JOURNAL OF RESEARCH of the National Bureau of Standards - B. Mathematical Sciences Vol. 77B, Nos. 1 & 2, Jonuorw-June 1973

On a Functional Equation*

A. O. L. Atkin $**$

(November 16, 1972)

Subject to suitable conditions of continuity and normalization, it is shown that the equation $f(x, y) + f(y)$ $f(x + y, z) = f(y, z) + f(x, y + z)$ implies $f(x, y) = g(x) + g(y) - \frac{y}{x + y}$. The result has application in physics to the motion of an electron in a crystal lattice.

Key words: Analysis; continuous; equation; function; real.

The object of this note is to prove Lemma 1. The motivation is given in Lomont and Moses;¹ I am grateful to Professor Lomont for bringing this problem to my notice.

LEMMA 1: Suppose that $f: R \times R \rightarrow R$ *is continuous and satisfies*

$$
f(x, y) + f(x + y, z) = f(y, z) + f(x, y + z)
$$
 (1)

for all x, y, z, in R. Then there exists an unique continuous function $g: R \to R$ *such that* $g(0) = g(1)$ *and* $f(x, y) = g(x) + g(y) - g(x + y)$ *for all x, y, in R.*

Without loss of generality we may assume $f(0, 0) = 0$ (otherwise $f' = f - k$, $g' = g - k$, reduces). We use (a, b, c) to denote the application of (1) with $x = a, y = b, z = c$. Then

$$
(x, 0, 0) \Rightarrow 2f(x, 0) = f(x, 0) \Rightarrow f(x, 0) = 0 \quad \text{for all } x \text{ in } R.
$$

Similarly
$$
f(0, y) = 0 \quad \text{for all } y \text{ in } R.
$$
 (2)

We now prove

LEMMA 2: $f(x, y) = f(y, x)$ *for all x, y, in R.* Define $F(x, y) = f(x, y) - f(y, x)$. Then $(x, y, x) \Rightarrow$

$$
F(x, y) = F(x, x + y). \tag{3}
$$

For nonnegative *N* in *Z* let $P(N)$ be the proposition:

"*F* $(mx, nx) = 0$ for all *x* in *R* and all *m*, *n*, in *Z* with $|m| \le N$, $|n| \le N$."

Then P(0). Assume $P(k-1)$ for a given $k \ge 1$. Then for $|n| \le k-1$ we have by (3) that

$$
F(kx, nx) = -F(nx, kx) = -F(nx, (k-n)x),
$$

and the last term is zero either by hypothesis $(n \neq 0)$ or by (2); replacing *x* by $-x$ gives $F(-kx, nx)$ = $F(nx, -kx) = 0$. Finally $F(kx, kx) = F(kx, 0) = F(kx, -kx)$ by (3), and the middle term is zero by

AMS Subject Classification: 3930 .

[•] An invited paper . **••** Present address: The University of Illinois at Chicago Circle , Chicago, IUinois 60680

¹J. S. Lomont and Harry E. Moses, The Application of Ray Representations of Translation Groups to the Motion of an Electron in a Crystal Lattice, Annals of Physics 67(2), 1971, pp. 406-431.

(2); replacing x by $-x$ completes the proof of $P(k)$. Hence $P(N)$ for all N by induction.

Thus $F(x, y) = 0$ whenever $x : y$ is rational, and in particular when x and y are both rational. So *F* is continuous on $R \times R$ and zero on a subset dense in $R \times R$, and hence identically zero. This proves Lemma 2.

The construction of g(x).

Denote by S_N the set of all rational points $a/2^N$, with a in Z and N nonnegative in Z. Then

$$
S = \sum_{N=0}^{\infty} S_N \ldots \supset S_N \supset \ldots \supset S_1 \supset S_0.
$$

We define a function $g: S \to R$ inductively as follows.

$$
g(0) = g(1) = 0; g(n) = g(n-1) - f(1, n-1)(n \ge 2);
$$

\n
$$
g(n) = g(n+1) + f(1, n)(n \le -1);
$$
\n(4)

and for $N \ge 1$ and x in $S_N - S_{N-1}$,

$$
g(2^{-N}) = g(2^{1-N})/2 + f(2^{-N}, 2^{-N})/2;
$$

\n
$$
g(x) = g(x - 2^{-N}) + g(2^{-N}) - f(2^{-N}, x - 2^{-N}).
$$
\n(5)

LEMMA 3: *We have*

$$
f(x, y) = g(x) + g(y) - g(x + y)
$$
 for all x, y, in S.

Define $F(x, y) = f(x, y) - g(x) - g(y) + g(x + y)$, so that $F(x, y) = F(y, x)$. Then by (4) $F(1, n) =$ 0 for all *n* in *Z*, and $F(2^{-N}, x) = 0$ for all *x* in S_{N-1} and for $x = 2^{-N}$, if $N \ge 1$, by (5). Also *F* clearly satisfies the functional equation (1). So for *x*, *y*, in $S_0(=Z)$ we have $(x, y, 1) \Rightarrow F(x, y) = F(x, y)$ $y+1$), whence $F(x, y) = 0$ for all x, y in S₀.

Assume now that $F(x, y) = 0$ for all x, y in S_{k-1} , for a given $k \ge 1$. Then if x is in $S_k - S_{k-1}$, we have $z = x - 2^{-k}$ in S_{k-1} , and $(2^{-k}, 2^{-k}, z) \Rightarrow F(2^{-k}, x) = 0$. Using this, for y, z, in S_k we have $(2^{-k}, z)$ $y, z) \Rightarrow F(2^{-k} + y, z) = F(y, z)$, and these are now both equal to $F(2^{-k} + y, 2^{-k} + z) = F(y, 2^{-k} + z)$. One of the four equal terms has both arguments in S_{k-1} , and is zero by hypothesis. Thus we have shown that $F(y, z) = 0$ for all y, z, in S_k . Lemma 3 now follows by induction.

LEMMA 4: Given $A > 0$, $\epsilon > 0$, there exists $\delta > 0$ such that for all x, y, in S with $|x-y| < \delta$ and $|x| \leq A$, $|y| \leq A$, we have $|g(x) - g(y)| < \epsilon$.

First x in $S \neq 2x$ in S. Let $L = \limsup |g(x)|$ as $x \to 0$ in S. Then $g(2x) = 2g(x) - f(x, x)$, so that $2L \leq L+\text{limsup }|f(x, x)|=L$, and hence $L=0$ and $g(x) \to 0$ as $x \to 0$ in S. Now choose $\delta_1 > 0$ $x \rightarrow 0$

such that $|g(z)| < \epsilon/2$ for $|z| < \delta_1$, and $\delta_2 > 0$ such that $|f(x, z)| < \epsilon/2$ for $|z| < \delta_2$ and all x satisfying $|x| \leq A$, $|z+x| \leq A$; the latter choice is possible by the uniform continuity of f in a bounded region $R \times R$. Then with $x, z = y-x$, for *x*, *y*, in Lemma 3 we have for $|x-y| < \delta = \min (\delta_i, \delta_2)$

$$
|g(x) - g(y)| < |f(x, z)| + |g(z)| < \epsilon,
$$

as desired.

Extension of g(x) *to* R.

Given any *x* in *R*, choose x_n in *S* such that $x_n \to x$ as $n \to \infty$, possible since *S* is dense in *R*. As in the definition of real numbers using Cauchy sequences, Lemma 4 shows that $\lim g(x_n)$ exists, $n \rightarrow \infty$

and is independent of the choice of x_n , and we define $g(x)$ as this limit: $g(x)$ is also clearly continuous.

Finally we write $F(x,y)=f(x,y)-g(x)-g(y)+g(x+y)$ for *x,y,* in *R. F* is continuous on $R \times R$, and by Lemma 3 *F* is zero on $S \times S$ dense in $R \times R$; hence *F* is identically zero. This proves the existence in Lemma l.

The uniqueness of $g(x)$ is equivalent to the proposition:

If $g: R \to R$ *is continuous,* $g(0) = g(1) = 0$,

 $and g(x + y) = g(x) + g(y)$ *for all x,y, in* R, *then* $g(x) \equiv 0$.

This follows by a routine repetition of the technique above, since starting with $x = 0$ and $x = 1$, the operations $x \rightarrow x/2$ and $x,y \rightarrow x-y$ generate *S*, a subset dense in *R*, while $g(x/2) = g(x)/2$ and $g(x - y) = g(x) - g(y)$.

Finally if $g(0) = g(1)$ is not specified in Lemma 1, we may add αx to $g(x)$, for any real constant α .

(Paper 77Bl & 2-375)