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The two-electron orbitals for the U center have been computed numerically from the Hartree-
Fock-Slater (HFS) equations in the point-ion lattice potential. The lattice relaxation of the nearest-
neighbor ions is included in the model. The five lowest-lying U-center states for NaCl, KCI, CdF:, CaF:,
SrF:, and BaF: are given. The low-lying singlet states have the following order for increasing values
of the energy: 'S(1s, 1s), 'P(1s, 2p), and 'S(1s, 2p). The energy levels for the triplet states 3S(1s, 2s),
and 3P(1s, 2p) lie between the energy levels for the 'S(1s, 1s) and 'P(1ls, 2p) states. The ordering of
the triplet states depends upon the host crystal and the lattice relaxation. The predictions based upon
the numerical HFS wave functions are compared with the predictions based upon past variational wave

functions and with experiment.
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1. Introduction

The U center in ionic crystals consists of a nega-
tive-hydrogen ion H~, located substitutionally at an
anion site. Because the H™ ion has a different mass,
polarizability, .and interaction with its neighboring
ions than has the anion which it replaces, the U center
changes both the phonon spectrum and the optical
properties of its host crystal. Changes in the phonon
spectrum include new features at energies substan-
tially greater than the energies of the optic phonons
of the host lattice [1-11].' Changes in the optical
properties include a characteristic electronic absorp-
tion band, the U band, in the ultraviolet region [12-20]
and are the concerns of this paper.

The author continues in this paper his calculations,
reported in part in [21], on the several states of the U
center in the two alkali halides, NaCl and KCI, and in
the. four alkaline earth fluorides, CdF., CaF:, SrF.,
and BaF.. Reference [21] contains discussions which
stress the U band transition energies between the sin-
glet ground and first excited states. The author now
reports his results on the spatial extent of the U-center

! Figures in brackets indicate the literature references at the end of this paper.

orbitals, on the transition energies between the first
and second excited singlet states, and on the transition
energies between the two lowest-lying truplet states.
A point-ion lattice model is used which incorporates the
Hartree-Fock-Slater (HFS) procedure to compute
numerically the defect electron orbitals. The model
includes estimates for the correlation energy of the
singlet states [22], for the exchange energy of the trip-
let states [23], and for the lattice relaxation of the
nearest-neighbor ions. The model also obeys com-
pletely the Franck-Condon principle that the lattice
relaxation does not respond to rapid changes in the
electronic state of the U center when the U center
undergoes an optical transition. This means that all
low-lying U-center states should have spatially compact
electron orbitals, if the predictions of the model are
to be internally consistent with its assumptions.

The present point-ion model has some limitations.
Its numerical wave functions are not orthogonal to
the electronic states of neighboring ions and thereby
do not account properly for the finite size of the neigh-
boring ions, particularly when the lattice relaxes. An
extended-ion model which uses numerical wave
functions instead of variational wave functions for
the defect electron orbitals has not been reported.
Such a calculation would require an amount of com-

659



puter time which is substantially greater than that
required by Wood and Opik [18]. These authors solved
extended-ion models by using trial wave functions with
two variational parameters and by devising accurate
approximations for efficiently computing Coulomb and
exchange integrals. Their methods use Slater-type
functions and are not applied readily to the present
numerical procedures.

Keeping the above limitations in mind, we shall
calculate here within the framework of the above
model the energy levels of the three lowest-lying
singlet states and the two lowest-lying triplet states.
In some cases, these triplet states are degenerate or
very nearly degenerate.

Because expressions for the change in energy of a
classical point-ion lattice with lattice relaxation of the
neighboring ions and expressions for the total energy
of the U center when the two electrons are in singlet
and triplet states appear in sections 2 and 3 of [21],
they are not repeated here. In section 2 of the present
paper, the equations for absorption are given. Section
3 contains a discussion of the results and some remarks
on the validity of point-ion models. Finally, the ap-
pendix contains a summary of the many assumptions
upon which the HFS equations are based.

2. Absorption

Because no emission bands have been associated
with the U center [18], we shall study only the optical
absorption which the defect electrons may undergo.

The initial state of an optical transition is a relaxed
state, |ni; o >. The symbol n denotes an electronic
configuration of the two defect electrons which
transforms as one of the following states, !S(1s, 1s),
3S (1s, 2s), *P(1s, 2p), 'P (1s, 2p), and 'S (1s, 2s). The
quantity o characterizes the lattice relaxation; i.e.,
the n nearest-neighbor ions of the U center may move
radially to the sites ¥,=7%, (1—0) for 1 < v =< n. All
other ions remain at their perfect lattice sites ¥,. We
minimize E7(7;; o) with respect to the lattice relaxation
o to obtain the energy of the initial state E; = E7(n;; o).
The value o is that value of o for which Er(m;; o)
attains its minimum value. The U center then under-
goes an optical transition to an unrelaxed state |n
o >, which has an electronic wave function calculated
for the same distortion o; as that for the initial state
Imi; i >. The total energy of the final state is E;=Er
(my; ). The optical absorption energy for a transition
from state i to state fis

E(i,f)=Er(ng 0i) — Er(ni; 03), 1)

where each term on the right-hand side of eq (1) is a
negative number.

The expectation value of a given power of the radial
coordinate r gives us information on the spatial extent
of the two-defect-electron wave functions. As a measure
of the spatial extent, the author chooses to consider the
first and third powers of r for each of the orbitals;
namely,

ruls,m(nl;n'l'); o] =risf Ru(r) SR (r)dmridr
2)

and
rav[ssm(nl;n'l'); o]
:rl_szn'l’(r)ran'I’(r)4'77r2dr, ('3)

where s=1 or s=3 and r; is the nearest-neighbor
distance of the perfect lattice. The principal and orbital
quantum numbers for the radial wave functions R,; (r)
are respectively n and [. The ratio,

re(nl)= [rnl (3:3)/rnl (3=1)]’ (4)

also indicates to what extent the radial functions have
extended tails. The values of r. < 1 indicate compact
states, and values of 7. > 1 indicate diffuse states.

3. Results and Conclusions

In this section, the results of the point-ion model
with lattice relaxation are reported. Table 1 contains
the values of the input data which have been used.

TABLE 1. Input data for the point-ion model of the U center with
ionic polarization, exchange energy, and Coulomb-correlation
energy. The Pauling factor of the vth and uth ions is B,,. The ionic
radius of the cation is p+ and the anion is p-. The quantity p,
having the units of length, is the stiffness factor in the empirical
Born-Mayer exponential form which characterizes the repulsive
energy between the vth and uth ions. The Madelung potential
constant at the anion site is ay. The quantity 7 is the nearest-
neighbor distance (anion-cation) for the NaCl structure and is
the lattice constant (cation-cation) for the CaF: structure. The
series coefficients Cy4, C, and Cs appear in the expansion in powers
of the lattice distortion o for the change in electrostatic energy E,
which occurs when a cation moves in the background of a perfect
point-ion lattice potential; namely, E\=— (n/F;) (Cio*+ Ceo®
+Cso0®+ . . .), where n is the number of nearest-neighbor
cations to an anion. The quantities B++ B+-+ and B--+ and ay
are dimensionless. All other quantities are expressed in terms of
atomic units (1 a.u. of energy = 27.2 eV = 4.36 attojoules and 1 a.u.
of length=0.0529 nm).

NaCl KC1 CdF: CaF: SrF. BaF
B++ 1.25 1.25 1.50 1.50 1.50 1.50
[ 1.00 1.00 1.125 1.125 1.125 1.125
3. 0.75 0.75 0.75 0.75 0.75 0.75
p 20.599 | 20.637 0.582 | P0.546 | P0.560 »0.582
P+ 22:21 a2.77 2.76 S22 €2.48 EING
(D 23.00 43.00 1.98 ©1.98 €1.98 €1.98
ay 1.748 1.748 4.071 4.071 4.071 4.071
7y 25.31 25.93 10.21 [€10.32 [€10.95 “Il 7l
C, 43.579 | 93.579 €1.865 | ©1.865 | ©1.865 ¢1.865
Cs 90.9895| 40.9895
Cs 42.942 | 92.942

2M. P. Tosi, in Solid State Physics, edited by F. Seitz and D.
Turnbull (Academic Press Inc., New York, 1964), Vol. XVI, p. 52.

Y A. D. Franklin (private communication).

¢G. C. Benson and E. Dempsey, Proc. Roy. Soc. (London) A266,
344 (1962).

9 A. Scholz, Phys, Status Solidi 7, 973 (1964).

¢H. S. Bennett, J. Res. Nat. Bur. Stand. (U.S.), 72A (Phys. and
Chem.), No. 5,471-474 (Sept.—Oct. 1968).
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The numerical procedures give the energy eigen-
values to an accuracy of |AE/E|=0.001. They also
give the self-consistent potential which appears in the
HFS equations to an accuracy of |AV/V | = 0.01, within
the context of the point-ion model. The quantities
AE and AV are, respectively, the changes in the
trial eigenvalue and self-consistent potential which
occur between two successive iterations in the nu-
merical itegration procedure. The numerical details
on the spatial extent of the five lowest-lying states of
the U center are reported only for KCI and CaF, with
no lattice relaxation. These two crystals are quan-
titatively representative of the remaining four crystals
examined in this paper and illustrate respectively most
of the salient features common to the NaCl-type and
CaFs-type structures. Succeeding tables do contain,
however, the energy levels for the five lowest-lying
states in all six crystals. The computed data for the
case in which the lattice relaxation and the electron
orbitals are determined in a self-consistent manner are
to within about 30 percent qualitatively similar to the
computed data presented in tables 2 and 3. The only
exception to this is that the orbitals tend to be more
compact when o >0 and that the orbitals tend to be
more diffuse when o <0 than they are when o=0
(no lattice relaxation). Tables 2 and 3 contain the
numerical predictions of the point-ion model for U
centers in KCI and CaF, when the lattice relaxation is
zero (0=0). These two tables show that the ordering
of the singlet energy levels with increasing energy is
1S(1s, 1s), 'P(1s, 2p), and 'S(1s, 2s). They also show that
the energies of the triplet states 3S(ls, 2s) and *P(1s,
2p) lie between the ground singlet state energy and
the first-excited-singlet state energy. The energies of
these two low-lying triplet states lie close together and
may be nearly degenerate as in the case for KCI. In
addition the ordering of these two triplet energy levels
depends upon the crystal and upon the lattice relaxa-
tion. The results of [17] for the alkali halides predict
the same ordering for the singlet energy levels. They
also predict that the triplet 3S(1s, 2s) and 3P(1s, 2p)
energy levels lie between the 'S(1s, 1s) and 'P(1s, 2p)
energy levels. However, contrary to the present results,
the results of [17] predict that the 3S(ls, 2s) energy
level lies below and is well spearated from the 3P(1s,
2p) energy level. These differences among the ordering
of variational states and numerical triplet states may
be explained by either or both of two possibilities:
First, the authors of [17] have estimated the exchange
terms in a different manner than the present author.
And second, the numerical wave functions are more
“flexible” than two-parameter-variational wave func-
tions. One measure of the flexibility of a wave function
is its second order-spatial derivative. The latter is
proportional to the kinetic energy. Variational functions
introduce artificial bounds on the kinetic energy and
for some self-consistent potentials predict lower energy
levels and different orderings of the states than
numerical functions.

Table 4 gives for the six crystals the predicted
energy levels, U-band transition energies, the U-band
oscillator strengths, and the lattice relaxation of the
nearest-neighbor ions. The oscillator strengths f in

TABLE 2. The five lowest-lying states for KCI of the U center in the
perfect point-ion lattice (o =0) with exchange energy and Coulomb
correlation energy. For convenience, the states 'S(ls, 1s), *P(ls,
2p), 3S(1s, 2s), 1P(1s, 2p), and 'S(1s, 2s) are labeled A, B, C, D, and
E, respectively, in this table. The total energy of state X is E7 (X;
o = 0), where X = A4, B, C, D, or E. The transition energy from
state X to state Y is E (X, Y). The quantities n and [ are the prin-
cipal and angular-momentum quantum numbers for the symmetry
of the one-electron orbitals from which the U-center configuration
is made. The spatial extent quantities r,;(s) and r, (nl) are dimen-
sionless and the energies are expressed in terms of atomic units.
(1 a.u. of energy = 27.2 eV = 4.36 attojoules.)

State A B C D E

Er —1.015 =01953 —0.957 —0.878 | —0.856
ru(1) 0.565 .281 .285 479 2531
ru (3) 334 .057 .059 .234 .293
re(nl) .590 .202 .208 .490 Fooll
rare (1) .565 .857 .882 .881 .956
ra(3) 334 .868 1.005 .929 1.915
re(n'l") .590 1.012 1.140 1.054 2.002
E(A4, D) 137

E(D, E) .022

E(B, C) .004

TABLE 3. The five lowest-lying states for CaF: of the U center in

the perfect point-ion lattice (o = 0) with exchange energy and
Coulomb correlation energy. The notation in this table is the
same as the notation given in table 2.

State A B & D E
Er —1.204 =107 —1.047 —0.999 —0.960
rar(1) 0.626 0.374 0.372 .559 553
rat(3) .435 123 120 .340 .330
re(nl) .694 .328 :323 .607 .597
ra (1) .626 .940 1.079 .986 1.516
ru (3) 435 1.268 2.180 1.455 1.608
re(n'l") .694 1.350 2.021 1.476 4.012
E(A, D) .205
E(D, E) .039
E (B, C) .025
TABLE 4. Energy levels and U-band transition energies for absorp-

tion from the 'S(ls, 1s) state to the!P(1s, 2p) state for the U center.
The lattice relaxation and Coulomb correlation are included. The
initial state is 'S(1s, 1s) and o = ;. The value of o remains the
same for the final state 'P(ls, 2p). For convenience, the states
1S(1s, 1s) and 'P(ls, 2p) are labeled 4 and D, respectively, in this
table. The total energy of the state X is E+(X; o), where X=4 or D.
The U-band energy is E(A4, D). The experimental value for the
U-band energy is E (4, D; expt). The theoretical oscillator strength
is f. The quantities o; and f are dimensionless. All other quantities
are in atomic units. (1 a.u. of energy = 27.2 eV = 4.36 attojoules.)

e | o | S B, 00 |En; 00| E(4,0) | EGD.
NaCl | 0.041 1.90 —1.087 —0.914 0.173 40.238
KCl .060 1.90 —1:023 —.870 .153 2213

CdF, .050 1.94 S22 —.987 234

CaF, .060 1.94 S22 =985 .236 b 281

SrF, .057 1.94 =LY —.960 217 b}259

BaF, .065 1.94 = 18133 =£037 .201 L SRl

*J. W. Schulman and W. D. Compton, Color Centers in Physics
(The Macmillan Company, New York, 1962).
> J. H. Beaumont et al., J. of Physics C 3, 1.153 (1970).
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table 4 agree reasonably well with other theoretical
calculations [1, 16, 21].

Referring to tables 4 and 5, we observe that including
the lattice relaxation of the nearest-neighbor ions
increases the predicted U-band transition energies.
Nevertheless, the point-ion model with lattice relaxation
still yields values for the U-band energies which are
smaller than the observed values. Table 6 shows that
these results are consistent with the other results
predicted by point-ion models based upon variational
wave functions.

One possible explanation for the energy levels
of the singlet states in the present work lying above
the corresponding energy levels in variational theories
is given in [21].

Tables 7 and 8 give the energy levels and transi-
tion energies for absorption respectively from the 'P (1s,
2p) state to the 'S (1s, 2s) state and from the *P (1s,2p)
state to the 3S(1s, 2s) state.

TABLE 5. Energy levels and U-band transition energies for absorp-
tion from the 1S(ls, 1s) state to the 'P(ls, 2p) state for the U
center with no ionic polarization. Because o=0, the lattice
relaxation is zero. The Coulomb correlation is included. The
initial state is 'S(ls, 1s) and o=0;=0. For convenience, the
states 1S(1s, 1s) and *P(1s, 2p) are labeled 4 and D, respectively,
in this table. The total energy of the state X is Er(X; o), where
X=A4 or D. The U-band energy is E(A, D). The experimental
value for the U-band energy is E (4, D; expt). The quantity o7 is
dimensionless. All other quantities are in atomic units. (1 a.u. of
energy = 27.2 eV = 4.36 attojoules.)

Substance T ErA;0i) |Er(D; oi)|E(A,D) |E(A,D; expt)
NaCl 0.0 —1.082 —0.921 0.161 #().238

KCl 0| —1.015 —.878 137 2(0.213

CdF. 0] —1.211 —1.003 .208

CaF. 0 —1.204 —0.999 .205 v(.281

SrF. 0 —1.162 —0.972 .190 b (.259

BakF. L0 —12117 —0.943 174 b(.221

2]. W. Schulman and W. D. Compton, Color Centers in Physics
(The Macmillan Company, New York, 1962).
b J. H. Beaumont et al., J. of Physics C 3, L153 (1970).

TABLE 6. Comparisons among various theoretical values and experimental values for the U-band transition energies. This is the transition
from the 'S(1s, 1s) state to the 'P(ls, 2p) state. All energies are in atomic units (1 a.u. of energy = 27.2 eV = 4.36 attojoules).

Present
Substance | Experiment Ref. a Ref. b Ref. ¢ Ref. d Ref. e work
(Table 4)
NaCl 10.238 0.203 0.202 0.173
KCl NS 0.205 0.219 .178 178 153
CdF: .234
CaF £.281 0.251 .236
SrF2 & 259 .234 217
BaF, ER221 217 .201

2R. F. Wood and U. Qpik, Phys. Rev. 162, 736 (1967); first model.
YR. F. Wood and U. Opik, Phys. Rev. 162, 736 (1967); second model.

¢ H. N. Spector et al., J. Chem. Phys. 46, 2676 (1967).
4B. S. Gourary, Phys. Rev. 112, 337 (1958).
¢R. S. Singh et al., J. Chem. Phys. 52, 2341 (1970).

fJ. W. Schulman and W. D. Compton, Color Centers in Physics (The Macmillan Company, New York, 1962).

#J. H. Beaumont et al., J. of Physics C 3, L153 (1970).

TABLE 7. Energy levels and second singlet transition energies for
absorption from the 'P(1s, 2p) state to the !S(1s, 2s) state for the
U center. The lattice relaxation and Coulomb correlation are
included. The initial state is 'P(1s, 2p) and o = oi. The value of
o remains the same for the final state 'S(1s, 2s). For conven-
ience, the states 'P(ls, 2p) and 'S(1s, 2s) are labeled D and E,
respectively. The total energy of the state X is E7(X; o), where
X=D or E. The second singlet transition energy is E (D, E). The
quantity o; is dimensionless. All other quantities are in atomic
units. (1 a.u. of energy=27.2 eV=4.36 attojoules.)

Substance| o ErD; o) | E7(E; 0i) ED.E)
NaCl —0.011 | —0.921 | —0.894 0.028
KCl .000 —.878 | —0.856 0.022
CdF. —.082 | —1.010 | —1.010 0.000
CaF, .000 | —0.999 | —0.960 0.039
SrF, .001 —.972 — 0.935 0.037
BaF, .024 945 | — 0.904 0.042

TABLE 8. Energy levels and first triplet transition energies for
transitions from the 3P(ls, 2p) state to the 3S(ls, 2s) state for
the U center. The lattice relaxation and exchange energy are in-
cluded. The initial state is 3P(1s, 2p) and o= 0. The value of o
remains the same for the final state 3S(1s, 2s). These states are
labeled B and C, respectively, for convenience. The total energy
of the state X is E7(X, o), where X = B or C. The first triplet transi-
tion energy is E(B, C). The quantity o is dimensionless. All
other quantities are in atomic units. (1 a.u. of energy = 27.2
eV = 4.36 attojoules.)

Substance T ErB; o) | E«(C; ai) | E(B,C)

NaCl —0.006| —0.996 —0.992 0.004
KCl 0.004| —0.953 — 0.957 — 0.004
CdF. —0.014| —1.077 — 12057 0.021
CaF: 0.009| —1.072 — 1.044 0.029
SrF, 0.006| —1.046 | —1.026 0.020
BaF. 0.028 —1.020 — 1.004 0.017
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A Mollwo-Ivey relation [24].
I5= G5

with n = 1.1 relates the observed energies E at
the peak of the U-band in many alkali halides to
the lattice spacing a. However, the observed energies
of the U-band peaks in the alkaline earth fluorides do
not fit a Mollwo-Ivey empirically-derived ralation [20].
A similar situation occurs for the F-band peaks. A
Mollwo-Ivey relation with n = 1.84 predicts quite
well the locations of the F-band peaks in many NaCl-
type alkali halides. But, such a relation does not pre-
dict the observed F-band peaks in the alkaline earth
fluorides [20].

Point-ion models for the U-band which do not include
lattice relaxation yield U-band energies which follow
Mollwo-Ivey relations. The variational-point-ion
theory of [17] predicts U-band energies for NaCl-
type crystals which obey a Mollwo-Ivey relation with
n = 1.14. The similar variational theory of [1] gives
U-band energies for the alkaline earth fluorides which
follow reasonably well a Mollwo-Ivey relation with
n =~ 1.143. The present point-ion model in which the
lattice relaxation and the coulomb correlation term
W (r) are zero predicts that the Mollwo-Ivey exponents
are 1.22 for U-bands in NaCl and KCI and 1.31 for U-
bands in the fluorides CdF,, CaF, SrF,, and BaFs,.
When the Coulomb correlation term W (r) in a point-
ion model with no lattice relaxation is included, the
Mollwo-Ivey exponents become, respectively, 1.46
and 1.33. The predicted Mollwo-Ivey exponents for
the alkali halides which are obtained by variational
methods are closer to the experimental values than
those exponents which are obtained by the present
numerical methods. However, when the lattice
relaxation is included, then the predicted U-band
energies for both the alkali halides and the fluorides
do not follow Mollwo-Ivey relations.

The above results show that solving the HFS
equations for the point-ion model of the U center by
numerical techniques leads to a greater disagreement
between theory and experiment for the U-band ener-
gies than does solving the point-ion model by variational
techniques. Also, the Mollwo-Ivey exponent obtained
from the numerical HFS wave functions differs more
from the observed exponent for U-bands in the alkali
halides than does the exponent obtained from the vari-
ational wave functions. These greater disagreements
between the predictions of the numerical HFS wave
functions and predictions of the variational wave func-
tions for the point-ion model suggest that the past suc-
cesses of the point-ion model have been fortuitous.
More generally, the disagreement among the observed
and computed values reported in this paper lead one
to conclude that the point-ion models do not represent
satisfactorily the properties of the U-center. The pres-
ent work also emphasizes a need for models containing
more detailed treatment of ionic polarization, electronic
polarization, and the finite extent of the neighboring
ions. Examples of two such models for the alkali halides
appear in [18].

Whenever both of the U-center electrons have com-
pact wave functions, the U center (proton, anion
vacancy and two electrons) is essentially neutral.
In this case, it would produce only small, long-range
polarizations, if any. The existence of these conditions
then would justify treating all ions as point charges.
Hence, the point-ion model is a reasonable approxi-
mation for the case in which most of the charge associ-
ated with the U-center electrons is localized about the
proton-anion vacancy site and remains outside the
neighboring ionic cores. The defect electrons then
would experience a potential which scales with the
lattice constant and the predicted U bands would vary
with the lattice constant, to a good approximation,
according to a Mollow-Ivey relation.

The observed U bands in the alkali halides satisfy
a Mollwo-Ivey relation; those in the alkaline earth
fluorides do not. The failure of the observed U bands
in the alkaline earth fluorides to obey a Mollwo-Ivey
relation suggests the speculation that extended ion
effects are more important in the alkaline earth
fluorides than they are in the alkali halides. Extended
ion effects include exchange and overlap among the
U-center electrons and the core electrons of neigh-
boring ions. These effects probably do not depend
smoothly upon the lattice constant. It is interesting to
notice in table 6 that most of the predicted U bands
in the alkaline earth fluorides are closer to the observed
values than the predicted U bands in the alkali halides.
Nevertheless, using a point-ion model to describe the
U center in the alkaline earth fluorides is more ques-
tionable than using a point-ion model to describe the
U center in the alkali halides because the former class
of U centers fails to follow a Mollwo-Ivey relation.

The author thanks A. D. Franklin for many helpful
discussions. He also thanks the personnel of the Aspen
Center for Physics, where portions of the manuscript
were written, for their kind hospitality.

4. Appendix. Assumptions Contained in the
HFS Equations

Because the Schriodinger equation for the two-elec-
tron U center,

Hr(x,y; o) Yn(x, y)=EV¥n(x, y),

cannot be solved exactly, we use the self-consistent
field method [Hartree-Fock (HF)] to calculate the wave
functions of the U center. The wave functions for the
self-consistent field approximation are antisymmetrized
sums of products of one-electron functions u,(r) and
us(r):

Wa(x, y) = V¥a(x, y; HF)

=212 [uy (x)ua(y) — i (y) a2 (x) .
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The functions u have a restricted-central-field rep-
resentation given by

Unims = R nl(r)yml(ea d))as’

where R, (r) is the radial function, Y, is a.spherical
harmonic function, and «; is the spin function. The
principal, orbital, magnetic, and spin quantum num-
bers are, respectively, n, [, m, and s. The radial func-
tions Py (r), Pu(r)=rR.(r), are normalized to the
crystal volume [P,2(r)dr=1. The spherically aver-
aged total electronic charge density for both spins in
terms of the radial functions becomes

Pay(r) =—ela(r)/4mr],

where the spherical density o (r) is

0‘(!‘):2 wn[P,Zu (r)a

nl

and the occupation number of the spatial orbital for
both spins is w,. The summation 2w, equals 2 for
the U center.

In terms of the above assumptions, the Coulomb
potential V.(r) for the HFS equations then has the
form:

Vo(r) =‘"—: for o (t)de+ €2 f # dt.

Slater [23] suggests that the essential features of the
HF method are retained when a common exchange
potential replaces the exchange potentials for each of
the orbitals u;, and u». Applying his suggestion to the
triplet states of the U center, we assume that the com-
mon exchange potential V,.(r) for the U center at the
point r is equal to the exchange potential which a
free-electron gas would have if its total electron charge
density for both spins were equal to that of the non-
uniform system (the two U-center defect electrons):
namely,

Ve(r)=—3¢* [(3/8) e~ | pu(r) |12

Let us define Vi(r)=V.(r)+V.(r) for future use.
The self-Coulomb energy part of the total electronic
Coulomb energy cancels exactly in the conventional
HF method a corresponding energy in the total ex-
change energy. This cancellation does not occur in the
HFS equations at large r. We alter the sum V(r) so
that it has the correct asymptotic behavior at large r.
We define V(r)=V.(r)+Ve(r) for r<ro and V(r)
=e2(2ywu—1)/r for r = ry. The radius ro is that value
of r at which

Vi(ro) = e? (2 on=1 ) [ro.

nl

The HF method also does not include the spatial
correlation in the motion of the two defect electrons
produced by their instantaneous Coulomb repulsion

H.(x, x). The approximate HF wave function is the
source of this Coulomb correlation problem because it
does not depend upon the distance between the two
electrons |x—y|. We define the correlation energy by
the relation

E.=(¥n(x,y) |Hr|¥n(x, y))
—(¥n(x, y; HF ) |[Hr|¥n(x, y; HF) ).

Let us assume also that a correlation operator e.( |x
—y|) exists such that its expectation value in the
approximate representation Wy(x, y; HF) is the
correlation energy

Ec=(V¥n(x, y; HF |e.(|x—y|) |¥n(x, y; HF)).

We may introduce, then, the correlation potential
W.(r) by the following operation:

We(r)= [d*xVnq(x, r; HF Jec.(|x—r|) Vn(x, r; HF).

Mitler [22] adapts to atomic helium the free-electron
gas approximation for the correlation energy. He
introduces in the HF equations an additional central
“correlation” potential W (r) to which pairs of electrons
with opposite spin are subject. The approximate cor-
relation potential W (r) has the form [22]

0.288

e WNA0) B e € o
A S e
where ay is the Bohr radius and the local density of
electrons is

e tp(r)|=[@m/3)r*(r) ]

We expect that the expression for W (r) is a good
estimate for the correlation potential W.(r). Mitler
[22] applies the expression for W (r) to the ground state
for helium and obtaines by perturbation theory a
ground state energy which agrees to within 4 percent
of the experimental value. Our prescription is, then,
to replace V.(r) in the singlet HFS variational equa-
tions with V.(r) + W (r). Because the inequality

0= W(r,\')/Vexch (rs')
=< 0.314r4/(5.1 ap+rs) < 0.314r,

is obtained, we do not include the Coulomb correlation
potential in the triplet HFS variational equations.
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