JOURNAL OF RESEARCH of the National Bureau of Standards – B. Mathematical Sciences Vol. 77B, Nos. 1 & 2, January–June 1973

On a Functional Equation*

A. O. L. Atkin**

(November 16, 1972)

Subject to suitable conditions of continuity and normalization, it is shown that the equation f(x, y) + f(x+y, z) = f(y, z) + f(x, y+z) implies f(x, y) = g(x) + g(y) - e(x+y). The result has application in physics to the motion of an electron in a crystal lattice.

Key words: Analysis; continuous; equation; function; real.

The object of this note is to prove Lemma 1. The motivation is given in Lomont and Moses;¹ I am grateful to Professor Lomont for bringing this problem to my notice.

LEMMA 1: Suppose that $f: \mathbb{R} \times \mathbb{R} \to \mathbb{R}$ is continuous and satisfies

$$f(x, y) + f(x + y, z) = f(y, z) + f(x, y + z)$$
(1)

for all x, y, z, in R. Then there exists an unique continuous function $g: R \to R$ such that g(0) = g(1) and f(x, y) = g(x) + g(y) - g(x + y) for all x, y, in R.

Without loss of generality we may assume f(0, 0) = 0 (otherwise f' = f - k, g' = g - k, reduces). We use (a, b, c) to denote the application of (1) with x = a, y = b, z = c. Then

$$(x, 0, 0) \Rightarrow 2f(x, 0) = f(x, 0) \Rightarrow f(x, 0) = 0 \quad \text{for all } x \text{ in } R.$$

Similarly
$$f(0, y) = 0 \quad \text{for all } y \text{ in } R.$$
(2)

We now prove

LEMMA 2: f(x, y) = f(y, x) for all x, y, in R. Define F(x, y) = f(x, y) - f(y, x). Then $(x, y, x) \Rightarrow$

$$F(x, y) = F(x, x+y).$$
 (3)

For nonnegative N in Z let P(N) be the proposition:

"F(mx, nx) = 0 for all x in R and all m, n, in Z with $|m| \le N$, $|n| \le N$."

Then P(0). Assume P(k-1) for a given $k \ge 1$. Then for $|n| \le k-1$ we have by (3) that

$$F(kx, nx) = -F(nx, kx) = -F(nx, (k-n)x),$$

and the last term is zero either by hypothesis $(n \neq 0)$ or by (2); replacing x by -x gives F(-kx, nx) = F(nx, -kx) = 0. Finally F(kx, kx) = F(kx, 0) = F(kx, -kx) by (3), and the middle term is zero by

AMS Subject Classification: 3930.

An invited paper.

^{**} Present address: The University of Illinois at Chicago Circle, Chicago, Illinois 60680

¹J. S. Lomont and Harry E. Moses, The Application of Ray Representations of Translation Groups to the Motion of an Electron in a Crystal Lattice, Annals of Physics 67(2), 1971, pp. 406-431.

(2); replacing x by -x completes the proof of P(k). Hence P(N) for all N by induction.

Thus F(x, y) = 0 whenever x : y is rational, and in particular when x and y are both rational. So F is continuous on $R \times R$ and zero on a subset dense in $R \times R$, and hence identically zero. This proves Lemma 2.

The construction of g(x).

Denote by S_N the set of all rational points $a/2^N$, with a in Z and N nonnegative in Z. Then

$$S = \sum_{N=0}^{\infty} S_N \ldots \supset S_N \supset \ldots \supset S_1 \supset S_0.$$

We define a function $g: S \rightarrow R$ inductively as follows.

$$g(0) = g(1) = 0; \ g(n) = g(n-1) - f(1, n-1) \ (n \ge 2);$$

$$g(n) = g(n+1) + f(1, n) \ (n \le -1):$$
(4)

and for $N \ge 1$ and x in $S_N - S_{N-1}$,

$$g(2^{-N}) = g(2^{1-N})/2 + f(2^{-N}, 2^{-N})/2;$$

$$g(x) = g(x - 2^{-N}) + g(2^{-N}) - f(2^{-N}, x - 2^{-N}).$$
(5)

LEMMA 3: We have

$$f(x, y) = g(x) + g(y) - g(x + y)$$
 for all x, y, in S.

Define F(x, y) = f(x, y) - g(x) - g(y) + g(x+y), so that F(x, y) = F(y, x). Then by (4) F(1, n) = 0 for all n in Z, and $F(2^{-N}, x) = 0$ for all x in S_{N-1} and for $x = 2^{-N}$, if $N \ge 1$, by (5). Also F clearly satisfies the functional equation (1). So for x, y, in $S_0(=Z)$ we have $(x, y, 1) \Rightarrow F(x, y) = F(x, y+1)$, whence F(x, y) = 0 for all x, y in S_0 .

Assume now that F(x, y) = 0 for all x, y in S_{k-1} , for a given $k \ge 1$. Then if x is in $S_k - S_{k-1}$, we have $z = x - 2^{-k}$ in S_{k-1} , and $(2^{-k}, 2^{-k}, z) \Rightarrow F(2^{-k}, x) = 0$. Using this, for y, z, in S_k we have $(2^{-k}, y, z) \Rightarrow F(2^{-k} + y, z) = F(y, z)$, and these are now both equal to $F(2^{-k} + y, 2^{-k} + z) = F(y, 2^{-k} + z)$. One of the four equal terms has both arguments in S_{k-1} , and is zero by hypothesis. Thus we have shown that F(y, z) = 0 for all y, z, in S_k . Lemma 3 now follows by induction.

LEMMA 4: Given A > 0, $\epsilon > 0$, there exists $\delta > 0$ such that for all x, y, in S with $|x - y| < \delta$ and $|x| \le A$, $|y| \le A$, we have $|g(x) - g(y)| < \epsilon$.

First x in $S \Rightarrow 2x$ in S. Let $L = \limsup|g(x)|$ as $x \to 0$ in S. Then g(2x) = 2g(x) - f(x, x), so that $2L \le L + \limsup_{x \to 0} |f(x, x)| = L$, and hence L = 0 and $g(x) \to 0$ as $x \to 0$ in S. Now choose $\delta_1 > 0$

such that $|g(z)| < \epsilon/2$ for $|z| < \delta_1$, and $\delta_2 > 0$ such that $|f(x, z)| < \epsilon/2$ for $|z| < \delta_2$ and all x satisfying $|x| \le A$, $|z+x| \le A$; the latter choice is possible by the uniform continuity of f in a bounded region $R \times R$. Then with x, z = y - x, for x, y, in Lemma 3 we have for $|x-y| < \delta = \min(\delta_i, \delta_2)$

$$|g(x) - g(y)| < |f(x, z)| + |g(z)| < \epsilon,$$

as desired.

Extension of g(x) to **R**.

Given any x in R, choose x_n in S such that $x_n \to x$ as $n \to \infty$, possible since S is dense in R. As in the definition of real numbers using Cauchy sequences, Lemma 4 shows that $\lim_{n \to \infty} g(x_n)$ exists,

and is independent of the choice of x_n , and we define g(x) as this limit: g(x) is also clearly continuous.

Finally we write F(x,y) = f(x,y) - g(x) - g(y) + g(x+y) for x,y, in R. F is continuous on $R \times R$, and by Lemma 3 F is zero on $S \times S$ dense in $R \times R$; hence F is identically zero. This proves the existence in Lemma 1.

The uniqueness of g(x) is equivalent to the proposition:

If $g: \mathbb{R} \to \mathbb{R}$ is continuous, g(0) = g(1) = 0,

and g(x + y) = g(x) + g(y) for all x, y, in R, then $g(x) \equiv 0$.

This follows by a routine repetition of the technique above, since starting with x=0 and x=1, the operations $x \to x/2$ and $x, y \to x-y$ generate S, a subset dense in R, while g(x/2) = g(x)/2 and g(x-y) = g(x) - g(y).

Finally if g(0) = g(1) is not specified in Lemma 1, we may add αx to g(x), for any real constant α .

(Paper 77B1 & 2–375)