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On a Functional Equation*

A. O. L. Atkin**
(November 16, 1972)

Subject to suitable conditions of continuity and normalization, it is shown that the equation f(x, y) +
flx+y, z) =f(y, z) +f(x, y+z) implies f(x, y) =g(x) + g(y) —¢ x+y). The result has application in
physics to the motion of an electron in a crystal lattice.
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The object of this note is to prove Lemma 1. The motivation is given in Lomont and Moses;! I
am grateful to Professor Lomont for bringing this problem to my notice.
LEMMA 1: Suppose that f:R X R— R is continuous and satisfies

fx, y)+fix+y, 2)=1(y, 2 +f(x, y+2) (1)

forall x,y, z,in R. Then there exists an unique continuous function g:R — R such that g(0)= g(1) and
f(x, y)=g(x)+ g(y) — gx +y) for all x, y, in R.

Without loss of generality we may assume (0, 0) =0 (otherwise f' =f—k, g’ = g — k, reduces).
We use (a, b, ¢) to denote the application of (1) with x=a, y=5b, z=c. Then

(x,0,0) > 2f(x, 0)=f(x, 0)= f(x, 0)=0 for all x in R.
Similarly f(0, y)=0 for all y in R. (2)
We now prove
LEMMA 2: f(x, y)={(y, x) for all x, y, in R.
Define F (x, y) =f(x, ¥) —f(y, x). Then (x, y, x) =
F(x, y)=F (x, x+y). (3)

For nonnegative N in Z let P(N) be the proposition:
“F (mx, nx) =0 for all x in R and all m, n, in Z with |m| <N, |n|<N.”
Then P(0). Assume P(k—1) for a given k = 1. Then for |n| < k£ —1 we have by (3) that
F (kx, nx)=—F (nx, kx) =—F (nx, (k—n)x),

and the last term is zero either by hypothesis (n # 0) or by (2); replacing x by — x gives F' (— kx, nx)=
F (nx, —kx)=0. Finally F (kx, kx) =F (kx, 0)=F (kx, — kx) by (3), and the middle term is zero by
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(2); replacing x by —x completes the proof of P(k). Hence P(N) for all N by induction.

Thus F (x, y) =0 whenever x : y is rational, and in particular when x and y are both rational.
So F is continuous on R X R and zero on a subset dense in R X R, and hence identically zero. This
proves Lemma 2.
The construction of g(x).

Denote by Sy the set of all rational points @/2", with a in Z and N nonnegative in Z. Then
S:ESN:)SND:)81:)SO
#=0

We define a function g: S — R inductively as follows.
g(0)=g(1)=0; g(n)=g(n—1) —f(1, n—1)(n=2);
gn)=g(n+1)+f(1, n)(n<—1): (4)
and for N =1 and x in Sy —Sw-1,
g(27N) =g (2' )2+ £ (27N, 27V)/2;

g(x)=g(x—27N) +g(27") —f(27V, x—27N). (5)

LEMMA 3: We have

f(x, y)=gx)+g(y) —g(x+y) for all x,y, in S.

Define F (x, y) =f(x, y) —g(x) —g(y) +&(x+y), so that F (x, y) =F (y, x). Thenby @) F (1,n) =
0 for all nin Z, and F (27", x) =0 for all x in Sy—; and for x=27", if N =1, by (5). Also F clearly
satisfies the functional equation (1). So for x, y, in So(=Z) we have (x, y, 1) > F(x, v) =F («,
y+1), whence F(x, y) =0 for all x, y in So.

Assume now that F(x, y) =0 for all x, yin S;_, for a given £ = 1. Then if x is in S —Sx_1, we
have z=x—2-%in Sx_;, and (27%, 2%, 2) > F (2-*, x) = 0. Using this, for y, z, in Sx we have (2%,
y,z) > F(2 %+ v, z) =F(y,z), and these are now both equalto F (2-*+y,2-*+z) =F (y,2 %+z).
One of the four equal terms has both arguments in Si_;, and is zero by hypothesis. Thus we have
shown that F' (y, z) =0 for all y, z, in Si.. Lemma 3 now follows by induction.

LEMMA 4: GivenA4 > 0, € > 0, there exists 8 > 0 such that for all x, y, in S with |x—y| < § and
|x| <4, |y| <A, we have |g(x) —g(¥)| <e.

First x in S = 2x in S. Let L= limsup|g(x)| as x— 0in S. Then g(2x) = 2g(x) —f(x, x), so that
2L < L+ limsup |f(x, x)|=L, and hence L=0 and g(x) >0 as x— 0 in S. Now choose &; >0

x—0

such that |g(z) | < €/2 for |z| < 81, and 8, > 0 such that | f(x, z)| < €/2 for |z| < §2 and all x satisfying
|x| < A4, |z+ x| < A; the latter choice is possible by the uniform continuity of fin a bounded region
R X R. Then with x, z=y—x, for x, y, in Lemma 3 we have for |x—y| < §=min (5;, &)

lg(x) —g(¥)| <|f(x, 2)| + |g(2)| <€,
as desired.
Extension of g(x) to R.
Given any x in R, choose x, in S such that x,—> x as n—> ©, possible since S is dense in R.

As in the definition of real numbers using Cauchy sequences, Lemma 4 shows that lim g(x,) exists,
n—>o

and is independent of the choice of xn, and we define g(x) as this limit: g(x) is also clearly
continuous.
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Finally we write F(x,y) =f(x,y) —g(x) —g(y) +g(x+ ) for x,y, in R. F is continuous on
R X R, and by Lemma 3 F is zero on S X S dense in R X R; hence F is identically zero. This proves
the existence in Lemma 1.

The uniqueness of g(x) is equivalent to the proposition:

If g:R — R is continuous, g(0)=g(1)=0,

and g(x +y)= g(x)+ g(y) for all x,y,in R, then g(x) = 0.

This follows by a routine repetition of the technique above, since starting with x=0 and x=1,
the operations x — x/2 and x,y— x—y generate S, a subset dense in R, while g(x/2)=g(x)/2
and g(x—y) =g(x) —g(y).

Finally if g(0) =g(1) is not specified in Lemma 1, we may add ax to g(x), for any real con-
stant «.

(Paper 77B1 & 2-375)
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