
by M X E'. Clearly, the rank function, r', of M' is just the rank function of M restricted to the sub­
sets of E'. The following res ult is immediate. 
(30) THEOREM: The fiats of M X E' are precisely the intersections of the fiats of M with E' . 
(31) Let E' be a subset of E, and let.)1' = {j' ~ E': J' U ] E .)1 for some M-basis] of E - E'}. It is 
easily verified that (E', .)1') satisfies (11) and (12), hence it is a matroid, called the contraction of 
M to E' ,and denoted by M·E'. 
(32) For any A ~ E', the rank of A in M . E' is given by r' (A) = r(A U (E - E'» - r(E - E'), 
where ris the rank function of M. In particular,r(M· E') = r(M) - r(E-E'). 
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The flats of M . E' are characterized in terms of the flats of M as follows. 
(33) THEOREM: For E' ~ E and 0 ~ j ~ r(M) - r(E - E'), F ~ E' is a j-flat ofM . E' if and only if 
F U (E- E') is a (j + r(E - E' »)-flat of M. 
PROOF: A set F ~ E' is closed in M· E' if and only if r' (F U {x}) > r' (F) for every x E E' - F, 
by (4). This occurs if and only if r(F U (E-E') U {x}) > r(F U (E-E'» foreveryx E E- (F U 
(E - E'» that is, if and only if F U (E - E') is closed in M. Further, by (32), r ' (F) = j if and only if 
r(F U (£-E'» = j + r(E - E'). ThusF is aj-flat of M· E' if and only if F U (E-E') is a (j+ r 
(E - E'» ·flat of M. 
(34) Let Fi ~ Fk be an i-flat and k-flat respectively. The interval of M between pi and Fk, M(Fi, 
P), is the matroid (M X P) . (p. - pi). 

Since the set IS of flats of a matroid M includes E and is closed under intersections, 15 may be 
viewed as a lattice, ordered by inclusion. Such a lattice is called a matroid lattice, or geometric 
lattice [I]. . 
(35) By (30) and (33), the flats of an interval M(Fi, Fk) of M correspond 1-1 with the flats A of M 
such that pi ~ A ~ Fk, and the corresponding lattices ordered by inclusion are isomorphic. This fact 
is sometimes useful in picturing the structure of a matroid interva1 M (pi, FA) In particular, this 
observation yields a proof of the following. 
(36) THEOREM: If M is a rank n PMD with t{unction tM(i, j, k), and fh ~ fl are an h-flat and 
l-flat of M respectively, then M (Fh , fl) is a rank l-h PMD with t{unction 

t(i,j, k)= tM(i+ h,j+ h , k+ h), 0 ~ i ~ j ~ k ~ i-h. 

(37) For any integer i, 0 ~ i ~ r(M), let .)1 ' = {J ~ E: 1 E .)1 and III ~ I}. Clearly, M' = (E ,.)1') is 
a matroid having rank function r' (A) = min {I, r(A)} . M' is called the i-truncation of M, and 
denoted by M(ll. The flats of M(ll are the flats of M having rank at most i- 1, and E. If M is a PMD 
having t-function tM (i,j, k), then M(l) is a rank l PMD having t-function 

t(i,j, k) = tM(i,j , k) for 0 ~ i ~ j ~ k < i, 

t(i,j, l) = tM(i, j, n) for 0 ~ i ~ j < i, 

and 

t(i, i, l) = 1 for 0 ~ i ~ i. 

(38) A point (I-flat) of a matroid M is said to be an m-point if it has cardinality m, and it is a simple 
point if m = 1. In general, a simple flat of M is a flat that is an independent set, i.e., a flat whose 
rank equals its cardinality. The matroid M is said to be simple if all of its points are simple. 
(39) Let M = (E, Jt") be any matroid, and a a positive integer. For each element x E E choose a 
set S x of a elements in such a way that for distinct elements x, x' E E, S x n S x' = ji). Let E '= U S x 

xEE ' 

and let Jf" = { U S x: H E Jt"} ' IClearly, M' = (E' , Jt"') satisfies (HI) and (H2), hence M' is a 
xE H . 

matroid. M' is said to be an a-inflation of M, and M is an a-deflation of M'. Now F' is a flat of M' 
if and only if F' = U Sx for some flat F of M. This relation establishes a one-to-one correspondence 

xEF 

between the flats of M and M' that preserves inclusion. It follows that if M is a PMD whose points 
have cardinality a, then there exists an a-deflation M' of M such that M' is simple, and the lattices 
of M and M' are isomorphic. In particular, M is a PMD if and only if M' is , and their t-functions are 
the same. Hence there is no loss of generality in proving certain results for simple PMD's. 

3.S. d-Sequences and D-Consistency 

The relations (TO)-(T3) impose strong restrictions on the possible parameters for a PMD. 
However, it is often quite awkward to verify directly whether a given function t(i, j, k) satisfies 
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these relations. We shall define an auxiliary set of parameters for a PMD that is considerably easier 
to handle, and contains all the information of the associated t-function. 

Let M be a rank n PMD with t·function tM(i, j, k), O:s;; i:s;; j:S;; k:s;; n, and define the sequence 
d(M) = (d1l , d 1l-t. . . , dd by the relation 

(40) 1 :s;; i:s;; n, 

where we take tM(O, 1,0)=0. In case r(M)=O, that is, if M={f), f)}, we let d(M) be the empty 
sequence. d(M) is called the d-sequence of M. , 
(41) THEOREM: ?et t(i, j, k) be a positive, integer·valued, T-consistent function on integers i, j, k 
where O:s;; i:s;; j:S;; k:s;; n. Let d i = t(O, 1, i)- t(O, 1, i -l )for each i, 1:S;; i:S;; n. Then 

j k 

IT L dm 

(42) ( .. k) 1= 1+1 m = 1 fi ° . . k t 1, J, = j k ,or:S;; 1 :s;; J:S;; :s;; n. 

IT L dm 
I= i+l m = 1 

where an empty product is assumed to take the value 1 . 
PROOF: For given i, o:s;; i :s;; n, the proof of (41) is by induction on the set S = {(k, j): i:S;; j:S;; k 
:s;; n}, ordered lexicographically. For k = j= i, both sides of (42) are equal to "1". 

Assume then that (42) holds for all pairs (k, j) E S such that (k,j) :s;; (w, u) for some (w, u) 
E S. We may assume that (w, u) ¥- (n, n); otherwise, we are done. Suppose first that w = u. 
The successor of (u, u) in S is (u + 1, i), hence we must show that (42) holds for j = i, k = u + 1. 
This follows immediately from (TO) and the fact that empty products have value "1". Hence we 
may assume that u < w, and we must prove (42) for (k,j) = (w, u+ 1). By (T2) and (Tl), 

(. + 1 ) - tCi, u, w)t(u, u + 1, w) _ t(i, u, w) t(O, 1, w) - t(O, 1, u) 
t l, U ,w - t(i, u, u + 1) - t(i, u, u + 1) t(O, 1, u + 1) - t(O, 1, u) , 

t(i, u, w) 
t(i, u, u+ 1) 

by definition of the <h's. 

w 

L dm 
m= u+ l 

Applying the induction hypothesis to t (i, u, w) 
simplifying, we have finally 

and t(i, u, u+ 1) in the above expression and 

10 U W U+ l w 

L dm IT L dm IT L dill 
(. + 1 ) - m=u+ l 1= ;+1 m= 1 

t l, U ,w - u u+ I 
1=i+1 m= 1 

11+1 u+l 

dU+ 1 IT L dill IT L dm 
1= i+1 m= 1 1= i+1 111 = 1 

which is (42) with (k,j) = (w, u+ 1). The theorem follows now by induction. 
A sequence (dn, dn - t, . .. , dd of positive integers is said to be D-consistent if d l == 1 and the 

associated function t(i, j, k) given by (42) is T-consistent. The relations (TO)-(T3) for the function 
t (i, j, k) then translate into the following conditions on (dn , dn- I , ••• , dd. 
(43) THEOREM: A sequence D = (dn , dn- I , • • • , dd is D-consistent if and only if 

(DO) d l = 1 and d i ;;,: 1, 1 :s;; i :s;; n. 

j k 

IT L dm 

(Dl) 
I=i+ l m = t 

j j is integral for ° :s;; i :s;; j :s;; k :s;; n. 

IT L dm 
I= i+l m=1 
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(D2) d Id 2 · d di+1 d i 2' 1 
i-I h ~ 1 ~ n, an -d. ;:;?: -d. ' ~ 1 ~ n - . 

I 1- 1 

PROOF: Let t (i, j , k) be given from D by (42). In particular, 

i i 

(44) teO, 1, i) = ~ dllJd l = ~ dill, 
m= 1 m= l 

hence 

(45) d; = teO, 1, i) - teO, 1, i-I) for 1 ~ i ~ n, 

where we take teO, 1, 0) = O. 
It follows from (45) that di ~ 1 if and only if t(O, 1, i) > teO, 1, i -1). Further, t(i, i, k) = 1, by 

our convention that empty products take the value '1'. Hence (DO) is equivalent to (TO). (Dl) is 
equivalent to the requirement that t(i, j, k) be integer valued. 

To prove (D2), given that t(i, j, k) is T-consistent, we use (45) to write 

(46) 
d;+1 = [t(O, 1, i + 1) - t(O, 1, i-I)] - [teO, 1, i) - teO, 1, i-I)] 

d; teO, 1, i) - t(O, 1, i-I) 

= t(i - 1, i, i + 1) -1 , for 1 ~ i ~ n - 1, by (Tl). 

Likewise, 

(47) dd l = t(i - 2, i-I, i) - 1 for 2 ~ i ~ n. 
I - I 

In particular, 

(48) 

B (T2) ( . - 2 . . + 1) = t (i - 2, i-I, i + 1) t (i - 1, i, i + 1) d b (T3) (. - 2 . . + 1) 
y , t L , L, L ( • 2' 1') an y t L , L, L 

tL- ,L-,L 

~ t(i - 2, i-I, i + 1). Hence, using the fact that t(i,j, k) is positive, 

(49) t(i-l,i,i+l) ~t(i-2,i-l,i). 

Substituting (46) and (47) in (49), we find that ~I ;:;?: d~1 ' 2 ~ i ~ n - 1. Combined with (48), 

this establishes (D2). 

It remains to show that (Tl), (T2), and (T3) hold for t(i, j, k) given that D satisfies (DO)-(D2). 
From (42) and (44) it follows that 

teO, 1, k) -teO, 1, i) 
t(O, 1, i+ 1) - teO, 1, i) 

k 

~ dill 

=t(i,i+l,k), 

which establishes (Tl). (T2) also follows immediately from (42) by substitution. 
To prove (T3), we write, for integers 2 ~ i + 2 ~ j < k ~ n, 
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j k 

II L d", 

(50) ( . . k) - l = i+1 m=1 
t ~,J, - j j 

r L d", 
l = i+1 m=1 

k 

L dm 

m= i+l II ~"'~I j (± d"') 
l= i+2 . Y dm 

"':-(-1 

By (D2), dm ;;.: d m- I ddl for m;;': l. Hence (50) implies 
I-I 

(51) 
k ( k ) 
L d",. . L d m- I 

t(i,j, k) ;;.: III =H l ( IT~) tr -,-"'=-,-1 __ 

dJ I= H2 dl_ 1 I=H 2 ± dm 

m= l- l 

d· 
The first iterated product is equal to -d 1 , and the second is greater than or equal to "1" (using 

HI 

the positivity of the dill's and the fact thatj < k). Hence 

k 

L dill 

(52) t(i,j, k) ;;.: _m_=~_+_1 -=t(i, i+ 1, k). 
Ui+1 

COROLLARY: For any PMD M, the d-sequence of M, d(M), satisfies (DO), (Dl), (D2), and tM(i, j, k) 
is given in terms of d(M) by (42). 

3.6. Classes of Perfect Matroid Designs and Their d-Sequences 

We shall first describe the operations on d-sequences that correspond to the operations intro­
duced in Section 3.4. 

Let M be a rank n PMD with d-sequence d(M) = Cd", dn- I , ••• , dd. 
(53) From paragraph (39) it follows that an a-inflation or a-deflation of M has the same d-sequence 
as M. 
(54) If Fp is a p-flat and Fq a q-flat of M such that FIJ ~ Fq, then the interval of M , M(FP, Fq) has 
t-function t(i,j, k) = t\l(i + p,j + p, k + p), ° ~ i ~j ~ k ~ q- p, by (36). Hence,forl ~ k ~ q- p, 
l~k~q-p, 

teO, 1, k) - teO, 1, k-1) =tM(P, p+ 1, k+ p) - (\1 (p, p+ 1, k+ p-1) 

k+p k+p- I 

L dm 

= m= p+l 

dp+1 

L d", 
m=p+1 = dk +P , by (42). 

d p+1 dp+i 

Hence,M (FIJ,Fq) has d-sequence (~ dq_1 dp+I ) 
dp+I ' dp+I"'" dp+l . 

(55) For any integer h, 1 ~ h ~ n, the d-sequence of M(h) (the h-truncation of M) is clearly 

(56) A matroid M on the set E is said to be disconnected if for some nonempty proper subset 5 
of E, every circuit of M is contained in 5 or in E -5. Such a subset is called a proper separator of 
M. If M contains no circuits, it is said to be totally disconnected. 
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(57) THEOREM: If a simple PMD is disconnected, then it is totally disconnected. 
PROOF: Let M be a disconnected, simple PMD and let S be a proper separator of M. Let C be a 
circuit of M having minimum cardinality, say ICI = y. y;;,: 3 because M is simple and contains 
no loops. We may also suppose without loss of generality that C ~ S. r( C) = y - 1, so cl (C) is a 
(y-l)-flat and Icl(C)I;;,: y;;,: 3. 

Let x, y E C, x "" y. Then C - {x, y} is independent, and I = (C - {x, y}) U {z} is independent 
for any z E E - S, since no circuit of M meets both Sand E - Sand M contains no loops. Let w be an 
element of E - I that depends on I. Then w depends either on {z} or on C - {x, y}. The former is 
impossible because M is simple. If the latter were the case, then (C - {x, y}) U {w} would contain 
a circuit smaller than C, which is contrary to the choice of C. Thus no element of E - I depends on 
I, so cl (I) = I. I is therefore a (y -1) ·flat having cardinality y-1. But then I and cl(C) are two (y-
1) ·flats having distinct cardinalities, contrary to the definition of a PMD. Hence M contains no cir· 
cuits; that is, M is totally disconnected. 

We shall now introduce three general classes of PMD's. 
(58) For any integers v and k such that v > k ;;,: 0, there exists a PMD M on v elements with hyper­
plane size k. Namely, let ME denote the totally disconnected· matroid on a v-set E, and let M = 
M E(k + I) (the (k + 1 )·truncation of ME). Where a is a positive integer, any a·inflation M(a) of such 
an M is called an (a, k, v)-trivioid, denoted by (T(a, k, v), and M(a) is said to be a trivial matroid 
design. The hyperplanes of M (a) are precisely the subsets of E that are unions of any k distinct 
points. 

The d-sequences of trivioids are characterized as follows. 
(59) Theorem: Every sequence of form (dn , 1, 1, ... , 1) having length n is the d-sequence of an 
(a, n -1, dn + n -1)-trivioid, and conversely. 
PROOF: Let d(M) = (dn , 1, ... ,1) for some rank n PMD M= (E, JF). By (42), tM(O, l,j) = j for 
O~j~ n-l, and tM(O, 1, n)=dn +n-1. 

Let a be the common cardinality of the points of M, and let M' be an a-deflation of M. M' is 
simple and has the same t-function as M. Thus, every j-flat of M' has cardinality j, for 0 ~j ~ n-l. 
Since every j-subset of E is certainly contained in some j-flat, it follows that every j-subset of E is 
aj·flat for 0 ~ j ~ n - 1. Thus M' is a (1, n-l, dll + n-l)-trivioid, and M is an (a, n-l, dn+n-l)­
trivioid. 

Conversely, for any positive integers n, dll, and a, an (a, n - 1, dll + n - 1)·trivioid certainly 
exists, and it is straightforward to verify that its d-sequence is (d ll , 1, ... , 1). 
(60) Any sequence of form (d", 1, 1, ... ,1) is said to be a trivial sequence. By (59), every trivial 
sequence is D-consistent. 
(61) Let us also note here a general property of D·consistent sequences: if D = (d ll , d ll - I , ••• , d l ) 

is D-consistent and dj == 1 for some j, then dj = dj_1 = ... = d l == 1. Indeed, for 1 ~ i ~j, (DO) im­

plies that d i ;;,: 1, and (D2) im plies that d; I d j. Hence dj = 1 implies that di = 1 for 1 ~ i ~ j. 
(62) We recall that for any matroid M = (E ,fft'), the co·circuits of M are the complements in E of 
the hyperplanes of M. Since any hyperplane of M is partitioned oy the points that meet it, the same 
holds for any co·circuit of M. Let c*(M) denote the minimum cardinality of the co-circuits of M. 
If M is a matroid design, then c*(M) is the size of every co-circuit of M. In particular, if M is a 
simple PMD, then the leading term of d(M), the d-sequence of M, is c* (M). 
(63) THEOREM: Every PMD M with prime co·circuit cardinality c * (M) is a trivioid. 
PROOF: Let c*(M)=p be a prime. Where a is the cardinality of the points of M, a I c*(M) because 
every co-circuit is partitioned by the points that meet it. If a= p, then the complement of any point 

is a hyperplane, so M is a (p,k~), k~)+1 )-trivioid. Otherwise, a=1 and M is simple. There­

fore d(M)=(p, d n- I, . .. , d l ). Letj be the greatest integer such that d j =1. By (D2), dll - Ilp and 

d
p ;;,: ddj~1 > 1. Hence d n - I = 1, so d i = 1 for 1 ~ i ~ n -1. Thus, d(M) is trivial, so, by (59), M is a 
n-I J 

trivioid. 
In another paper [14] we show that Theorem (63) applies to matroid designs in general. 
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A second class of PMD's comes from the t-designs with A= 1. 
(64) THEOREM: For any integer t 3 2, M is at - (v, k, 1) design such that k < v if and only ifM is 
a simple rank t+ 1 PMDwith d-sequence (v-k, k-t+ 1,1, ... ,1). 
PROOF: Let t 32, and let M=(E, %)be at-(v, k, 1) design such thatk < v. First we shall show that 
(E, %) satisfies (HI) and (H2). Since k < v, the members of % are proper subsets of E. Further, no 
member of%is properly contained in another. Thus, (HI) is satisfied. 

Suppose that HI and H 2 are two distinct blocks. Then IH I n H 21 < t, because any t-set is 
contained in exactly one block, and for any x E E, {x} U (HI n H 2 ) is contained in at least one 
t-set, hence in at least one block. Thus M is a matroid with hyperplane family%. By (7), the bases 
of M are just the minimal subsets of E contained in no hyperplane, that is, the (t + 1) -subsets of E 
contained in no hyperplane. Thus reM) = t + 1. 

For any t-subset T of E, H = cl (T) is the unique hyperplane containing T. Since H ~ E, there 
exists x E E-H, and {x} U T is contained in no hyperplane of M, hence {x} U T is a basis, and T 
is independent in M. Thus every t-subset of E is independent. It follows that every j-f1at of M, 
1 ~ j ~ t-l, is simple. In particular, since t 3 2, M is simple. Hence tM (0, l,j) =j, for 1 ~ j ~ t-l, 
tM (0,1, t) =k, and tM (0,1, t+ 1) =v. Therefore, by definition of the d-sequence d(M) = (v-k, 
k- t+ 1,1, .. . ,1). 

Suppose, conversely, that t 3 2 and M is a simple, rank t + 1 PMD with d-sequence (v - k, 
k-t+ 1, 1, . .. , 1). Then , by (42), tM (0,1 ,j) =j forI ~j ~ t ~ 1; that is, every j-f1at of M is simple for 
1 ~ j ~ t -1. Hence every t-subset T of E must be independent in M, and is therefore contained in a 
unique member of %, namely cl (T). Again using (42) and the fact that M is simple, we find that 
the hyperplanes of M have cardinality k, and lEI = v. Thus, M = (E, %) is a t-(v, k, 1) design. 
(65) As as pecial case of (64), it follows that every BIBD with A = 1 is a rank 3 PMD. 
(66) In analogy with matroid designs , we say that a t- (v, k, A) design (E, %) is trivial if% consists 
of allk-subsets ofE. 

For t 3 3, relatively few nontrivial t-designs have been found, and for T 36 no nontrivial t­
designs are known. We shall briefly mention here all known examples of nontrivial t- (v, k, 1) 
designs, where t 3 3. 
(67) For any prime power q and integer f 3 1, choose the finite Galois fields GF(q), and GF(qf) 
such that GF (q) C GF (qf). Then the images of GF (q) U {oo} under the group of transformations 

{ aXQi+b . . } 
~ = i : a, b, c, d E GF (qf) , ad - be #- 0, ° ~ t ~ f 

cxQ +d 

are the blocks of a 3 - (qf + 1, q + 1, 1) design on the set GF(qf) U {ooJ. In the casef=2, the 
3 - (q2 + 1, q + 1, 1) design of this type is called an inversive plane of order q, abbreviated by 
IP(q). (For a more detailed treatment, see [6] and [7].) 
(68) A second infinite class of 3-designs consists of the 3 - (v, 4, 1) designs, which are known as 

quadruple systems. As shown in [6], necessary and sufficient conditions for the existence of a 
quadruple system 3 - (v, 4, 1) are that v"" 2 or 4 (mod 6). 
(69) The only other t - (v, k, 1) designs known for t 33 are due to Witt [13]. They have parameters 
4- (11, 5,1),4 - (23,7,1),5 - (12,6,1), and 5- (24, 8, 1), and are related to the Mathieu groups 
MI2 andM24 . 

(70) We point out that for a sequence of form (v - k, k - t + 1, 1, ... , f), the condition (Dl) for 
D-consistency simply reduces to the requirement that the numbers Ai associated (22) with the 
corresponding t - (v, k, 1) design be integers. Likewise, (D2) is simply a consequence of Fisher's 
inequality for this t-design. However, it is well-known from BIBD theory that for given parameters 
t, v, k, A the integrality of the expressions for Ai and Fisher's inequality are not sufficient to assure 
the existence of ·a t - (v, k, A) design. Hence, in particular, the D-consistency of a sequence does 
not imply that it is actually the d-sequence of some PMD. 
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A D-consistent sequence that is the d-sequence of some PMD will be called a realizable D­
consistent sequence. We shall presently develop several additional criteria for D-consistent 
sequences to be realizable. 

A third class of PMD's consists of the classical finite projective and affine geometries of arbi­
trary dimension. This class is the prototype on which PMD's are modeled. 

A finite projective geometry (E, £' ) is a set E of points and a set £' of lines satisfying certain 
well-known incidence axioms [12]. A finite projective geometry of dimension n and order s will be 
abbreviated by PG(n, s), where n ~ 2 and s + 1 ~ 3 is the number of points on every line, and 
s"+! - l/s - 1 is the total number of points. The subspaces of a PC(n, s) are those subsets 5 ~ E 
such that for every x, yES, the unique line containing x and y is a subset of S. The hyperspaces 
are just the maximal proper subs paces. 
(71) The points and lines of a PG(2, s) form a BlBD with A = 1, namely, a 2 - (S2 + s + 1, s + 1,1) 
design. That is, any PG(2, s) is a rank 3 PMD with d-sequence (S2, s, 1). Conversely, it may be 
shown by a simple counting argument that in any PMD with d-sequence (S2, S, 1), every two lines 
meet [5]; and hence every such PMD is a PC(2, s). 
(72) For n ~ 3, aPG(n, s) exists if and only if s is a prime power [12] and in this case it is isomorphic 
to the PC (n, s) constructed as follows. Let s = q, where q is a prime power, and let E be the set of 
all nonzero (n + 1) -tuples over the Galois field GF (q). Let f be the family of all subsets of E that 
are linearly inde pendent over CF (q). Clearly, M = (E, f ) is a rank n + 1 matroi d. Moreover , for 
o ,;;; j ,;;; n + 1, every j-flat of M contains ci - 1 elements. In particular, the points of M each contain 
q - 1 elements. Where M' is any (q - 1) -deflation of M, it follows that M' is a si m pIe, rank n + 1 
PMD with t-function given by tM ' (0, 1,j) = qj -1/q -1 and d-sequence (q", qn- I, __ ., q, 1). For any 
3-flat F of M', M' X F has d-sequence (q2, q, 1) and is therefore a PC(2, q). It follows easily that 
the point-family E' and line-family£" of M' together satisfy the projective axioms. Since every 
line has cardinality q + 1, and IE' I = qn + I - l/q - 1, (E; £" ) is a PC(n, q) . The subs paces of 
(E', Q') are precisely the spans of independent sets of M'; i.e. , they are precisely the flats of M' . 
(73) It follows from (71) and (72) that the family E of points and the family !It of hyperspaces of any 
PC(n, s) (E, £') are the points and hyperplanes of a rank n+ 1 PMD whose flats are the sub­
spaces of (E , :if ). In this sense, every PC(n , s) is a rank n +l PMD with d-sequence 
(s", S" - I, ... , s, 1). 
(74) Suppose that M= (E,!It) is any simple PMD with d-sequence of form ( .. _, S2, S, 1). Then 
just as above we may conclude that every 3-flat of M is a PC (2, s), and hence that the line-family 
£' of M satisfies the projective axioms. Thus, (E, £' ) is a PG(h, s) for some integer h. However, this 
does not necessarily imply that M is a PG(h , s) in the sense described above. Conceivably, M might 
be constructed so that its flats constituted a proper subcollection of the subspaces ofthe PC (h, s) 
defined by the lines. On the other hand, we may observe that the total number of points of M must 
be Sh -1/s - 1. This leads to the following useful criterion , which was pointed out to the authors 
by Richard Wilson_ 
(75) If D= (d", d" _1> .. ' 1 1) is a realizable D-consistent sequence such that n ~ 3 and d3 = S2, 
d 2 = s for some s ~ 2, then 

for some positive integer h. 

" s"-1 
"'di=­
L.. s-1 ,= I 

However, if we know that d(M)= (5", S" - I, ... , s, 1) then we may conclude that M is a 
PC(n, s). 

(76) THEOREM: For any integers n ~ 2 and S ~ 2, every simple rank n+ 1 PMD with d-sequence of 
form (sn, sn - I, ... , s, 1) is a PG(n, s), and conversely. 
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PROOF: For a simple PMD M= (E, .w') with d(M) = (sn, S .. - I, . . . , s, 1) and line-family 2', 
(E,2) is a finite projective geometry of order s, by (74). Since M is simple, 

hence (E, 2') is a PG(n, s). 
Let .w" be the family of hyperspaces of (E, 2'). To show that M is a PG(n, s), we will show that 

.w'= .w". By (73), M' = (E, .w") is a PMD with the same d-sequence as M . Hence their t-functions 
are the same, so they contain the same number of flats. But for any flat F of M and distinct x, y E F, 
clM ( {x, y}) E 2' and clM ( {x, y}) ~ F; hence F is a subspace of (E, 2'). Therefore, every flat of 
M is a flat of M'. Hence they have the same flats, and in particular!7t'= !7t" . Thus M is a PG(n, s). 

The converse has already been noted in (73). 
The criterion of (75) may be applied to show that certain D-consistent sequences are not 

realizable. For example, the sequence (36,4,2, 1) satisfies (DO), (Dl), and (D2) (as may be verified 
directly), but 36 + 4 + 2 + 1 = 43 0/= 2" -1 for any integer h. 
(77) For any PG (n, s) M = (E, .w') and hyperplane Ho of M, a matroid ofform M' = M X (E - Ho), 
is called an affine geometry of dimension n and order s, abbreviated by EG(n, s). If F' is any j -flat 
of M', 0 ~ j ~ n + 1, then F = clM(F') is aj -flat of M not contained in Ho. By the modular law for 
projective geometries ([12], Chapter 7, Theorem 10), reF n Ho) = reF) - 1. Hence we have IF'I 
= IFI - IF n HI =si - I. Conversely, for any j -flat F of M not contained in Ho, F' = F - Ho is a flat 
of M' and IF'I = si - I , so, by the above, F' must be aj-flat of M'. Thus, M' is a rank n + 1 PMD 

whose j-flats are precisely the sets of form F - Ho for j-flats F of M not contained in Ho, and the 
d-sequence of M' is (sn- ·(s -1), S .. -2(S -1), . . . , s -1,1). 

As in the case of projective geometries, we may also characterize affine geometries by their 
d-sequences. For this purpose we use the well-known axiomatization of affine geometries due to 
Lenz [8]. Let M = (E, .w') be a simple PMD with d-sequence 

d(M) = (sn- l(s-I),sn-2(s-I), .. . ,s-l, 1) 

for some integers n ~ 2 and s ~ 2. Where F is any 3-flat of M, d(M X F) = (S2 -s, s -1, 1) and 
tMXF (l, 2, 3) = s + 1. Thus every point is contained in s + 1 lines, and since for every line L of 
M X F and x E F - L there are exactly s lines meeting both x and L, there is a uniq_ue line con­
taining x and disjoint from L. Thus the lines of M X F decompose into parallel classes. By ad­
joining an ideal point for each parallel class and an ideal line we conclude that M X F is the reduc­
tion of a PG(2, s) to the complement of some line; that is, it is an EG(2, s). 

(78) Let 2' be the family ofKnes of M, and for any L., L2 E 2' write LIII L2 if either L. = L2, or L. n L2 
= 0 and r(L. U L2) = 3. For any L E 2' and point x there is a unique line Lx containing x such that 
Lx IlL - namely, Lx = L if x ELand otherwise Lx is the unique line containing x and disjointfrom L in 
the 3-flat cl(L U {x}). It remains only to show that II is a transitive relation on 2' to establish Lenz's 
incidence axioms for the line-family of an affine geometry. Let L., L2 , L3 be distinct lines such that 
L._IIL2 and LdIL3' ThenK=cl(L I U L2 U L3) is a4-flat and d(MXK)= (S3_ S2, S2_ S, s-l, 1). Pick 
x E L3, and let H=cl(L2 U {x}), H.2=cl(L. U L2), H. 3=cl(L. U L3) ' M' = (MXK) . (K - {x}) has 
d-sequence (S2, s, 1) and H - {x}, HI3 - {x} are hyperplanes (2-flats) of M'. By (76), M' is an 
inflation of a PG(2, s), so by the modular law, (H - {x}) n (H13 - {x} ) is a point of M' . 

Hence H n HI3=L is a line of MXK containing x. If L n L. =0, then LIIL. and x E L implies 
L=L3. Thus L2, L3 ~ H. If L2 n L3 0/=0, we would have L2=L3 (since both are parallel to Ld, 
which is contrary to hypothesis. Hence L2 n L3 = 0 and so L211L3- If L n L. 0/= 0, say L n LI 
= {y}, then L2 U {y} ~ HI2 n H and so HI2 = H. But then LI U {x} ~ HI3 n H, whenceH=Hl3 
= H 12. Thus, L2, L3 ~ H, and since L2 n L3 = 0, we have L211 L3, proving the transitivity of II . 

It follows that 2' is the line-family of an affine geometry of order s on the set E. Since lEI =sn, 
(E, 2) must be an EG(n, s). By (77), the subspaces of (E, 2') form a perfect matroid design N 
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with the same d-sequence as M, and every flat of M is a subspace of N Thus M = N, and we have 
proved the following_ 
(79) THEOREM: For any integers n ~ 2 and s ~ 2, every simple rank n + 1 PMD with d-sequence 
(sn- 1(s-I),sn-2(s_1), __ _ ,s-l, 1) isanEG(n,s),andconversely_ 

3.7. Computation of D-Consistent Sequences 

In spite of the insufficiency of the conditions (DO), (Dl), and (D2) as existence criteria for PMD's, 
there are in fact very few sequences that satisfy even these conditions. In this section we will 
describe how (D0)-(D2) may be applied to determine all possible D-consistent sequences with a 
given leading term 'Y. 
(80) Let 'Y be a given positive integer with t prime factors, let D= (d ll , d n -

" 
..• , dd be a D-con­

sis tent sequence such that d ll = 'Y, and let s be the largest index for which ds = 1. The truncated 
sequence (dn , dll~l, ... , d s+,) =D' is called the nontrivial part of D. By (D2), D' can have at 
most t terms. If t is small, the possibilities for D' will be easy to determine. The possibilities for 
D are then obtained by extendingD' by sequences of "1" 's, subject to the restriction that (Dl) is 
satisfied. 
(81) Let D = (d", d ll _ l , ••• , dd be a sequence of positive integers. A normalized interval of D 
having length i is a sequence of form 

( dll+i d ll + i- I •• • , :"+1 ), 
d ll +I ' d" +1 ' 11 +1 

where 1 ~ i ~ n, ° ~ h ~ n - i. It is easily verified that the sequence D is D-consistent if and only 
if every normalized interval of Dis D-consistent. This fact is often useful in checkingD-consistency 
of long sequences. 
(82) As an application, let us find all D-consistent sequences with leading term 20. From (D2) it 
follows that the nontrivial part of every D-consistent sequence with leading term 20 is one of the 
following: (20), (20,2), (20,4), or (20, 4, 2). By (59), every sequence ofform (20, 1, ... ,1) is D-con­
sistent. It is easy to check that (20, 2, 1) and (20,4,2, 1) are not D-consistent; hence neither of 
these is the interval of a D-consistent sequence. The sequences (20, 4, 1) and (20,4, 1, 1) are D­
consistent, but (20,4,1,1,1) is not. 

Thus, the only D-consistent sequences with leading term 20 are (20, 4, 1), (20, 4, 1, 1), and 
trivial sequences. By (79), EG(2, 5) is the unique PMD with d-sequence (20,4, 1). There is also a 
PMD with d-sequence (20,4,1,1), namely, the inversive plane IP(2, 5). 

In the Appendix we have listed all nontrivial D-consistent sequences with leading terms 1-40 
using the methods presented above. PMD's corresponding to the sequences are given, if known. 
In some cases, existence theorems for BIBD's, the Bruck-Ryser conditions for finite geometries, 
or Theorem (75) imply that a given D-consistent sequence is not realizable. Together, these condi­
tions and D-consistency are sufficiently powerful that, for all D-consistent sequences with leading 
term between 1 and 40, the only realizable ones correspond to one of the three classes of PMD's 
previously discussed: trivioids, t-designs with A. = 1, and projective and affine geometries (or 
truncations of these). On the other hand, there is every indication that many more types of PMD's 
exist, probably an infinite number. For example, the sequence (48,6,2,1) is D-consistent (as may be 
checked), and satisfies (75) and known BIBD existence criteria, but it does not correspond to a 
PMD from one of the above four classes. The existence of a PMD with this d-sequence has not yet 
been established: 

3.8. Bounds on the Rank of Nontrivial Perfect Matroid Designs with Given Co-Circuit 

Cardinality 

The Appendix shows that for each N, 1 ~ N ~ 40 the number of nontrivial D-consistent se­
quences with leading term N is finite. We shall show presently that this result is true for every 
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positive integer N, and in fact we shall be able to give sharp bounds on the rank of any nontrivial 
PMD with given co-circuit cardinality. As a preliminary, we shall state and prove an interesting 
number-theoretic result that appears to be new. 
(83) For every pair (n, m) of integers, n ~ m ~ 1, and integer r ~ 1, let 

( ) _ n(n + 1) . .. (n + r - 1) 
7Tr m, n - ( ) ( ) m m+l ... m+r-l 

and define the factorial index of min n , f3(m, n), to be the maximum integer t such that 7Tr (m, n) 
is integral for 0 ~ r ~ t. We set f3(m, n) =0 if mJ n. 

. n+l 
(84) THEOREM. If m and n are mtegers such that 2 ~ m ~ -2-· , then f3(m, n) ~ n - 2m + 1. 

PROOF: We begin with the following identity which is a variant of Van der Monde's formula ([ll], 
p. 9). 

(85) 

o;viding both ,id" of (85) bye) , and ",ing the ,elation m ~ e ~ ~) , 0 '" , '" t, we ean 

rewrite (85) as follows: 

(86) 
(a) (a + b - r) 
_t = ± (_ 1) r (t) t - r . 

G) 1'= 0 r (~ = ;) 
For given integers n > m ~ 2, let 0 ~ t ~ n - m, and substitute a = n - m, b = m+ t -1 in 

(86). Then we obtain 

(87) 

~.ence , if 7Tt - r is integral for 0 ~ t - r ~ t , then (n ~ m) / (m + : - 1) is integral. If t > 0, it follows 

that m + t - 1 ~ n - m, so t ~ n - 2m + 1. If t = 0, this inequality also holds, since m ~ n ; 1. 

He nce f3(m, n) ~ n - 2m + 1. 
(88) For any matroid M, le t c(M) denote the minimum cardinality of a circuit of M. 
(89) THEOREM: If M= (E, ~) is a simple, nontrivial PMD with hyperplane cardinality k(M), 
then 

(i) k(M) ~ IE1/2. 
(ii) c(M) ~ c*(M). 
(iii) reM) ~ c *(M). 
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PROOF: Let d(M) = D = (d", d"~ I, ... , d l ) and let s be the greatest index such that ds == 1. s ~ n - 2 
because M, and henceD,is non·trivial. For each k, 1 ~ k ~ s+ 1, 

(d ' d + d ' ) - (dS+2 + ds+ tY (d8+2 + dS+1 + 1) . .. (dS+2 + dS+1 + k - 1) 
7Tk s+l, s+2 8+ 1 - (d )(d ) ( 8+1 8+1+1 ... ds+ l +k-1) 

= t ,1/ (s - k - 1, s + 1, s + 2), 

which is an integer. 

S· ds+2 + dS+1 + 1 d 2 (84)· li h wce 2 ~ s+1 ~, Imp es t at 

s + 1 ~ (d8+1 + ds+2) - 2ds+1 + 1 
that is, 

(90) 

Now 
u - l n- I 

II- I L (ds+ 2 - ds+tYdj dS+1 2: (ds+1 - dj ) 
L d, = )-:...'=-'-S+_I ______ ~ _--.::j_=~8+_1 ____ _ 

j=s+1 J dS+'2 - ds+'1 ds+ 2 - ds+1 

by (D2), so 

(91) 

1l - 1 n - l 

Since M is simple, k(M) = L dj = s + 2: dj . Hence, by (90) and (91), 
j = 1 j=s+ 1 

k(M)<d -d +ds+ l(d,,-ds+l) 
~ s+2 8+1 dS+2 - ds+ I 

= (d8+2 - ds+I )2 -d;+1 + ds+ld" " 
dS+2 - ds+1 dS+2 - dS+1 

dS+2 (dS+2 -2ds+ l ) ds+1d" ' 
= d8+2 - dS+1 + dS+'2 - ds+1 

=d", 

the latter inequality because d" ~ ds + 2 and ds + 2 ~ 2ds + I. Thus, k (M) ~ d". Since M is simple, 
k(M) + d" = lEI, hence k (M) ~ lEI /2, and (i) is proved. 

Since M is nontrivial, k(M) > n-1, every hyperplane is dependent (contains a circuit). Hence 
c(M) ~ k(M) ~ d" = c*(M), proving (ii). Finally, reM) = n ~ k(M) ~ c*(M), proving (iii). 

There are examples of PMD's for which (i), (ii), and (iii) of (89) are all satisfied as equalities: for 
example, the affine geometry EG (3, 2) , and the Witt design 5-(12, 6, 1). Therefore, (89) is, in a cer­
tain sense, best possible. 
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3.9. The t-Designs in a Perfect Matroid Design 

We have already observed in (25) that the flats of a given cardinality in a simple PMD M con­
stitute the blocks of a BIBD on the points of M. This result can be sharpened to state that any such 
collection of flats forms a t-design for some appropriate t. Moreover, we shall show that not only the 
flats, but also the circuits, and the independent sets, of a given cardinality in a PMD form at-design 
for an appropriate t. These results yield a method for deriving new t-designs from known ones in 
certain cases. 
(92) Where c(M) is the minimum cardinality of a circuit of the matroid M, it follows that c(M) -1 is 
the maximum integer m such that every m-subset of E is independent. c(M) -1 is called the inde­
pendence number of M, (3(M). 
(93) THEOREM: Let M = (E, §) be a rank n PMD with independence number {3, where 2 ~ {3 ~ n, and 
for each j, {3 ~ j ~ n, let j5i be the set ofj-flats of M. Then (E, Bi) is a {3 - (I EI, tM(O, 1, j), tM({3, j, n)) 
design. 
PROOF: Letj be given, {3 ~j ~ n. Since every {3-subset of E is independent, every {3 elements are 
contained in one and only one (3-flat, which is contained in precisely tM({3,j, n) j-flats. Since (3 ~ 2, 
M is simple, and hence every j-flat of M contains tM(O, 1,j) elements. Therefore (E, Bi) is a {3-
(lEI, tM(O, 1,j), tM({3,j, n» design. 
(94) THEOREM: Let M= (E, Jf") be a rank n PMD with independence number {3, 2 ~ {3 ~ n. For each 
j, {3 ~ j ~ n, the family § i of independent sets of cardinality j in M are the blocks of a {3 - (IE I, j, f.-tj) 
design on the set E, where 

(95) j-I 

IT (tM(O, 1, n) - tM(O, 1, l) 
1={3 f . (3 

f.-tj = G - (3)! or ] > , 

and f.-tj= 1 for j= {3. 
PROOF: If j= {3, we take jLj= 1 and the theorem obviously holds. Thus we may assume thatj > {3. 
(96) Let E{3 be a fixed {3-subset of E, and let Fo= cl (E{3). E{3 is independent, by definition of {3-
With each independent j-set J containing E{3, we may associate an ordering J' = (XI, . . ., Xj-(3) 
of J - E {3 and a sequence 8' :F 0 e FIe . . . e Fj - {3 of nested flats defined by F i= cl (F 0 U 
{XI, .. " Xi} ), The sequence B then has the property that Xi+1 E E - Fi and Fi+1 = cl (Fi U {Xi+I}) 
for ° ~ i ~ j - {3. For each set J containing E{3, such an association can be made in precisely (j - (3)! 
ways. 
(97) Conversely, for any sequence of flats cl (E{3)=Fo eFI e ... eFj _{3,andsetJ'={xt, ... , 
Xj - {3} such that Xi+ I E E-Fi and Fi+ I =cl(F; U {Xi+ d) for ° ~ i ~j-{3, the setJ=j' U E{3 is an 
independent set of rank j. If this were not so, let k be the least integer such that E{3 U {XI, . _ ., Xk} 
were dependent. But by (5), F k-I = cl (E{3 U {XI, .. " xk-d ), and hence we would have Xk E Fk- I, 
which is contrary to assumption. Therefore J is an independent set of rankj containing E{3. 

A sequence of flats and ordered independent set as in (97) can be chosen in precisely 

j-I 

IT (tM (0,1, n) - tM (0, 1, l) 
1={3 

distinct ways, and each corresponding independent j-set containing E{3 is thereby counted (j - (3)! 
times, by (96). Thus E{3 is contained in precisely 

j - I 

IT (tM (0,1, n) -tM (0,1, l» 
1={3 

independent j-sets. 
(98) THEOREM: Let M = (E, m be a simple, rank n PMD with independent number {3. For each 
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j, f3 < j OS; n + 1, the family 'ifj of cardinality-j circuits af M are the blacks af a f3 - ( lEI, j, 1/j) design 
'on the set E, where 

1= 1 I (99) 
1/j= ILj-1 . f3 - ILj, 

]-

[
tM (0,1, n) + ~ (-l)l- i-J (j --:-1) tM(O, l'i)] 

and ILl is as defined in (95)for f3 < j OS; n, and ILn+1 = O. 
P ROOF: For each), 2 os;} OS; n + 1, let 

We shall first establish (98) for the case} = n + 1. 
(1 00) Let] be a basis of M, and for each i, 1 OS; i OS; n, let Pi be the set of all pairs (Ii, x) such thatli 
is an i-subset of ] and x E cl(li) , where cl(li) is the unique i-flat containing l;. Since M is simple, 

tM (0, 1, i) represents the cardinality of any i-flat, 1 OS; i OS; n. Thus we have IPd = ('~I) tM (0,1, i) = 

(n) II . tM (0,1, i). Let P= U Pi, and to each pair (I, x) E P assign the coefficient (_1)"- i if (I, x) 
£ 1=1 

E Pi. Thusf(n+ 1) is the sum of the coefficients of the members of P. 
For any x E E, define F(x) to be the sum of the coefficients of pairs in P containing x. If 

x E ] , x is contained in the closure of G = :) i-subsets of], 1 OS; i OS; n. Thus 

(101) II (n-l) F(x)=~(_1)II- i i-I =OforxE]. 

If x E E - J, then since J is a maximal independent set, J U {x} contains a circuit Cx, contain­
ing x, and by (1), it is unique. Let ICxl = }; clearly,} OS; n + 1. Now (I, x) E P if and only if Cx ~ I U 

{x}. Thus x is c'ontained in the closures of (~=~: 1 ~ i-subsets of J for) - ,~ OS; i OS; n, and nX ~s. con­

tained in the closures of no i-subsets of} for 0 OS; i os;} - 2. Hence F (x) = L (-1) II - i ( . _J: ~) 
i = j - I ~ } 

in this case. Setting n - } + 1 = k and i - } + 1 = I, we have that 

/I . (n -) + 1) h' (k) 0, for k > 0. 
i~1 (_1)n- 1 i-}+l =~ (-l)H I =l,fork=O,i.e.,for}=n+l. 

Thus F(x ) = 1 if and only if x E E - J and ICxl = n+ 1, i.e., if and only if] U {x} is a circuit. Since 
f(n+l) = 2: F (x), f(n+l) is precisely the number of circuits of cardinality n+l containing J. 

xEE 

By (94), every f3-subset of E is contained in exactly ILn bases of M, where ILn is as in (95). Further, 
every circuit C of cardinality n + 1 contains n + 1 - f3 bases of M containing a given f3 subset of C. 
Hence the number of cardinality - (n + 1) circuits of M containing any given f3-subset of E is exactly 

(02) 
f(n+ 1) 

1/n+l= n+l-f3 

1/ - 1 (n) 
tM(O, 1, n) + ~ (_1)" - i i tM(O, 1, i) 

IL/I n+l-f3 

(103) For an arbitrary}, f3 <} OS; n+ 1 , we consider M(j-l), the (j-l) -truncation of M. The circuits of 

493 -033 OL -73 - 3 
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M(j- l) are evidently the circuits of M having cardinality less than or equal to j , together with the 
j-subsets of E that are independent in M_ By (37), M(j-I) has rankj-1 and its t-function t(i,j, k) is 
determined by 

t(O, 1,j-1)=tM(0, 1, n). 

Hence (102) applied to M(j - I) implies that every ,B-subset of E is contained in precisely 

cardinality-j circuits of MU-l). However, ILj of these circuits are cardinality-j independent sets of M, 
by (103). Thus every ,B-subset of E is contained in precisely 

cardinality-j circuits of M. 
(04) Let us observe that we may have 1)j = 0 for some integers j in (99); in this case 'f5j=0 and 
(E, 'f5j) is said to be a vacuous ,B-design. 

3.10. Constructions of New t-Designs 

Before applying the results of (94) and (98) to the construction of new t-designs, we shall point 
out several very natural ways of obtaining new t-designs from given ones. 

The following result generalizes a well-known theorem for BIBD's. 
(l05) THEOREM: Let (E, ~) be a t-(v, k, A) design and let:Jr' be the system consisting of the comple­
ments in E of the blocks of:Jr (including repetitions). Then (E, :Jr') is a t-(v, v- k, A') design, called 
the complementary design to M, and 

PROOF: For integer j, 0 ~ j ~ t, let Aj be the number of blocks containing any fixed j-subset of E. For 
a given j-set Ej and t-set E t , where Ej C E t C E, let '1/j be the number of blocks H such that H n 
E t = Ej • Then '1/t = A, and recursively, 

~(t-j) '1/j = Aj - L . '1/j+i 
i= 1 L 

is independent of the particular sets Ej and E t• It follows that (E, :Jr') is a t- (v, v-k, '1/0) design 
Hence 
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so 

(106) Let (E, Jf') be a t- (v, k, A) design such that Jf' contains no repeated blocks and let Jf" 
be the family of k-subsets of E not contained in Jf'_ Clearly, (E, Jf" ) is a t- (v, k, A') design, 

where A' = (~==:) - A. (E, Jf") will be called the opposite design to M. This obvious construction 

seems to have passed unnoticed in the literature on t-designs. 
(107) Let (E, Jf') be a t - (v, k, A) design and suppose that for some integers l < k and A' there 
exists a t- (k, l, A') design (E', Jf'1). For each H E Jf', let (H, Jf'~) be any design on the set H 
that is isomorphic to (E', Jf" ), and let JIC'" be the union (with repetitions) of the systems Jf'~, H E Jf'. 
Then it is straightforward to verify that (E', JIC"') is a t- (v, l, AA') design, called a composition 
ol(E, m with (E', Jf" ). (This construction for BIBD's was pointed out by Hanani [7].) 

Now let M = (E, Jf') be a given t - (v , k, 1) design. 
(108) By (64), reM) = t + 1 and f3(M) = t. Hence every circuit of M has cardinality t + 1 or t + 2. 
In this case, (94) and (98) have particularly simple interpretations. 
(109) The family ~t+1 of circuits of cardinality (t+ 1) consists of precisely the (t+ 1) subsets of 
the members of Jf'. Indeed, for any H E7t', r(H) = reM) -1 = t, so every (t+ I)-subset of H is de· 
pendent, and in fact minimal dependent, since f3 (M) = t. Conversely every circuit ~ of cardinality 
t + 1 is contained in a hyperplane H E 7t', since r(~) = t. Thus (E, ~t+J) is a composition of (E, 7t') 
with au (1, t+ 1, k); i.e., (E, ~t+dis at- (v, t+ 1, k-t) design. 
(110) The family f3 of bases of M is evidently precisely the collection of (t+ I)-subsets of E that 
are not contained in ~t+J. Thus (E, (3) is a t- (v, t+ 1, v-k) design, the opposite to (E, ~t+ d. 
(111) Finally, the family ~t+2 of cardinality (t + 2) circuits of M consists of precisely those (t + 2)­
subsets $ of E such that every (t + I)-subset of S is a b~sis of M. Using (162), we find that (E, 
~t+2) is a 

I. 2 (v-k) (v- (t-I) (k-t+ 1))) 
t-"t+ , 2 

design, which we shall call the circuit design of M. 
The construction of (Ill) applies to any t- (v, k, 1) design, and is apparently new. Table 1 

shows the parameters of the known t - (v, k, 1) designs with t ~ 3, and the associated circuit 
design parameters. 

TABLE 1. Parameters of known t-(v, k, 1) designs , (t ;;' 3) 
and associated circuit designs 

t-Design parameters 

3-(6u + 2, 4,1) , u ;;' O 

3-(6u + 4, 4,1) , u ;;, O 

3-(q"+ I , q+ I, I), q a prime. 

4- (11,5,1) 
4-(23 , 7,1) 
5-(12,6,1) 
5~(24, 8,1) 

Circuit design parameters 

3-(6u + 2, 5, 6(u - 1)(3u-l)) 
3- (6u + 4, 5, 6u(3u - 2)) 

( 
II (qll_q) (q ll -4q+5)) 

3- q+1,5, 2 

4-(11,6,3) 
4-(23,6,24) 
vacuous, A = 0 
vacuous, A=O 
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3.11. Self-Dual PMD's 

We close our discussion of PMD's by developing an intriguing unsolved problem in the theory 
of t-designs. . 
(112) A matroid M = (E, Jr) is said to be selfdual if M* = M; i.e., if the hyperplanes of M* are 
identical with the hyperplanes of M. 
(113) If M is self-dual, then in particular the bases of M and M* are identical, so for every basis 

B of M, E - B is also a basis of M. Hence IE - BI = IBI, so r(M) = ~. 
(114) THEOREM: M is a simple, nontrivial, selfdual PMD if and only ifM is a (k -1) -(2k, k, 1) 
design, k > 2. Moreover, such an M can exist only ilk + 1 is an odd prime. 

PROOF: Let M= (E, Jr) be a simple, nontrivial, self-dual PMD and let k(M) = k. By (89), k ~ 1;1. 

Further, ~= r(M), by (113). But k= IHI ;,: r(H) = r(M) -1 for every HE Jr, so ~-1 ~ k 

~ I~I. If k= 1~I_l' then evidently every hyperplane is a rank r(M) -1 independent set. But 

then every subset of cardinality r(M) is a basis, so M is trivial, contrary to hypothesis. Hence 

k= r(M) =1fi, and every hyperplane contains a circuit. But the circuits are identical with the 

co-circuits, hence they all have cardinality IEI- k= k. Thus every hyperplane is a circuit, and 
conversely. 

Since the circuits all have cardinality k, every (k -I)-subset of E is independent. Thus, for 
O~j~ k-2, thej-flats of M are all simple. Thus,M is a PMD with d-sequence (k, 2,1,1, ... ,1) 
containingk-2 "I"'s.1t follows from (64) thatM is a (k-I) - (2k, k, 1) design. 

Now k > 2, for otherwise M would be nonsimple. Suppose that k+ 1 is not a prime , and letp be 
a prime divisor of k+ 1, where 1 < P < k+ 1. By (42), 

(k- -1 k-I k)=(k+2+(p-2))(k+2+(p-3)) ... (k+2) 
tM p " (2+(p-2))(2+(p-3)) ... 2 

(115) (k+p)(k+p-l) .. (k+2) 
p(p-l) . .2 

must be an integer. However, since p divides (k+ 1), p does not divide any integer strictly between 
k+ 1 and k+ 1 + p. Thus p does not divide the numerator of (115), which gives a contradiction. 
(116) Suppose, conversely, that M = (E, Jr) is a Dk _ d2k, k, 1), k > 2. Then .B(M) = k -1 ;,: 2, so 
M is simple. M is nontrivial, because every (k -1) ·subset of E is contained in more than one k-sub­
set when lEI = 2k;,: 6. Finally, it has been observed by Mendelsohn [9] that for every (k -1) - (2k, 
k, 1) design (V, 'W") , W E 'W" im plies E - W E 'W". It follows that for every basis B of M, E - B is also 
a basis; hence M = M*. Therefore, M is a simple, nontrivial, self·dual PMD and, by the first part of 
the proof, k + 1 is an odd prime. 
(117) Corresponding to the primes 3, 5, and 7 are the self·dual PMD's DJ (4,2 , 1), D 3 (8, 4,1), and 
D5(12, 6, 1), respectively. Moreover, these are the unique simple, nontrivial self-dual PMD's for 
these orders. The existence of higher order examples is an unsolved problem. 

4. Constructions of Matroid Designs and an Analysis of the Witt Design 

ln this concluding section we shall turn our attention to the general subject of matroid designs. 
In a matroid design M we only demand that all of the hyperplanes have the same cardinality, which 
we denote as before by k(M). In particular, the points of a matroid design may have different 
cardinalities, which allows more structural freedom than is possible in PMD's. However, simple 
matroid designs are virtually as difficult to construct as PMD's. In fact, it might even be imagined 
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that equicardinality of the points and of the hyperplanes of a matroid forces it to be a PMD. How­
ever, we shall show that this is not the case. In fact, we shall presently demonstrate a simple 
matroid design that is a 5-design, but not a perfect matroid design. We shall also present several 
basic constructions for matroid designs to illustrate the variety and complexity of these interesting 
structures. 

The basis for our analysis is the know ledge that there exists a t-design with parameters 5-(24, 
8,1). This extraordinary design was discovered by Witt [13] and is constructed by considering the 
action of the Mathie permutation group M24 on a certain 8-subset of a 24-element permutation set. 
He also showed it to be the unique t-design with the given parameters , up to isomorphism. Unfor­
tunately, its presentation as such gives little insight into its structure. However, regarding it as a 
matroid, and using only the knowledge of its parameters, we can derive considerable information 
about its properties. Simultaneously, we shall be led to discover a number of interesting and impor­
tant matroid designs. 

Let us denote Witt's 5-(24, 8, 1) design by W24 • By (64), W 24 is a rank 6 PMD with hyperplane 
family Jf', and its d-sequence is (16,4,1,1,1,1). 
(118) THEOREM: The family '€ of circuits of W 24 = (E, Jf') is precisely the set of 6-subsets of members 
of Jf', and (E, '€) is a 5-(24,6,3) design. 
PROOF: By (108) every circuit of W24 has cardinality 6 or 7. Let '€7 be the set of circuits of car­
dinality 7. Then, substituting v = 24, k = 8, and t = 5 into the expression for A in (Ill), we have that 
(E, '€7) is a 5-(24, 7, 0) design; i.e., '€7=j}. Hence every circuit of W24 has cardinality 6, and it follows 
from (109) that the circuits of W24 are precisely the 6-subsets of members of Jf'. Therefore (E, '€) is 
the composition of(E, Jf') with ao-(I,6, 8), so (E, '€) is a 5-(24,6,3) design. 
(119) THEOREM: The dual ofW24 , W2l, is a simple rank 18 matroid design that is a 5-design but not a 
PMD. 
PROOF: Let W 24 = (E, Jf'), with circuit family '€. By (8), the set Jf'* of hyperplanes of Wd is pre­
cisely the set of complements in E of the circuits of W24 ; i.e., (E, Jf' *) is the complementary design 
to (E, '€) . By (118), (E, '€) is a 5-(24, 6, 3) design, so it follows from (105) that (E, Jf' *) is a 5-(24,18, 

G8)/2) design. Moreover, Wd is a matroid design, k(Wd) = 18, and r(Wd) = IEI- r(W24 ) = 18. 

The circuits of Wd are the complements of hyperplanes of W24 ; hence they all have cardinality 16. 
In particular, Wd is simple. Hence Wd is a simple rank 18 matroid design that is as-design. 

If Wd were a PMD, then by (118) it would either be a trivioid (which is clearly not the case), 
or it would satisfy k (Wd) ,;;; I E 1/2 , which is also not the case. 

Using (119) and the basic properties of matroid flats, we can describe the flats of Wd exactly. 
(120) THEOREM: (i) For 0 ,;;; j,;;; 14, the j-flats of W24*= (E, Jf' *) are just the j-subsets of E. 
(ii) The 15jlats consist of all circuits, and allIS-subsets ofE not contained in a circuit. 
(iii) The 16-flats consist of all subsets of form C U {x}, where C is a circuit and x E E - C, and all 
16-subsets of E no 15 of which are contained in a circuit. 
(iv) The 17-flats (hyperplanes) consist precisely of the sets ofform C U {x, y}, where C is a circuit 
and x, y E E - C, x#- y. 

PROOF: For O,;;;j,;;; 14, let T be any j-subset of E. Since the circuits of Wd all have cardinality 16, 
T is independent, and cl(T)=T by definition of closure. Hence, for O,;;;j,;;; 14, thej-flats or Wd 
are just the j-subsets of E, and (i) is proved. 
(121) Let ps be any IS-flat of Wd , and let H be a hyperplane containingPs. Since r(H) = r(PS) + 
2, I HI ~ Ipsi + 2, and since IH 1= 18, we have Ipsi ,;;; 16. If Ipsi = 16, ps must be dependent, 
so ps is a circuit. Otherwise, IFlsl = IS, and since F1S is closed, F1 S is a set of IS elements con­
tained in no circuit. Conversely, every circuit C has rank IS, hence is contained in some 15-flatFIS; 
since IPS I ,;;; 16, C = ps. If T is a IS-subset of E contained in no circuit, then r(T) = IS and cl(T) = 
T, so T is a IS-flat. This proves (ii). 

Let p6 be an arbitrary 16-flat of Wd. Using an argument like that of (121), we may show that 

(122) 
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If Ip61 = 17, p6 must be dependent; hence it is ofform C U {x } for some circuit C and x E E - C. If 
IP6 1 = 16, then cl(P6) =FI6, so FI6 U {x} contains no circuit for any x E E; hence no IS-subset of 
F16 is contained in a circuit. Conversely, any set C U {x}, where C is a circuit and x E E-C, 
has rank 16 (since C is a IS-flat) and cardinality 17, so, by (122), C U {x} is a 16-flat. If T is a 16-
subset of E such that no IS-subset of T is contained in a circuit, then cl(T) = T and T is 'independent, 
so T is a I6-flat. This proves (iii). 

The characterization of the hyperplanes (iv) follows immediately from (118) and the fact that 
the hyperplanes and circuits of Wd are the complements, respectively, of the circuits and hyper­
planes of W24 • 

Using matroid theory alone, the possible structures of all contractions Wd· (E - F), wher~ 
F is a flat of Wd, can be identified. As a way of introducing both concrete examples and general 
constructions of new matroid designs, we shall identify all the structures of Wd· (E - F) for 
reF) = 14 andr(F) = 15. 

We begin by describing a general matroid construction due to U.S.R. Murty. Let M=(E, Jf') 
be a rank n matroid (not necessarily a matroid design) and let lSll-2 be the set of (n-2)-flats of M. 
For a given positive integer m, let P(m) denote the matroid consisting of a single point on m ele­
ments (we shall identify P(m) with the set of m elements itself), and choose P(m) disjoint from E. 
Then it may easily be verified that Jf"=Jf'U {P(m) UF:FElSn-d satisfies (HI) and (H2); 
hence Jf" is the family of hyperplanes of a matroid on the set E' = E U P (m). (E', Jf' ') is called 
the one-point extension of M by P(m), and denoted by MEB P(m). 
(123) Suppose now that M is a matroid design, k(M) =k, and suppose further that the (n-2)-flats 
of M all have cardinality h < k. Then clearly M EB P(k - h) will be a matroid design with hyper­
plane size k. 

We then have the following structural theorem about Wd. (For the proofs of this and the 
next theorem, the reader is referred to [15].) 
(124) THEOREM: For any is-fiat F ofWd, Wd· (E-F) has rank 3 and is either a 0"(1,2, 8) or a 
PG{2,2)EB P(2),oranEG{2,3). 

PG(2, 2)EBP(2) is shown in figure 1. In this and subsequent matroid diagrams, the simple 
points will be represented by solid nodes, and points with m> 1 elements will be represented by 
a hollow node containing the number m. 2-flats will be represented by lines, and 3-flats by planes, 
where convenient. 

FIGURE 1. The matroid design PG (2, 2)E9 P (2). 

The following matroid design arises as a rank 4 contraction of W2t. It is the smallest example 
of a simple matroid design that is not a PMD. 
(125) Let LI, L2 be disjoint sets of three elements each, and let Q be the set of all nine pairs {x, y} 
such that x E L\, y E L 2• Let Q be partitioned into three sets PI. P 2 , P 3 , each containing three 
pairs, such that the pairs in each Pi are mutually disjoint, 1:;;; i:;;; 3. Now let A be a set of four 
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elements disjoint from Ll U L 2 , and let Q' be the set of six distinct pairs {x, y} in A. Let P~, P~, P~ 
be a partitioning of Q' into three sets, each containing two disjoint pairs of Q'. We define 

Y i = {Li U {y}: y E E - Li}, for i= 1, 2, 

and 
q' E Pj}, j=I,2,3, 

%= (j~l Zj) U (i~l Yi ) U {A}. 

It is straightforward to verify that (E, %) satisfies (HI) and (H2), hence is a matroid. We shall 
denote any matroid of this form by '1'. By construction, 'I' is a matroid design, and k('I') = r('I') 
= 4. The lines of 'I' are precisely the sets of form L = HI n H 2 such that IH I n H 21 ~ 2 and H!, 
H2 are distinct members of %. In particular, Ll and L2 are lines of '1', and every other line of 'I' is 
simple. Therefore 'I' is not a PMD. Finally, for every two distinct elements x, y E E, there is a 
hyperplane containing x but not y, so 'I' itself is simple. 

Representative lines and planes of 'I' are shown in figure 2. 

FIGURE 2. The matroid design '1'. 

(126) THEOREM: For any 14-subset F ofW 2:' M = W 2: . (E - F) is either 
(i) an EG(3, 2) EB P(2) 

or (ii) 'I' 
or (iii) an IP(3). 

Moreover, each of these matroids actually occurs for some choice of F. 
The complete analysis of the higher· rank contractions of W2: becomes quite tedious, and 

we shall forego it here. However, to illustrate the intricacy of structure possible in matroid designs, 
we shall present one example of a simple rank 5 matroid design that arises as a contraction Wd 
. (E - F), where F is a 13·flat of W2: contained in a circuit. We shall call this matroid cf>=(E', %'), 
and we describe it as follows. 
(127) IE' I = 11, and all points of cf> are simple. cf> has one line of cardinality 3, L = {a, b, c}, and all 
other lines are simple. The remaining eight points of cf> are divided into two disjoint 3·flats having 4 
elements each: Fr: {a, {3, 'Y, 8} and Fg= {I, 2, 3, 4}. The sets ofform {x} U L, where x E E'-L, 
are also 3-flats of M. All other 3-flats are simple. 
(128) k( cf» = 5 and for each x E L, cf> . (E - {x}) is an EG(3, 2) EB P(2), where P(2) = L - {x}. In 
other words, for each x E L, the family %~ of hyperplanes containing x but not L, when restricted 
to the set E - L, form an EG(3, 2) on E - L. In particular, Fr U {x} E %;for i= 1,2 and each x E L. 

Let%/1 = {H - {x}: HE %/} for each x, x= a, b, c. Then F3 E H" for each x ELand i= 1, 2. 
x X 1. X 

Moreover, Fr and F~ are the only sets common to any two of the families %;, because they are the 
only 3-flats of cf> having cardinality 4 and contained in E - L. 

39 



(0 ) 

... 

a ~~~~t----~~ 
2 

(b) 

r 

a 4 

(c) 

rF--------~ 
2 

FIGURE 3. Three copies of EG (3, 2) containing exact ly two parallel 
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Thus, for x= a, b, c, the pairs (E - L, ,%;) constitute three copies of EG(3, 2) on the set E - L, 
each containing Fr= {a , {3 , y , 8} and F~= {I, 2, 3, 4} as their only common hyperplanes. Up to 
isomorphism there is only one way in which three sets of hyperplanes of an EG(3, 2) may be so 
chosen. Three such sets are listed below, and the corresponding hyperplanes are diagrammed in 
Figure 3. 

(a) (b) (c) 

{a,{3,y,8} {a,{3,y,8} {a, {3, y , 8} 
{1,2,3,4} {l, 2,3, 4} {1,2,3,4} 
{l, 2, a, {3} {1,2,a,y} {l,2,a,8} 
{1,2,y,8} {1,2,{3,8} {l ,2, {3 , y} 
{1,3,a,y} {l, 3, a, 8} {l,3,a, {3} 
{1,3,{3,8} {1,3,{3,y} {I, 3, y, 8} 
{l, 4, a, 8} {1,4, a,{3} {1,4,a,y} 
{1,4,{3,y} {l,4,y,8} {l, 4, {3 , 8} 
{2, 3, a, 8} {2,3,a,{3} {2,3,a,y} 
{2,3,{3,y} {2, 3, y, 8} {2, 3, {3 , 8} 
{2,4,a,y} {2, 4, a, 8} {2,4,a,{3} 
{2, 4, {3, 8} {2,4,{3,y} {2, 4, y , 8} 
{3,4 ,a,{3} {3,4,a,y} {3, 4, a, 8} 
{3,4,y,8} {3 , 4, {3 , 8} {3 ,4, {3,y} 

For each x, x = a, b, c, adjoin the element x to each of the sets in list (x), and let .9" I be the res ulting 
collection of 5·subsets of E'. Further, let .9"2= {{x} U Fl: x E FJ, i ¥= j} and .9"3= {{x, y} U L: 
x, y E E' - L and x ¥= y}. We claim that ,%' =.9" I U .9"2 U !J' 3 is the hyperplane family of the rna· 
troid 11> having points , lines and 3-flats as described in (127). To show that (E', ,%') is a matroid, 
the principal facts that need to be checked are: 
(i) that every two distinct hyperplanes intersect in a j-flat for some j:;;; 3; and (ii) that for 0 :;;; j:;;; 3 
every j-flat F and element x E E - F lie in a common (j+ l)-flat. The verification of (i) and (ii) is 
a straightforward matter of consideration by cases, and is left to the reader. 

The preceding examples suggest the intricacy and variety of structure possible in matroid 
designs. Yet it is a remarkable fact that for large classes of integers y, no matroid designs (other 
than trivioids) exist with cocircuit cardinality y. And for many other classes of integers, all matroid 
designs with cocircuit cardinalities of that class can be described completely. 

These and other results in the theory of matroid designs may be found in [14]. 

5. Appendix. Nontrivial D-Consistent Sequences With Leading Term N, 
1 ~ N ~ 40, and Associated PMO's 

We list below all nontrivial D-consistent sequences of maximal length with leading term N, 
1 :;;; N :;;; 40. Those values of N, 1 :;;; N:;;; 40, for which no such sequences exist are not listed. 
Each nontrivial D-consistent sequence D' having leading term N is an initial subsequence of some 
maximal such sequence D. The known PMD's having d-sequence D' are then listed after D and the 
symbol (m), where m is the length of D' . (m ;;:,: 3 since D' is nontrivial.) 

A t- (v, k, A) design (see Sec. 3.2) is denoted here by D,(v, k, A). PG(n, s) and EG(n, s) 
denote, respectively, the finite projective and affine geometries of dimension n and order s, and 
[pes ) denotes an inversive plane of order s. The inversive planes are discussed in (67). Finally , 
M(l) denotes the truncation of the matroid M at levell (see (37». 

Sources for the construction of all PMD's listed are given by paragraph number or reference 
number. In several cases it may be proved that some initial subsequence of a D-consistent sequence 
D is not realizable. This implies, by (81), that D itself is not realizable. Reference is made in these 
cases to the appropriate theorems in the text. 
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N 
Maximal D-consistent Initial s ub- Associated 

References 
sequences sequence lengths PMD's 

4 4,2,1,1 (3) PG(2,2) (72) 
(4) EG(3,2) (77) 

6 6,2,1,1,1,1 (3) EG(2,3) (77) 
(4) IP(3) (67) 
(5) D.(11, 5, 1) [13] 
(6) D5(12, 6,1) [13] 

8 8,4,2,1,1 (4) PG(3,2) (72) 
(5) EG(4,2) (77) 

9 9,3,1 (3) PG(2,3) (72) 

10 10, 2, 1, ___ , 1 (3) D 2 (13, 3, 1) [3] --- (4) D3 (14, 4,1) [4] 
8 terms (5)-(10) unknown 

12 12, 2, 1, _ . " 1 (3) D2 (15, 3, 1) [3] --- (4) D3 (16, 4,1) [4] 
10 terms (5)-(12) unknown 

12, 3, 1, 1, 1 (3) EG(2,4) (77) 
(4) IP(4) (67) 
(5) unknown 

16 16,2,1, ... ,1 (3) D.(19, 3, 1) [3] -- (4) D3 (20, 4, 1) [4] 
14 terms (5)-(16) unknown 

16, 4, 1, 1, 1, 1 (3) PG(2,4) (72) 
(4) D 3 (22, 6, 1) [13] 
(5) D.(23, 7, 1) [13] 
(6) D5(24, 8, 1) [13] 

16,8,4,2, 1, 1 (5) PG(4,2) (72) 
(6) EG(5,2) (77) 

18 18, 2, 1, ... , 1 (3) D 2 (21, 3, 1) [3] --- (4) D 3 (22, 4, 1) [4] 
16 terms (5)-(18) unknown 

18, 6, 2, 1 (4) EG(3,3) (77) 

20 20, 4, 1, 1 (3) EG(2,5) (77) 
(4) IP(5) (67) 

21 21,3,1, ... ,1 (3) D 2 (25, 4, 1) 
~ 

7 terms (4)-(9) unknown 

22,2, 1, ... ,1 (3) D.(25, 3, 1) [3] -- (4) D 3 (26, 4, 1) [4] 
20 terms (5)-(22) unknown 

24 24, 2, 1, 1 (3) D 2 (27, 3,1) [3] 
(4) D 3 (28, 4, 1) [4] 
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N 
Maximal D-consistent Initial sub- Associated 

References sequences sequence lenf,>ths PMD's 

24 , 3,1 (3) D2(28,4,1) [5] 

24,4,2, 1, 1 (4) PG(4,2)(4) (72) 
(5) EG(5 , 2)(5) (77) 

25 25,5,1 (3 ) PG(2,5) (72) 

27 27,9,3,1 (4) PG(3,3) (72) 

28 28, 2, 1, _ _ ., 1 (3) D2(31, 3, 1) [3] 
~ (4) D3 (32, 4, 1) [4] 

26 terms (5)-(28) unknown 

30 30,2,1, ... ,1 (3 ) D2(33, 3, 1) [3] 
~ (4) D 3 (34, 4, 1) [4] 

28 terms (5)-(30) unknown 

30, 5, 1, 1 (3 ) EG(2,6)- [3] 
does not exist 

32 32, 16, 8, 4, 2, 1 (6) PG(5,2) (72) 
(7) EG(6,2) (77) 

33 33,3,1 (3) D2(37, 4, 1) [5] 

34 34, 2, 1, 1 (3) D2 (37, 3, 1) [3] 
(4) D 3 (38, 4, 1) [4] 

36 36,2,1, ... ,1 (3) D2 (39,3, 1) [3] -- (4) D3 (40, 4, 1) [4] 
34 terms (5) - (36) unknown 

36,3,1, ... ,1 (3) D2(40, 4,1) [3] 
---.- (14) - (17) unknown 

15 terms 

36,4,1,_ .. ,1 (3) D2(41, 5, 1) [3] -- (4)-(10) unknown 
8 terms 

36, 6, 1 (3) PG(2,6)- [3] 
does not exist 

36,4,2,1, ... , 1 (4)-(9) does not exist (75) 

-------6 terms 

40 40,2,1, ... ,1 (3) D2(43, 3, 1) [3] 
~ (4) D 3 (44, 4,1) [4] 

38 terms (5)-(40) unknown 

40,4, 1, 1 (3) D,(45, 5, 1) [5] 
(4) unknown 

40,5,1 (3) unknown 

43 



6. References 

[1] Birkhoff, G., Lattice Theory, Amer. Math. Soc., Coll. IPubns. 25 (1967). 
[2] Edmonds, J ., Submodular functions, matroids, and certain polyhedra, in Combinatorial Structures and Their Ap· 

plications (Proceedings of the Calgary International Symposium on Combinatorial Structures, 1969) (Gordon and 
Breach, New York, 1970). 

[3] Hall, M., Jr., Combinatorial Theory (Blaisdell, Waltham, Mass. 1967). 
[4] Hanani, H., On Quadruple Systems , Can. J. Math. 12,145-157 (1%0). 
[5] Hanani, H., The existence and construction of balanced incomplete block designs, Ann. Math. Stat. 32, 361-386 

(1961). 
[6] Hanani , H., On some tactical configurations, Can. J . Math. 15,702-722 (1963). 
[7] Hughes, D. R., On t·designs and groups, Amer. J. Math. 87,761-778 (1965). 
[8] Lenz, H., Zur Begrundung der analytischen Geometrie , Sitzber. Bayer. Akad: Wiss. Math. Naturw. Kl. 17-72, (1954). 
[9] Mendelsohn , N. S., Intersection numbers of t·designs, Studies in Pure Mathematics (Academic Press, to appear). 

[10] Murty, U.S.R., Equicardinal matroids and finite geometries, in Combinatorial Structures and their Applications (Gordon 
and Breach, New York, 1970). 

[11] Riordan, J. , Combinatorialldentities (Wiley, New York, 1 %8). 
[12] Seidenberg, A. , Lectures in Projective Geometry (Van Nostrand, Princeton, N.J., 1962). 
[13] Witt , E., Uber Steinersche Systeme, Abh. Hamburg 12, 265-275 (1938). 
[14] Young, H. P., Existence theorems for matroid designs , submitted to Trans. Amer. Math. Soc. 
[15] Young, H. P ., Equicardinal matroids and matroid designs, Ph.D. Dissertation, University of Michigan, December, 

1970. 

(Paper 77-376) 

44 


	jresv77Bn1-2p_15
	jresv77Bn1-2p_16
	jresv77Bn1-2p_17
	jresv77Bn1-2p_18
	jresv77Bn1-2p_19
	jresv77Bn1-2p_20
	jresv77Bn1-2p_21
	jresv77Bn1-2p_22
	jresv77Bn1-2p_23
	jresv77Bn1-2p_24
	jresv77Bn1-2p_25
	jresv77Bn1-2p_26
	jresv77Bn1-2p_27
	jresv77Bn1-2p_28
	jresv77Bn1-2p_29
	jresv77Bn1-2p_30
	jresv77Bn1-2p_31
	jresv77Bn1-2p_32
	jresv77Bn1-2p_33
	jresv77Bn1-2p_34
	jresv77Bn1-2p_35
	jresv77Bn1-2p_36
	jresv77Bn1-2p_37
	jresv77Bn1-2p_38
	jresv77Bn1-2p_39
	jresv77Bn1-2p_40
	jresv77Bn1-2p_41
	jresv77Bn1-2p_42
	jresv77Bn1-2p_43
	jresv77Bn1-2p_44

