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Theory of Disclinations: IV. Straight Disclinations
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The general theory of disclinations developed earlier is applied to the special case of a straight
disclination line. First the geometrical fields are found, such as the defect loop densities which cor-
respond to Mura’s new concepts of “plastic distortion” and “‘plastic rotation,” the basic plastic fields
(strain and bend-twist), the defect densities (dislocation and disclination), the characteristic vectors
(Burgers and Frank), and the incompatibility. Then the static fields are found for the isotropic case,
such as the displacement, total distortion, basic elastic fields, and the stress. It is shown that the dis-
clination axis is moved by adding a dislocation to the disclination line. All these special results for the
straight disclination line are shown to satisfy the general equations of the theory. As corollaries the
following topics are also treated:

1. The finite and infinitesimal straight disclination dipole, which can be biaxial or uniaxial. It
resembles the straight dislocation line.

2. The dislocation models of the straight disclination line and of the finite disclination dipole. They
are terminating dislocation walls (tilt and twist).

3. The compensated disclination line and the bent dislocation wall.

4. Finally we show analytically a special case of a dislocation ending on a disclination.

Key words: Burgers vector; continuum mechanics; defect; dipole; disclination; dislocation; distortion;
Green’s tensor; incompatibility; loop; plasticity; strain; Volterra.
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1. Introduction

In previous papers [1, 2, 3]' we have developed the general linear theory of stationary discli-
nations in an anisotropic or isotropic body. In the present paper we wish to specialize some of these
results to the case of discrete straight disclination lines.

In 1907 Volterra [4] gave the elastic fields of straight hollow core dislocations and disclinations
running along the axis of a long isotropic cylinder. He called these defects “distortions.”” Later Love
[5] ventured to call them “‘dislocations.” This name has been widely accepted, but its meaning has
been narrowed to translational dislocations, because of the early importance of this type of defect
in plastic deformation. Therefore Frank [6]introduced the new name “disinclination,” later changed
to disclination, to describe the rotational dislocation. Furthermore the word “distortion” has since
come to stand for the gradient of the displacement, and it would therefore lead to confusion if we
still tried to ascribe to it Volterra’s original meaning as the combination of dislocations and dis-
clinations. Still it would be useful to have a name for this combination, and we have adopted
the word defect for that purpose. In this terminology, then, the present paper deals with discrete
straight defect lines. This word usage does not exclude the consideration of “point defects,”
because they can be regarded as combinations of discrete dislocation loops [3].

We would here also like to point out that it has become customary to refer to “‘disclination
theory” when really “defect theory’ is meant (i.e., the theory of dislocations and disclinations).
We have done this in our paper titles to emphasize the fact that the new results in defect theory are
obtained because disclinations have been introduced.

Furthermore there are at least three independent ways of defining the two types of defects,
i.e., in terms of (1) continuous distributions, (2) discrete lines, or (3) infinitesimal loops, which lead
to essentially different descriptions of the disclination. This means, for example, that a discrete
disclination line contains a certain amount of dislocation density, or a certain different amount of
dislocation loop density. In this paper we shall identify these quantities for the case of straight
disclinations.

In section 2 we recall that Volterra also summarized the characteristic terms in the displace-
ment fields for straight defects. These results have to be slightly modified to obtain equilibrium
everywhere.

Section 3 reviews straight dislocations to show the approach used in specializing the general
theory. It also serves as a reference for the later sections.

In section 4 we apply the general results of [2] to our special case of discrete straight disclina-
tions. We find the defect loop densities which are Mura’s “plastic distortion” and ‘“plastic rotation.”
Then we identify the basic plastic fields from which all other results follow. We find the defect
densities and show that they satisfy the necessary general relations. The Burgers and Frank vectors
are examined, and we conclude with relations for the incompatibility tensor.

Section 5 treats the isotropic statics of straight disclinations. From the given displacement
we derive the basic elastic fields, and show that they satisfy the field equations with the defect
densities. Then we find the stress and show that it maintains equilibrium.

! Figures in brackets indicate the literature references at the end of this paper.
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In section 6 we find how the fields are modified when the disclination axis is moved away from
the origin. We show that it is equivalent to adding a dislocation to the disclination.

Section 7 treats the infinitesimal straight disclination dipole line.

In section 8 we give the dislocation model of the straight disclination. We show that it is a
terminating dislocation wall (in general tilt and twist). It has the same displacement, elastic strain
and stress as the corresponding disclination line. In terms of the dislocation model we find more
precise interpretations of Mura’s new concepts.

Section 9 treats the finite straight disclination dipole line. We show that it reduces to the
infinitesimal case of section 7 when the width approaches zero.

In section 10 we derive the results for the straight compensated disclination line, using two
different defect surfaces.

In section 11 we apply the results of section 10 to the bent dislocation wall, which is made up
of two semi-infinite dislocation walls meeting at right angles.

Section 12 shows analytically how a dislocation can end on a disclination.

Throughout the paper we assume that the body is infinitely extended. The geometric results
are valid for the anisotropic case, but we have obtained the static fields only for the isoiropic body.

We shall freely refer to the results of the three previous papers [1, 2, 3], which will be denoted
in the present paper as I, II, and III.

2. Volterra’s Equations

Weingarten’s theorem [1, 2] states: On following around an irreducible circuit in a multiply-
connected body, the displacement and rotation change by an amount that represents a rigid body
motion, if and only if the classical elastic compatibility conditions are satisfied throughout the body.

This theorem led Volterra to conceive of the defects he called ““distortions.” They have sub-
sequently also been called the most general Weingarten-Volterra dislocations. Volterra then
proceeded to calculate the properties of such straight defects lying along the z axis. He first found
the terms in the displacement fields that characterize such defects. Nabarro [7] considered these
so important to dislocation theory that he quoted them directly in his book (eq (2.20)):

27U, = (b — deaz+ dryy) tan ' (y/x) +3 (— by — dyz— adyyx) In (22 +52),
27Tu’y= (by——dfyx+dyzz) tan™! ()’/x) +% (bx_dzd‘z_ad.ryy) In (x2+y2), (21)
27u.= (b:— dyzy + dax) tan'(y/x) + 3 (dyx+ dexy) In (22 +92),

where « is an elastic constant. These displacements maintain equilibrium under no body forces
except at the z axis. It will be recognized that the terms with coefficients b represent possible dis-
placements for dislocations. The terms with coefficients d will be seen to be possible displacements
for straight discrete disclinations.

These equations have to be modified to obtain equilibrium under no body forces also at the
z axis. This can be done in several ways. One method is to calculate the body force from (2.1)
by the usual equations of elasticity. It is found to be singular at the z axis. Then the displacement
field of an equal but opposite force along the z axis is derived, and added to (2.1) to get the desired
result. We do not show the details in this paper. Another method is to use the general expressions
from I11. Even though straight defects do not satisfy the necessary boundary conditions used there,
it is still possible to find the correct functional dependence of the fields from the general expres-
sions. The details are given in appendix C.

Once a set of displacement functions is found “by hook or crook,” it is easy to verify
that they are a solution by showing that they maintain equilibrium everywhere, including at singular
points, and that they include the characteristic Volterra terms (2.1). Equilibrium is checked simply
by deriving the stress and showing that it satisfies the equilibrium equation.
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The development in this paper can also be put in terms of the following general question:
Given the displacement as an empirical function of the coordinates representing experimental
data, what is the system of defects that would produce such a displacement? To answer this
question we have to determine how to divide the resulting fields into elastic and plastic parts. For
a discrete defect this will be simple to do, because the most logical candidates for the basic plastic
fields are the terms that are singular on a particular surface, as we shall see for the dislocation in
section 3.2 and for the disclination in section 5. However, by another division we can also find a
different system of defects that will give the same displacement, as we shall also see for the “dis-
location model” of the straight disclination in section 8.

3. Review of the Straight Dislocation

In this section we apply the general results of section II 3.2* to the special case of a straight
dislocation.

3.1. Geometry

The plastic distortion for a constant displacement across a surface S and the dislocation
density for the corresponding discrete dislocation along the line L are given by the general expres-
sions, (1I3.21, 113.23),*

P (r) =—8k(S)bu, 3.1)
api(r) =38,(L)bi, (3.2)

where L is the closed boundary of S, 8;(S) and 8,(L) are the Dirac delta functions on the surface
S and the curve L, respectively, defined by (A11-12) in appendix A, and b, is constant, identified
as the Burgers vector of the discrete dislocation line. For the special case of this paper we wish
to take L as a straight line and S as a semi-infinite plane bounded by L. In particular, let L run
along the x3 axis and S be the part of the x1x3 plane for negative x. To satisfy the right-hand rule
we take the normal of S in the negative x» direction. These relationships are illustrated in figure 1.
Then the only nonvanishing components of (3.1—2) become

5 =biH(—x1)8(x2), (3.3)
o =bid(xy) 8(x2), (3.4)
according to (A15-16). The plastic distortion is singular on the plane S, and the dislocation den-
sity is concentrated on the x; axis. The three different cases for /=1, 2, 3 are illustrated in figures

2-4. In figures 2 and 4 the plane S is also the slip plane, because it contains the Burgers vector.
For consistency we see that these results satisfy the definition, (I5.2), (I113.4),

apl = — fmnkB;\.‘[‘ n> (35)
by (A6). We see also that (3.4) satisfies the continuity condition, (I5.4), (I13.24),
ap, p=0. (3.6)

Now take for a Burgers circuit A a circle of radius a in the x1x. plane centered at the origin (fig. 1).

*Section II 3.2 refers to section 3.2 in reference [2], and the symbol (I13.21) refers to eq (3.21) in reference [2].
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FIGURE 1. Geometry of the discrete straight defect line in
the Cartesian coordinate system x;x»x3.

The defect line L is along the x5 axis and the defect surface S is the semi-infinite
part of the x,x3 plane for which x; is a negative, with a normal in the negative x.
direction. For the Burgers circuit A, which links Z, and the Burgers surface o,
which is pierced by L, we have chosen a circle of radius a in the x,x2 plane centered . . . S .
at the origin. FIGURE 2. Edge dislocation described by the dislocation

density ag;=b16(x1)d(x2).

FIGURE 4. Screw dislocation described by the dislocation

FiGURE 3. Edge dislocation described by the dislocation density o= b38(x1)8(x2).
density o= b28(x1)d(x2).

611



Then we have by (3.3) and (A23)

—éﬁﬁ,deZ—ész(—xl)S(xz)szZbl, (3.7)
A A

in agreement with (I13.22), confirming that b, is the Burgers vector. We also have by (3.4) and (A22)

f oSy = j Bi5 (1) 5 (2) dSs = b, (3.8)

in agreement with (II3.25). So in this section we have found the special forms of the plastic distor-
tion and dislocation density (3.3—4) for a straight dislocation running along the x; axis, and these
equations are in complete agreement with all the general results for geometry.

We conclude this section with expressions for the incompatibility tensor. It is in general given
by, (I5.3),

Npe= — (eqnlapl. n)(pq)~ (39)

For our special case the only nonvanishing components are

n13=—%b38(x1)8'(x1) ) (3103)
M3 =% 538" (1) (x2), (3.10b)
N33 =b18(x1)8" (x2) — 28" (1) d(x2) , (3.10c)

from (3.4). We note that they satisfy the continuity condition, (14.2),
Npg, p=0. 3.11)

The results in this section apply to an infinitely extended body, whether isotropic or anisotropic.

3.2. Isotropic Statics

In this section we find the static fields for a straight dislocation in an infinitely extended iso-
tropic body. The displacement is given by (appendix C)

r—p | £ x1X2 bs [ B x_g]

“ bl[277+4'77(1—u)P2]+47T(1-—v) (1=2v) Inp+25 |, (3.12a)

* dm(1-v) P |7 2n  an(i=v)p2 | (3.12b)
b:

= (3.12¢)

where v is Poisson’s ratio. These expressions are well-known for a dislocation line of Burger
vector b, running along the x; axis. We have used a cartesian coordinate system x;x»x3, as shown in
figure 1. The cylindrical coordinates p and ¢ are defined in appendix B and shown in figure 5. By
restricting the angle ¢ to the range (—, 7) it becomes discontinuous on the semi-infinite plane
S shown in figure 1, which then becomes the natural plastic displacement surface of section 3.1.
Note that we have labeled (3.12) as the total displacement. In the literature these expressions are
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FIGURE 5. Relation between Cartesian coordinates x; and
x2 and cylindrical coordinates p and ¢.

The angle ¢ has the range (-7, m), assumes the values shown at the ordinates,
and has a jump of 27 across the negative x, axis.

usually regarded as the elastic displacement which is then taken to be multiple-valued on account
of the angle ¢. In the framework of the present theory, however, it would not be correct to regard
(3.12) as the elastic displacement. For, if the elastic displacement is prescribed, then there can
be no dislocations (c.f. 12.1, 12.2, and 15.6, c.f. also footnote 10 in II). But if the total displacement is
given the dislocations are still unspecified. We see from (3.5) that they are specified when we de-
termine how the total distortion is split into an elastic and a plastic part. Intuitively we can see
that it is unreasonable to split the displacement into an elastic and a plastic part in the present
special case because of the fact that the angle ¢ cannot be split into a continuous and a discrete
part. In general we shall contend that if a total field quantity of a straight defect contains the
angle ¢, it is unreasonable to split it into an elastic and plastic part. This idea will also be applied
in section 5. The results (3.12) show a logarithmic dependence for the displacement at large dis-
tances from the dislocation line, in agreement with table 113.

The total distortion is defined in terms of the total displacement and consists of an elastic and
plastic part, (12.1), (I13.9),

Bii=ulx=Bu+Bh. (3.13)

On differentiating the displacement (3.12), the terms containing ¢ will produce expressions singular
on S, by (B4). These expressions correspond exactly to the plastic distortion (3.3) found in the pre-
vious section. This apparent coincidence is of course achieved by our special choice of S and the
range of ¢. These terms occur only because we chose the angle ¢ to be discontinuous rather than
multiple-valued. Alternatively, if we had no a priori knowledge of the plastic distortion, we could
assign the singular terms to it. These terms intuitively represent a surface along which a plastic
displacement has taken place, as discussed in section 3.1. So we find for the elastic distortion of
the straight dislocation

i 1) 24 g 4% i 1—2v)
5 [a-w e e s (o

Bu= (3.14a)

—477(1



2

B by G5 X1 , x1x3 b . X2 N 2;(%962
S e [CRC Eth e K el (IR0 S8 S T
Bsi =0, (3.14c¢)
b, X1 G2 b, Xy %3 %
'B“__ZLW(I—V) [(1_2V)p2+2 p4] 4#(1—1/)[(3 ) p? 2 p? ] (3.14d)
b, NES x3x3 b ‘ . i
Bzz— 477(1 V) [(I_ZV) 2 2 p4] 477(1—V) l:(l ZV) 2 4 ], (3.14‘6)
Bz2=0, (3.14f)
_ b3X2
3= 27Tp2’ (3.14¢g)
_b;;xl 5 3.14h
B2z = Hz ( )
B — 0, (3.141)

using (B3—7). By contrast with the plastic distortion (3.3), we see that the elastic distortion consists
of functions that are continuous everywhere except at the x3 axis. This is reasonable to expect for
an elastic field. To check the consistency of our results, it is easily shown that the elastic distortion
and the dislocations density (3.4) satisfy the field equation, (I5.6), (113.10),

€pmk Bri, m= Qpls (3.15)
by (B8-10). This result then confirms that (3.14) represents the elastic distortion of a discrete
dislocation line running along the x3 axis.

Next we want to show that equilibrium is maintained everywhere. We first find the elastic

strain, which is in general given by, (I13.13),

ext = Bk (3.16)

Hence we have from (3.14) for the elastic strain of a straight dislocation

by X2 3% b X1 X2
— |(1-20) =+2 B R 3.17a
€11 477(1—1!) l:( V) p2 p4 :|+47T(1—V) I:(l 21/) p2 2p4 :|, ( )
bl X2 X%XZ bz X1 X1X§
ezz——m[(1—21/);Z—QF]+m[(l—2v)p—2+2p4 ], (3.17b)
= O,
o (3.17¢)
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- b1 X1 2X1Xﬂ [)g X2 9 sz
T 41— ) [pz pt ] dw(1—v) [p p4]’ (Gl

. bsx

€3 = ‘HZ (3.17¢)
by

G = = z?pz’ (3.171)

The dilatation e = ey is

1—2v

(= 0)p? (bix2 — baxy). (3.17g)

e=—

At large distances from the dislocation line the elastic strain varies inversely with the distance,
in agreement with table II3. Hooke’s law for an isotropic body is in general given by, (II13.2),

= (e“ +oe sk,). (3.18)
Hence we find for the stress of the straight dislocation
o — 277(1 — (2 bzx‘), (3.19¢)
oe= ey 2w 5 ) .
O = (2;:“:;, (3.19)
on=— (;f:;j (3.19f)

These expressions are also well-known in the literature. Finally, the equation of equilibrium are,

(I12.1),
fi=—=0kik, (3.20)
where f; is the body force per unit volume. From (3.19) and (B8-10) we find
it 3.21)
everywhere, including at the x3 axis where (3.19) is singular. So the above fields maintain equilib-
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rium without body forces, including at the x; axis. The displacement (3.12) contains the character-
istic Volterra terms (2.1) for a dislocation. Therefore, as discussed in section 2, we may conclude
that (3.12) correctly represents the displacement of a dislocation.

We conclude this section with expressions for the elastic rotation of the dislocation, which is in
general given by (I114.6),

Wq= 2€110B k15 (3.22)

or, from (3.14), for our special case by

bsx1
0= —47Tp2 ’ (3.23a)
_ bsxs
w2 = dmp?’ (3.23b)
w3 = —b‘—x‘z—bz—"z : (3.23¢)

In this section we have summarized the well-known expressions for the displacement and the
elastic fields of a straight dislocation in an infinite isotropic body.

4. Geometry of Straight Disclinations

In this section we shall apply the general geometrical results of section 115.2 to the special
case of a straight disclination. For a discrete defect along the line L, which has been formed by
plastic displacement across the surface S, the dislocation and disclination loop densities are in
general given by, (I15.12—13),

By (r) =—08k(S){b1+ €1gdq(x, =) }, 4.1)
Prg (1) =—81(5)y, (4.2)

where b; is the dislocation Burgers vector, ()4 the Frank vector, x? a point through which the
disclination axis passes, and 8x(S) is the Dirac delta function on the surface S, defined by (A12) in
appendix A. The quantities (4.1-2) were introduced by Mura [9], who called them the “plastic
distortion” and “‘plastic rotation.”” For our special case of a straight disclination running along the
x3 axis, we take S to be the semi-infinite x;x3 plane for negative x; with normal in the negative x
direction, as illustrated in figure 1, and set ;= 0. Furthermore, for simplicity at this point, we
let the axis of rotation pass through the origin, so that x2=0. The effect of moving the axis will be
investigated in section 6. Then the only nonvanishing components of (4.1-2) become

B3 = €1arQxrH (— x1)8(x2) , (4.3)
Pt =l (—2)5(x2). .4)

according to (A16). For convenience, we write these results out in full

Bsi = QoxzH (— x1) 8(x2) (4.3a)
Bz = (Qax1 — Quxs) H (—x1) 8 () , (4.3b)
Byy=— Qo H (— 21) 8 (x2) 4.3¢)
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@2 = H (—x1)8(x2), (4.4a)
@25 = LH (—x1)8(x2), (4.4b)
¢ 33= QsH (—x1) 8(x2), (4.4¢)

where we have used (A8). The basic plastic fields (plastic strain and bend-twist) are in general
given by, (I15.14—15),

et = Ban» (4.5)
Kﬁxqz %GI\"QB;\FI, m+ (4 ;rzq- (4‘6)

For our special case we easily find the only nonvanishing components for the plastic strain

el =3 oxsH (— 21)8(x2) (4.7a)
efz= (Q;;xl—Q.x;;)H(—x,)S(xg), (4.7b)
eby=—30omH (—x1)8(x2), 4.7c¢)

from (4.3), and by (4.6) we find that the components of the plastic bend-twist are

kP =—30H (—x1)8(x), (4.8a)
kP =—3ox H(—x1)8" (x2) + QH (—x1)8(x2), (4.8b)
k5 =0, (4.8¢)
P, =0, (4.8d)
kP =QoH (—x1)8(x2), (4.8e)
kP =0. (4.8f)
kP = 30058 (1) 8 (x2) , (4.8¢)
kb =—3QoxsH (—x1) 8 (x2) + QsH (—x1)8(x2) , (4.8h)
kP =—3Q.H (—x1)8(x2), (4.8i)

from (4.3—4), where we have used (A6). The defect loop densities (4.3—4) and the basic plastic

fields (4.7—8) are singular on the plane S, figure 1. This is the plane on which a discrete amount of
plastic displacement has taken place to create the disclination line along the x; axis.

The general expressions for the dislocation and disclination densities are given by, (115.19-20),

ap(r) =8,(L){b:+ qurﬂq(xr_xg)}a (4.9)

Opqg(r) =8, (L) 1y, 4.10)

where 6, (L) is the Dirac delta function on the curve L, defined by (A11). For our special case, with
bi=22=0, the only nonvanishing components of the defect densities are

a3 = €1gr g%, 8 (1) 8 (x2), 4.11)
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03q= Qg0 (x1) 8 (x2) 4.12)

by (A15). Again, for convenience, we write these results out in full

a3 = Q38 (1) 8 (x2) @.11a)
azs=—0x38 (x1)8(x1), (4.11b)
az=0, d.11c)
O31= Q16 (x1) 8 (x2) (@.12a)
032 = 08 (x1) 8 (x2) , (4.12b)
033 = Q38 (x1) 8 (x2) (4.12c)

where we have used (A8). The defect densities are concentrated on the x3 axis. We illustrate the
three different types of disclinations for g=1, 2, 3 in figures 6—8. Figures 6—7 represent twist
disclinations because the Frank vectors {); and (), are normal to the disclination line, whereas
figure 8 represents a wedge disclination because the Frank vector )3 is parallel to the disclination
line. From (4.12) we see that the twist disclinations correspond to the off-diagonal components of
the disclination density, whereas the wedge disclination corresponds to the diagonal component
(see table II1). Note also that the discrete straight twist disclination contains a certain amount of
dislocation density, given by (4.11a—b). The significance of these expressions can be interpreted
as follows. Consider a slice of material parallel to the x;x. plane at the point x5. Locally near the

FiGURE 6. Twist disclination with Frank vector €.
FIGURE 7. Tuwist disclination with Frank vector € ».

It is described by the defect densities a3 =—1x38(x;)8(x2) and 03 =
Q:8(x1)8(x2). Itis described by the defect densities as; = Qax38 (x1) 8 (x2) and 3= (x;) 8(x2).
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FIGURE 8. Wedge disclination with Frank vector (3.

It is described by the disclination density 033= {38 (x1)8(x2).

x3 axis the displacement jump of the disclination cannot be distinguished from that of a dislocation,
even though there is a rotation jump. In figure 6 the deformation and the displacement jump near
the point x3 is similar to that of the dislocation in figure 3 with the density given by (4.11b). Similarly
in figure 7 the deformation near the disclination line is similar to that of the dislocation in figure 2
with the density given by (4.11a). From this point of view it is therefore quite reasonable to regard
the discrete disclination line as consisting of a mixture of dislocation and disclination density.
This is a particular illustration of the general assertation we have already made in II. Note that
the dislocation density implies a dislocation line with changing Burgers vector.

By contrast Anthony[10] does not regard (4.11) as a dislocation density, but as an integral part
of the disclination density. The advantage of this approach is that the disclination is unambiguously
defined, whether it is described in terms of continuous distribution of defects, or a discrete line.
However, this approach becomes cumbersome when we try to describe a terminating dislocation
as in section 12. Anthony has also treated several special cases of straight disclinations. For the
wedge disclination his equations (27—28) and (30) correspond to our equations (4.12¢) and (4.11c).
We shall compare his results for the twist disclination with ours in section 6.

For consistency it is straightforward to verify that the basic plastic fields (4.7—8) and the defect
densities (4.11—12) satisfy the general definitions, (16.3, 16.1), (I14.1-2),

Apl = — €pmk (elfl, m+€quKrir)zq)’ (4‘-13)
Ope= —Gpka;:q,m, (4.14)

by (A6) and (A8). Furthermore, it is easy to verify the general relations (I116.27—-28) between the
loop densities (4.3—4) and the defect densities (4.11—12)

Qp1 =" €pmk (Bltl, m+€qu¢;q)’ (4-15)
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0pq=_€pmk¢:q’ m, (4]6)

also by (A6) and (A8). We also see that the defect densities (4.11-12) satisfy the general continuity
conditions, (16.8, 16.2), (I15.27—28),

apl, pt €pqlps=0, (4.17)
600, =0. (4.18)

We next wish to calculate the total Burgers vector which is in general defined in terms of the basic
plastic fields by, (I14.5),

Bi=s ﬁ (e, — €igricyyxr)dLi, 4.19)

where A is the Burgers circuit, figure 1. For our special case we find from (4.7—8) by a somewhat
tedious calculation that

B:=0, (4.20)
where we have used (A8—9). The general relation for a discrete defect line is, (115.17),
BI = bl - GIQrqu? (4'.21)

and with our special assumption that b;=2%=0 this reduces to (4.20). The total Burgers vector B;
measures the displacement jump at the origin, which vanishes in figures 6—8. The total Burgers
vector can in general also be expressed in terms of the defect loop densities, (I16.31), or the defect
densities, (I114.7),

Bi=— i (B — €1grppgxr) dLi 4.22)

=J‘ (atp1— €1grOpqxr) dSp, 4.23)

where o is the Burgers surface, figure 1. From (4.3—4) and (4.11-12) it easily follows that these
equations lead to the same result as (4.20). Now we take for the Burgers circuit A a circle of radius
a in the x,x» plane centered at the origin (fig. 1). Then we have by (4.8) and (A19-21)

= ﬁ Kp,dLi=Qy, @.24)
in agreement with (II5.18), confirming that ()4 is the Frank vector. We also have by (4.4) and (A23)
— ﬁ ot dLy=— ﬁ QuH (= 218 (x2) dLo = 0, @.25)

in agreement with (116.32), and by (4.12) and (A22)

fvepqup=fﬂQqS(xl)5(x2)d93=Qq, (4.26)

in agreement with (I15.30). The jump in displacement across the surface S is in general given by,
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(115.1, 1I5.5),
[wi(]=Bi+ € gxr 4.27)
=bi+ €1 Qq(xr—x2). (4.28)
In our special case with b,=x%=0, or by (4.20), this reduces to
[u,(r)]=€1q,ﬂqxr. (429)
This jump agrees with those depicted in figures 6—8. So, in this section we have found the special
forms of the defect loop densities (4.3—4), the basic plastic fields (4.7—8), and the defect densities
(4.11-12), for a straight disclination running along the x; axis, and these equations are in complete
agreement with all the general results for geometry from II
We conclude this section with expressions for the incompatability tensor. It is in general
given by, (16.6), (114.12),
Npe— — (eqnlapl, at 011(1) q) - (4‘30)

For our special case we find the only nonvanishing components from (4.11-12)

Niz=—016(x1)8(x2), (4 31a)
Mo =—028(x1)8(x2) (4.31b)
N33 = 0 1x36' (961 )8(952) + sz38(xl )6I (xz) —Q;;S(x,)ﬁ(xg) s 4.31c¢)

by (A9). We note that these results satisfy the continuity condition, (14.2), (114.13),
Mpg.p=0. (4.32)

The results in this section apply to an infinitely extended body, whether isotropic or anisotropic.

5. Isotropic Statics of the Straight Disclination

In this section we find the elastostatic fields for a straight disclination in an infinitely extended
isotropic body. If the Volterra expressions (2.1) are properly modified to maintain equilibrium
everywhere, then the displacement is given by (appendix C)

T—
uy=

Oix3 x3 ¢ X1X2
47T(1—V) [(1 21/) lnp+p2]+sz;|i2_7r+4——7r(l—v)pl:|

Q.| 120 _ ,
93[277 4‘ﬂ_(l_y)xl(lnp 1)], (5.1a)

X1X2 sz:s

re—_ @ _ _ X
Uy Q’x3|:2’n' 47r(1—v)p2:| 47r(1—v)[(1 2V)lnp+p2]

+Q:;[M+l—_—2v—xz(lnp—l)], (5.1b)

27 4w (1—v)
r_q X2 1720 “nleq,|xe, _1=2v _
ul Q'[27r 471_(l_y)xl(lnp 1)] Qz[ 27r+ 47r(l_y)x.(lnp 1), (5.1¢)
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where v is Poisson’s ratio. We have used a Cartesian coordinate system x;, x», x3, as shown in
figure 1, and the cylindrical coordinates p and ¢, as defined in appendix B and shown in figure 2.
This is the displacement field of a straight disclination line running along the x; axis, with Frank
vector ),. By restricting the angle ¢ to the range (—m, m) we shall find that the semi-infinite
plane S becomes the natural plastic displacement surface of section 4. The asymptotic dependence
of the displacement (5.1) goes as pln p, in agreement with table II3.

The total distortion is in general defined in terms of the displacement by, (12.1), (113.9),

Bl = uf - (5.2)

In performing these differentiations in the displacement (5.1) we shall regard three-dimensional
space to consist of the product of the two-dimensional x;x. plane and the independent one-
dimensional xs line. For x; and x» we use the results for generalized derivatives of appendix B.
Since x3 appears only linearly in (5.1) the classical and generalized derivatives with respect to x;3
coincide. So we find for the total distortion, using (B3—7),

r=— 1-2p) 2 —g 2| - 2% —2) =
" 4o (1 —v) ( ) p? pt 4 (1—v) [(1 2) p2+2 p? ]
Qy G x_%
+47T(1_V) [(1 2v) lnp+p2], (5.3a)
Oix3 X2 X%Xz Ooxs X1 x1x§
f=e g Sy ]+——[ — ) = — ]
2 4ar (1 —v) [( V) p? p? 47 (1—v) (S22 p? pt
+ Qo H (— 1) 8(x) — Q3 |2 &}
sl (—0)5e) 8 | 2+ ] 5ab)
O, [ x3 @ X1X2
P=——" | (1-2v) 1 +—]+Q. [—+—" ]
BT T ama ) LT e e e =) (G
TZZ Q]X:g [(3—21;) E 9 X%X2:|
4 (1 —v) p2 pt
Qo [ X1 xlx%] © X1X2
— =) e | @
4 (1 —v) ( v) p2 pt 3[277 477(1—V)p2]’ (>.3d)
Oy [ X1 x|x§
r —— 1-20) 24+ 272 — QisH (— "
B_Z 477(]—V) ( V) p2 p4 ] le,;H( X1)6(X_)
sz;; ’ X2 5 X%Xz QJ G x
_477(1—v) [(1_2V) E_Z pt ] 4 (1 —v) [(I—ZV) lnp+;lz]+ﬂ3x‘H(_xl)8(x2)’ (5.3e)
5 Q. a2
= (e
B:. "om An(l—v)p? Ty (I—2v) lnp+p2 ) (5.3f)
O, [ x5 @ X1X;
r=——— | (1-2»)1 +—]—Q- [————” ]
vyl AR T ] el Py ey (5-3¢)
@ X1X2 Qz x%
=0 |—+ = = — | =L - p
23 1[277 47T(1—V)p2] (=) [(l 2v) lnp+p2] QoxiH (—x1)8(x2) (5.3h)
53— 0- (5.3i)
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Note that the total distortion contains terms which are singular on S and which correspond exactly
to the dislocation loop density B given by (4.3). This result is in agreement with the general
equation (II5.34). Therefore we may be tempted to regard these terms as the plastic distortion
B, and consequently find the elastic distortion from (3.13). This is the point of view taken by
Mura [9]. We shall investigate the consequences of this approach in section 8. Strictly speaking
we are at liberty to split the total distortion in any way we wish into an elastic and a plastic part.
However, the present theory then implies that there are no disclinations. We note, though, that
the total distortion (5.3) still contains the angle ¢, in contrast to the dislocation case. Since ¢ is
discontinuous at the surface S, it is not possible to split it into a part that is continuous everywhere
except at the x3 axis, and a part that is localized only on the surface S. Therefore the total distortion
cannot be split into an elastic part that should be continuous everywhere except at thexs axis and a
plastic part that is localized on the surface S of plastic displacement. We shall find, however, that
the basic total fields no longer contain the angle ¢ and so it will be easy to find an intuitively reason-
able way to split them into an elastic and plastic part.

We first consider the total strain which is the symmetric part of the total distortion and con-
sists of an elastic and plastic part, (114.14),

B(,\[) e+ 6 (54)
If we use (5.3) in this expression we shall find that the terms which are singular on S correspond

exactly to the plastic strain e?, given by (4.7). So we find for the elastic strain of the straight
disclination

_ le:; . ﬂ xle sz:; J_
T T am(1—w) [ A=2) =27 ] 4 (1—v) [ (1= 2v)p ST ]
QO a2
+m[ (1—2») In p+ :| (5.5a)
_ le:x xlx, sz:; x?xz
o = —477(1_”)[(1 2V)p S ] =7 [(1— p? ]
Q;; xf
+47T(1_V)[ (I'=2v) lnp-+-;2:|, (5.5b)
es3=0, (5.5¢)
e les l:?Q__ lei] sz:s l:ﬁﬂ__ xle‘; . Q:sxlxz
"4 (1—v) D& 4 (1—v) pt (1 —v)p?”’ =
Q].’X].’Xz QZ X
i dm(1—v)p? 4w (1—v) [ (1=2v)In p+p2 ]’ (5.5€e)
_ Q] f ngle
ez = 4-71'(1—1/)[ (1—2v) Inp+ z]-f—m, (5.5f)
The dilatation e= ey is
__ (A =2v)xs & _ _
e o (1—v)p? (121 + Qoxs) + an(1— [2(1—2v) Inp—1]. (5.5g)

The elastic strain consists of functions that are continuous everywhere except at the x3 axis, which
is reasonable to expect for an elastic field. These expressions also show a logarithmic dependence
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for the elastic strain at large distances from the disclination line, in agreement with table I13.
To find the total bend-twist we first find the total rotation which is in general given by, (III5.11),

ol = Z€xiq BT, (5.6)
or, from (5.3), for our special case by

Q 1

G 2—1,f —5 il (— 2)8(x2), (5.7a)
Q

=52, (5.7b)
Quxoxs  Qoxixg 1 Q;g(P

W= e e e = (0); — ; " 5.7
w} 2mp? gt 2 QoxsH (—x1) 0 (x2) + 5 (5.7¢)

These expressions still contain the angle ¢, which prevents us from splitting the total rotation
into an elastic and plastic part in a reasonable way. The total bend-twist is in general defined in
terms of the total rotation and can be split into an elastic and plastic part, (II4.15),

ke W Kket kS (5.8)
In carrying out this differentiation on the functions in (5.7) we shall find that the resulting terms
singular on S correspond exactly to the plastic bend-twist Ky, given by (4.8). So we find for the
elastic bend-twist, using also (A6), (B3—4), and (B8),

it 5.9
Kin=— 3 o
11 2mp? (5.9a)
Q1X1
K21 = w ] (5.9b)
k31 =0, (5.9¢)
o sz;z
an——w, (5.9d)
. QzX1
K22 = 2mpt’ (5.9¢)
K32 =0, (5.91)
Q1X1X2X3 sz:; 1 . x“; Q,’;Xz
e [—2—2 =+ 778(P)]“27Tp2, (5.92)
Quxs [ 1 2 Qoxix2x3
s (5.9h)
27 Lp% pt mwpt 27p?
_Quxe _&zﬂ :
K33 — 27T_p2 27Tp2 (5.91)

624



The elastic bend-twist, like the elastic strain, no longer contains the angle ¢ and is continuous
everywhere except at the x3 axis. Alternatively, if we had no a priori knowledge of the basic plastic
fields (4.7—8), we could assign to them the terms in the basic total fields that are singular on S,
because these surface singularities intuitively show where the plastic displacement has taken place.
In this manner we would then also have been able to obtain the basic elastic fields (5.5) and (5.9),
starting only with the expressions for the displacement (5.1), as discussed at the end of section 2.

To check the consistency of our results, it can be verified that the basic elastic fields (5.5) and
(5.9) and the defect densities (4.11—12) satisfy the field equations, (16.3, 16.1), (I114.17-18),

€1nnk(ekl, mt GI\'Iquq) = Upt, (5]0)
€pmk Kkkq, m= 011(1 N (51].)
by (B8—12). These results then confirm that (5.5) and (5.9) represent the basic elastic fields of a
discrete disclination line running along the x3 axis. Furthermore it can be verified that the elastic
strain (5.5) and the incompatibility tensor (4.31) satisfy the field equation, (114.22),
— €pmk €qni€Ckl, mn— MNpq, (512)
by (B8-12).

Next we want to show that equilibrium is maintained everywhere. We first find the stress from

Hookes’ law (3.18) and the elastic strain (5.5)

g =

2m(1-v) pt 1 2m(1—») Lp>" “ p*
+% [ln p+2—%+1_y2v] . (5.12a)
GQOoxs X1 x1x3 GQoxs X2 x2xs
“22=—m[_ p? ]_m[__ p* ]

2772;19‘ )[1np+’§+l_v2y], (5.12b)
a:,;,=—ﬁp—2(a,x,+mx2)+%—)[zy byl 2V] (5.12¢)
0.23=27f(?f15)2p 277?10—1/) [(1 2v) lnp+z—i], (5.12e)
am=—%[( —2v) In p+ 2]+~27T%f—‘;—)2p—- (5.12f)

If we substitute these results into the equations of equilibrium (3.20) we find by (B5-10) that
fi=0, (5.13)

everywhere, so that the above fields maintain equilibrium without body forces, including at the
x5 axis. The displacement (5.1) contains the characteristic Volterra terms (2.1) for a disclination.
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Therefore, as discussed in section 2, we may conclude that (5.1) correctly represents the displace-
ment of a straight disclination line.

In this section we have presented the static fields, i.e., the displacement, total distortion, basic
elastic fields (strain and bend-twist), and stress, of a straight disclination line in an infinite isotropic
body.

6. Movement of the Disclination Axis

If we do not restrict the disclination axis from passing through the origin as in sections 4-5 we
obtain more general results. These can be found by removing the restriction x%=0, which was used
in those sections to find the explicit formulas from the general expressions of II. In this section
we shall discuss a few selected expressions which are of particular interest. They will show that the
effect of moving the disclination axis is equivalent to adding a dislocation, as was already pointed
out in IL

6.1. Geometry

The general expression for the dislocation density of a discrete defect line is given by (4.9). We
shall now consider the special case of a discrete disclination line lying along the x3 axis, but whose
rotation axis passes through the general point x°. Then the only nonvanishing components of the
dislocation density become by (A15), setting b;=0,

a3l=f[qr()q(xr_xg-)s(xl)s(xz), (61)

instead of (4.11). On the other hand, the disclination density of our discrete disclination line with
its axis shifted from the origin remains the same as (4.12). When written out in full we have for (6.1)

oy = [Q2(x3—x§) + Dad]8(x1) 8 (x2), (6.1a)
o3z = [— Q) — Qs (23— 2§) 18 (x1) 8 (x2), (6.1b)
Qg3 — [_leg‘{" sz?]s(xl)ﬁ(fo), (6.].(3)

where we had used (A8). These results of course reduce to (4.11) when x?=0. In the present case
we find that the total Burgers vector no longer vanishes,

Bi=—€1p-0gx?, 6.2)
from (4.21) with b;=0. So the displacement jump across the surface S for our special case becomes

[wi(r) ] = €1 Qq(2r —x7), (6.3)

from (4.27-28), or, when written out in detail

[w1(r)]=Q2 (x5 —2x3) —Qa(x2—29), (6.3a)
[u2(r)]=Q3(x0 —x9) — Qi (23— 2%, (6.3b)
[us(r)]= Qi (22— 2x4) —Qa (1 —x9). (6.3¢)

The total Burgers vector (6.2) is the displacement jump at the origin. Anthony [10] has treated the
special case of the twist disclination, {),, for the case when the axis passes through the point
x3=2x2(Z), x3=0. To find the results for his case we set ,=Q3=0 in the above equations. The
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only nonvanishing components of (4.12), (6.1), and (6.3) then are

O31=2,8(x1)8(x2), (6.4)
g =—x38 (x1)8(x2), (6.5a)
g =—0x2(Z)8(x1)8(x2), (6.5b)
[u2]=—Qux3(Py), (6.6a)
[us]=Qu(x2(Po) —22(Z)), (6.6b)

where we have set x2=x2(Po), x3=2x3(Po). These results correspond to Anthony’s equations (31),
(33), and (34). Hence our results are in complete agreement with Anthony.

If we compare (6.1) with (4.11) we see that the axis has been moved from the origin to the
point x? by adding the dislocation density

oy =—€17x%0 (1) 8 (x2) (6.7)

to the disclination line of section 4. This is in agreement with (I115.24). From (3.4) this corresponds
to adding a dislocation line with Burgers vector

bi=— €1l x? (6.8)

to the disclination line, in agreement with (I15.23). In detail (6.8) is

b1=— ngﬂo_'}_ﬂ.'l 9y (6.83)
ng—Q:;x‘l’-l-lef{, (68b)

So the disclination axis is moved from the origin to x? by simply adding a dislocation with Burgers
vector (6.8) to it.

6.2. Statics

The fields of a straight discrete disclination along the x3 axis whose rotation axis passes through
the point x? can be obtained by adding the fields of the dislocation line in section 3.2 with the
Burgers vector given by (6.8) to the fields of the disclination line in section 5. For example, the dis-
placement is obtained by substituting (6.8) into (3.12) and adding it to (5.1)

uf=—%:zgi)[(1—2V)lnp+:—§]+Qg(x3—x‘3’)[£+ﬁiﬁ]
+%:’:‘;) [(1—2v)lnp+;—§] —Q;;(xg—xg)[ %ﬁﬁ%]—mﬁ%x,, (6.9a)
=0t [y ] iy (1720

+ Qa1 — ) [ﬁ—wffz)pz] (1;(2‘1233)) [(1—21/) lnp+:—z] —93%@, (6.9b)
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—a9)e 1-2v
27 da(l—v

— % 1-2
g, [ _ 12

2m 4#(1—V)x1(lnp—1)]_02|:(x1

72 (Inp— 1)] © (6.9¢)

This is the displacement of a straight disclination line running along the x3 axis, with a rotation
axis that passes thru the point 2. Other field quantities can be calculated in the same way, or can
be derived from (6.9) by the same method as used in section 5.

7. The Infinitesimal Disclination Dipole

In this section we wish to apply the general expressions of section II7 to the special case of
a straight disclination dipole line. The biaxial dipole is obtained by moving the whole basic straight
disclination (line and axis) by an infinitesimal distance ¢». The uniaxial dipole is obtained by
moving only the line and keeping the axis fixed. In both cases the negative of the basic disclination
is left at the x3 axis.

7.1. The Biaxial Dipole

In general the defect densities of a biaxial dipole are given by, (I17.1-2),

aﬁ,=—§mapz,m, (71)

02q=_§m Opq, m, (7.2)

where a;,; and 6,4 are the defect densities of the corresponding basic defect. For the special case
of a discrete straight biaxial disclination dipole line the basic defect densities are given by (4.11-
12). So for the conjugate dipole the only nonvanishing components of (7.1-2) are

a§l=—€zquq [xrfma,m(p)+§r8(p)] ’ (73)
== Qeémd m(p) , (7.4)

where 8(p) is the two-dimensional Dirac delta function defined by (B9). These results could of
course also be found from (I17.3—4) and (A15). In these expressions the tensor )£ represents the
strength of the dipole. When written out in full (7.3—4) become

afy =—Qa[%£,8" (x1)8(x2) + %328 (%1) 8" (x2) + &30 (x1)8(x2) ], (7.3a)
afy =0 [x318" (x1) 8 (x2) + 2528 (x1) 8 (x2) + €38 (x1)8(x2) ], (7.3b)
05 =— Q1 [£18" (x1)8(x2) + €28(x1)8" (x2) ], (7.4a)
05, =—Q,[£18" (21)8(x2) + &28(x1)8" (x2)], (7.4b)
00 =—Q3[£:18 (21)8(x2) + £28(x1)8" (x2) ], (1.4¢)

where we have used (A8-9).
In general the displacement of the biaxial dipole is given by, (I17.5),

up =—E&mly m, (1.5)

where ul is the displacement of the corresponding basic defect. For our special case the distortion
of the basic straight disclination line is given by (5.3), and so the displacement of the conjugate
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dipole is

u{’=£—('f§i—)[ (1—2»%—2%%2] ———;{ff’;) [ (3—21;)%.‘;—2""54]
—%%[(1 o i ;—i] (o)
ué’=—47?('f—ffj)[ (3-2v) 1—2%] f2]+43(2ffi) [ (1—2,/)%—2"2?]
%‘ﬁ[(l—b)%nngg] %%3[(1—21;) lnp+z—z:|

_ _ L XX
(Q3é1—Q4é3) [271_ 4ﬂ(l~y)p2] 5 (7.6b)

P Qlfl

D/ L ST Q> — i
u3_477(1—v) )[(1 2v) lnp+p2]

[( o) ke ]+———4W(1

_ _ P X
Q€2 ngl)[% 4ﬂ(1_y)p2], (7.6¢)

where we have ignored the terms in (5.3) which are concentrated on the surface S. We presume
that the displacement is not a state quantity because it contains the angle ¢. The displacement has
a logarithmic dependence at large distances from the dipole line, in agreement with table I13.

7.2. The Uniaxial Dipole

To derive the relations for the uniaxial disclination dipole we first find the results of moving
the axis of the basic disclination line by an infinitesimal distance &, keeping the disclination line
fixed. The dislocation density of this defect is given by, (117.7),

o= Emda pif 35, (7.7)

whereas the disclination density vanishes, 6,,=0. For our special case of a straight disclination
line we find from (6.1) that the only nonvanishing components of (7.7) are

oy == el 5 (), (7.8)
in agreement with (117.9) and (A15). The displacement of the above defect is, (I17.11),
= ¢moul/oxy,, (7.9)

which, for our special case, becomes

up=— (Qafs— nsgz)[_ %122 ] Qa1 — Qs

X2
dr(1—v)p?|  dm(1—v) [(I—ZV) lnp+§], (7.10a)
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A_QZ§3_Q3§2

= [(1—21/)lnp+;—l22]—(93§1—91§3)[2£ A—] (7.10b)

T 47 (1 —v)p?

ui=— (01— N2éy) %, (7.10c)

from (6.9). If we compare (7.8) and (7.10) with (3.4) and (3.12) we see that the above results are the
dislocation density and displacement of a discrete straight dislocation line with a Burgers vector
given by

bi=—€1gqér, (7.11)
in agreement with (117.13).

We now find the relations for the discrete straight uniaxial disclination dipole line. In general
they are given by the difference between those in section 7.1 and the above. For example, the dis-
location density is found from, (I17.14),

ah=apy—a,. (7.12)
Hence from (7.3) and (7.8) we find that the only nonvanishing components of (7.12) are

a5 =— €1 Q@ rémd m(p), (7.13)

in agreement with (II7.15) and (A15). When written out in full this expression becomes

aé‘] =—sz3 [616, (xl)S(xg) +528(x1)8' (xz)] _93§28 (x1 )8(x2) 5 (7.133,)
al,=01x3[£8" (x1)8(x2) + £28(x1)8" (x2) ] + Q3€18(x1)8 (x2), (7.13b)
agy = (Q:€2—0261)0(x1)8(x2), (7.13¢c)

where we have used (A8-9). The disclination density of the uniaxial dipole is the same as for the
biaxial dipole, GIL”I: qu , given by (7.4). The displacement of the uniaxial dipole is given by, (I117.16),

ut=ul—ud. (7.14)

By (7.6) and (7.10) this becomes for our special case

o Oiéixs [(1_21})‘1 . X_l_X-g]__szzxz [( —ZV)X—]—ZXng :'
dm(1—v) p:  pt dm(1—v) p*  p*
(1€ + Qo) X2 a2
Sl (S Cb e bl BRALE
e ias X2 Xjx Qaéoxs X X2
L=— 2y ——2 e —9y) =
T am(1—) [(3 ) p: = pt ] 4mr(1—v) [(1 22 p? - 0 ]

(QI§2 +QZ§1)X3
—477(1-—1/)

X1 xX1x2
[(1—21/);+2 '] R (7.15b)

p*
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L —_ thé [(1 20) | +x3]+ s [(1 2) 1 +x%]
ul=——— —2v = = —2v =
P 4w (1—v) ap p? 4 (1—v) np p?

X1X2

+ (12— 00¢1) ap( (7.15¢)

p(1—v)p?

We note that these expressions no longer contain the angle ¢, and so «% is a state quantity. The
asymptotic dependence at large distances is the same as the biaxial dipole, and shown in table I13.

Furthermore the displacement of the uniaxial dipole #% does not contain any contribution
from the wedge disclination, i.e., {3 is missing from (7.15). We may therefore conclude that it is
possible to find the displacements of an edge dislocation from those of a biaxial wedge disclination
dipole. Specifically if we set

Q,=0,=0, (7.16)

we find for (7.11)
by=Qsts, (7.17a)
ba=— sty (7.17b)

If these results are substituted in (7.6 a-b) we find (3.12 a-b). This method of obtaining the edge
dislocation displacements was first pointed out by Eshelby [11].

8. The “Dislocation Model” of the Straight Disclination
8.1. Geometry

As discussed in section II9 the dislocation model of a discrete defect line along the curve
L is obtained by eliminating the disclination loop density (I119.1)

Prig= 0, 8.1)

from the corresponding defect surface S that spans L. We shall illustrate this for our special case
and so find the dislocation model of a straight disclination. There are of course many possible
choices for the surface S, but we consider only the one used in the previous sections and illustrated
in figure 1.

The dislocation loop density remains the same as before, (4.3), and becomes the plastic dis-
tortion, (I19.2). So it has the only nonvanishing components

5= B3 = €igrloxrH (— x1)8(x2), 8.2)
or, when written out in full
P =B%=QoxsH (—x1)8(x2). (8.2a)
B =PB= (Qax1— Qyx3) H(—x1)8(x2), (8.2b)
By = Bay=— Qox1H (—x1)8(x3). (8.2¢)

The dislocation density of the dislocation model is in general given by, (119.7),
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ap(r) =8, (L){bi+ €1 Qq(xr—x0)} +8:(S)Qp — 8584 (S) Q. 8.3)
For our special case, with b,=x2=0, this reduces to
an=Q0H(—x1)8(x2), (8.4a)
az =0, (8.4b)
g1 = Q2238 (1) 8(x2), (8.4¢)
a=—H (—x1)8(x2), (8.4d)
a2 =0, (8.4e)
aze=—01238(x1)8(x2) —Q3H (—x1)8(x2), (8.4f)
a13=0, 8.4g)
=0, (8.4h)
agy=0oH (—x1)8(x2), (8.44)
where we have used (A15-16) and (A8). The dislocation model consists of two parts, the same dis-
location density along L as for the corresponding discrete disclination, given by (4.11), and
a constant distribution over the surface S, given by the terms with the Heaviside function.
We have sketched the three different type of dislocation models for ;, 2., and 3 in figures 9-11.

Rather than the constant dislocation distribution over S implied by (8.4), which is somewhat dif-
ficult to draw, we have shown the discrete distribution that most closely approximates it, and is
somewhat easier to visualize. These figures represent the dislocation models of the straight dis-
clinations shown in figures 6—8. Figures 9 and 11 represent terminating tilt walls and figure 10 a

terminating twist wall. The disclination density of course vanishes, (I19.8),

8,g=0.

8.5)

FIGURE 9.

Dislocation model of the twist disclination in

figure 6. figure 7.

FIGURE 10. Dislocation model of the twist disclination in

The tilt wall on the surface S (fig. 1), which terminates at the x5 axis, is repre-
sented by a set of parallel edge dislocations. The arrows are Burgers vectors and
the attached short lines show the orientation of the extra half planes. This defect
is described by the dislocation densities a12=—Q;H(—x:)8(x2) and azp=—
Q1x38(x1)8(x2).

The twist wall on the surface S, which terminates at the x3 axis, is represented
by a crossed grid of screw dislocations. The arrows are Burgers vectors and the
attached short lines show the orientation of the extra half planes for the edge dis-
locations. This defect is described by the dislocation densities a;=az;=.
(—2x1)8(x2) and a3 =Qx38(x1)8(x2).



FIGURE 11. Dislocation model of the wedge disclination
in figure 8.

The tilt wall on the surface S, which terminates at the x; axis, is represented by

a set of parallel edge dislocations. The arrows are Burgers vectors and the attached

short lines show the orientation of the extra half planes. This defect is described
by the dislocation density ag,=—Q3H (—x;)8(x2).

For consistency it is easily verified that (8.2) and (8.4) satisfy the definition (3.5). It is also
easily checked that the continuity condition (3.6) is satisfied by (8.4), in agreement with (I19.9).

We conclude this section with expressions for the incompatibility tensor. If we substitute
(8.4) into (3.9) we find the only nonvanishing components

Ni3=—:8(x1)8(x2), (8.6a)
Moz =—:8(x1)8(x2), (8.6b)
N33 =01238" (1) 8(x2) + Q2238 (1)8” (x2) — Q38 (x1)d (x2). (8.6¢)

These results are identical with the incompatibility tensor of the corresponding disclination given
by (4.31). Since the incompatibility is the source of elastic strain, (II4.22) and (I114.31), this means
that the dislocation model has the same elastic strain as the corresponding discrete disclination
line.

8.2. Statics

According to (I19.11-12) the total displacement and distortion of the dislocation model are
identical to those for the corresponding disclination line. They are therefore given by (5.1) and (5.3).

To determine the elastic fields it is necessary to know how to split up the total fields. The dif-
ference between a discrete disclination line and its dislocation model simply results from splitting
the total fields up in a different way. For a discrete disclination we have argued that the total dis-
tortion cannot be split into an elastic and plastic part. In particular in section 5 we argued that for
the straight disclination (5.3) cannot be split because it contains the angle ¢. For the dislocation
model, however, we ignore this point of view and say that the total distortion can be split into an
elastic and plastic part. This approach leads to Mura’s new concepts of “plastic distortion” and
“elastic distortion” of a disclination line. In particular, for the straight disclination, we assert that
(5.3) can be split. The logical terms for the plastic part are those that are concentrated on the sur-
face S, which correspond exactly to (8.2), or the dislocation loop density of section 4. So we find
the elastic distortion from (3.13), (5.3), and (8.2),
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8.7a)

(8.7b)

8.7¢)

(8.7d)

8.7¢)

8.79)

8.7g)

(8.7h)

This is the elastic distortion of the “dislocation model” of the straight disclination line. It also
represents Mura’s “‘elastic distortion” of the straight disclination line. Note that these expressions
still contain the angle ¢. For consistency it is straightforward to check that (8.7) and (8.4) satisfy the
field equation (3.15). From the elastic distortion we can then find all the other elastic fields of the
dislocation model.

The elastic strain is obtained by substituting (8.7) into (3.16) and the result is identical to (5.5).
Thus the elastic strain and hence stress of the dislocation model is identical to that of the corre-
sponding discrete disclination, as we already discussed in section II9.

The elastic rotation is found from (3.22) and (8.7)

L)

1 21_‘_ ’
Qz(P
©2=9n
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Q]X2x:; _ szlx.'i + Q.’}‘P

St 2mp? 2mp? 2 (8.8¢)
In general the elastic bend-twist is given by, (113.14),
Kkq= Wq, k- (89)
For our special case (8.8) we find the components
oy =— S22 8.10:
11 27Tp2’ (8.10a)
lel
Ka1 7=~ 2+QxH(_X1)8(X2). (8.10b)
2mp
K= 0, (8100)
- 8.10d
K12 27Tp2q ( . )
0,
Koo = — - X;+QzH(_X1)5(Xz)» (8.10e)
27p
K32=0, (8.101)
91X1X2X3 ng;; 1 x,z ] Q:;X;z
g e = e || = = AR i) — . 10¢
K13 pt 2 [p2 ot 73 (p) 2mrp? (8.10g)
o 91X3 1 x22 nglxy(;;
Ko3 — o [7—2E+w8( ):|+7T—p4
€
+ 277‘; s+ Ol (—x)8(x2).  (8.10h)
Qyx Qoxy a
K33 = (8.101)

27p? B 2mp? ’

where we have used (B3-4) and (B8). The elastic bend-twist of the dislocation model consists of the
sum of the elastic bend-twist of the corresponding disclination line, (5.9), and the disclination loop
density or Mura’s “plastic rotation,” (4.4). For consistency it can easily be verified that (8.10) and
(8.5) satisfy the field equation (5.11), by (B8) and (B11-12).

Mura’s new concepts therefore have a clear interpretation in terms of the dislocation model.
Mura’s “plastic and elastic distortion” of the disclination line are the plastic and elastic distortion
of the corresponding dislocation model. Mura’s ‘“‘plastic rotation” is the excess elastic bend-twist
of the dislocation model over the corresponding disclination line.

9. The Finite Disclination Dipole

The results for a finite dipole can be derived simply by combining the fields of a positive and
negative basic disclination which are a finite distance apart. We choose the positive disclination
to pass through the point (L, 0, 0) and the negative one through (— L, 0, 0), both parallel to the x3
axis.

9.1. The Biaxial Dipole
a. Geometry

We find the defect densities for the finite straight biaxial disclination dipole from the basic

defect densities of the discrete straight disclination line, given by (4.11-12), using the above pro-
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cedure. The only nonvanishing components are

ab = Qox3[8(x1 — L) — 8(x1 + L)] 6 (x2), (9.1a)
a§’2= — le3[6(xl —L)—86(x:1+ L)]S(xg), (9.1b)
02,= Qg[8(x1 — L) —8(x1 +L)] 6(x2). 9.2)

It is interesting also to find the dislocation model for this defect since it has exactly the same
total displacement, total distortion, elastic strain, and stress. The defect densities for the disloca-
tion model of the finite biaxial disclination dipole can be found from the basic defect densities of
the dislocation model of the discrete straight disclination line, given by (8.4—5). Using the same pro-
cedure again, we find

afy=—Qu[H(x, — L) — H(xs + L)]8(x2), (9.3a)
ab =0, (9.3b)
oy = Qoxs[8(xs — L) — 8(x1 + L)] 8(x2), (9.3¢)
afy=Qi[H(x, — L) — H(xs+ L)] 8(x2), (9.3d)
=08 (9.3¢)
o= — Qs [8(xs — L) —8(x1 + L)] 8(x2) + Qa[H(xy — L) — H(xs + L)] 8(x2), (9.3f)
A=) (9.39)
b= ] (9.3h)
o3 =—Q:[H(xy — L) — H(x: + L)] 8(x2), (9.3i)
0pq = 0. 9.4)

The dislocation model consists of two parts: the same dislocation density as for the corresponding
defect, given by (9.1), and a constant distribution over the surface strip between (—L, 0, 0) and
(L, 0, 0). We have illustrated this case in figures 12— 14. The dislocation model of the biaxial wedge
disclination dipole, figure 14, was examined by Li [12], who called it a “dislocation wall.”

b. Statics

The fields of the finite straight biaxial disclination dipole can be found from the fields of the
corresponding basic defect, i.e., the straight disclination line, given in section 5, by the same pro-
cedure as used above. We shall illustrate this by two examples. We first find the total displacement
of the biaxial disclination dipole from (5.1)

o Sixs [1 (1—20)1 (21 — L)? + a2 x2 _ 62 ]
N T am(1—v) (2 D)+ 2 (m—L)?+ a2 (m+ L)+
Qoxs _ _ %2 u—L  m+L H
o [‘P("‘ 653 ‘”(x1+L”‘2)+2(1—y){ E0 5 DNy ooy e
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FIGURE 12. Dislocation model of the finite twist disclination
dipole (biaxial and uniaxial), corresponding to figures 6 and 9.

The dislocation densities are af’z=ﬂ.[H(1.—L)—H(n+L)]8(:z) and al=
—Q425(8 (1 — L) — 8(1+L) 18(x2).

a33

FiIGURE 13. Dislocation model of the finite twist disclination
dipole, corresponding to figures 7 and 10.

The dislocation densities for the biaxial dipole are abm a;=—ﬂ,[H(x.—L)
—H(x;+L)]8(x:) and ag‘:ﬂgx;[s(x.—L)-—&(x,+[,)]5(xz). For the uniaxial
dipole we have to add the dislocation density u;1=—ﬂzl,[8(x.—ll)+5(x.+L)]
8(x2), which is indicated by the two Burgers vectors at L and —L.

FIGURE 14. Disclination model of the finite wedge disclina-
tion dipole, corresponding to figures 8 and 11.

The dislocation density for the biaxial dipole is a?=Q3[H(x,—L) —H(x,+
L)]8(xz). For the uniaxial dipole we have to add the dislocation density o=
OL[8(x,—L) +8(x,+L)]8(x2), which is indicated by the two large Burgers

vectors at L and — L.

_% %2 {@(x1—L,x2) —¢ (x1+L,x2)} —% %x,]ngi;é_gzj_zg
—3LIn (G —L)*+2) ((a+L)2+ap) +2L|,  ©5a)
up=— 92"“’ (21— L, x2) — o(x1 + L, x2) — s 20l R s
™ 2(0 v (= L) A (sl S
- Lm%_x—au) 3 (1-2)ln Eii ;g: e ™ —(xLl):i):g. e lxi)ti);g
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A=) 22N T DT 2]’ (-5b)
9 1—2v {_l (1 —L)2+ x2
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A-2v 1, (a—L)+af

31— )22 "t L)+t ] ©.5¢)

+

D—
ug =

[xg {e(x1 —L,x:) —@(x1+L,x2)} —

—L{e(x1—L, x2)+ (1 + L, x2)} +

where ¢ (x1, x2) is defined by (B2). Second we find the stress of the biaxial wedge disclination dipole
from (5.12), setting 1, =Q,=0,

h 5 [1 Lo e 2 } 9.6
TTm(1—v) 2" D) +x (m—L)P+x  (n+L)2+x) (©.6a)

p—_ G [_1_ N (01 —L)2+x3 i) L) ] 9.6b
P51 (2" D —Lr+m (atl)+a o

GQ;;V (xl”’L)2+x§

78) ——

T8 T on(1—v) " (m+L)+ a3 (9.6¢)
GQSxZ x1~L x1+L

D —_ .
12 2w (1 —v) [( =) 252 (x1+L)2+x§]’ 9.6d)
85=0, 9.6¢)

These results agree with the stress at large distances from a finite dislocation wall found by Li[12],
except for a 90° rotation of the x1x. plane.

Finally, to compare the finite with the infinitesimal dipole, we let the two basic disclinations
approach each other. When L — 0 in (9.5) the displacement of the finite dipole approaches

2L x5 X 2123 2L0sx3 X2x2
p_y 2Lky —_o) X _ Vs LX:
U (=) [(1 22 p? ’ p“] 4 (1—v) [(1 2V) A p? ]

_ 2L93 _ x5
2L05x3 13z 2L00x3 X123
Dy e, LR 8 _ _ainilaxy 2l
ub — dr(1—7) [(1 2V) 2 ] dr(l— )[(l 2v ) +2 ]
_ Y xx2
210 |:27r In(—1)p? ], (9.7b)
2L, X1X2
D sy L ORI 1, L2 B
ub _)477(1—1/) [(1 2v) Inp + ]+2LQ3 [2# 477(1—v)p2]' 9.7¢)

These results agree with the displacement of the infinitesimal dipole (7.6) if we put &,= (2L, 0, 0).
This was to be expected since this dipole is built up by confining the translation of the basic
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disclination to the x; axis. Next we let L — 0 in (9.6) and find that the stress of the finite wedge
dipole approaches

0:1;)3_’_% %, o8
i B -a

These results should agree with the stress of the infinitesimal biaxial wedge disclination dipole,
which we did not calculate in section 7. However, we noted there that the fields of such a dipole
are the same as those of an edge dislocation. If we substitute the translation found above, &,= (2L,
0, 0), into (7.17) we find b;= (0, —2LQ3, 0). Now (9.8) agrees with (3.19) with this particular value
for the Burgers vector.

9.2 The Uniaxial Dipole

We find the finite straight uniaxial disclination dipole by moving the axis of each basic
disclination in section 9.1 back to the x3 axis. We shall sketch out how to get results for this case.
In general the axis of a discrete disclination line is translated from the point x{ to the point x? by
adding to it a discrete dislocation line whose dislocation density is given by, (115.24),

(1) =8, (L) €igr (a2 —a0'). 9.9)

In our special case =0, because we move the axis to the origin. For the positive disclination

passing through (L, 0, 0) and the negative through (=L, 0, 0) parallel to the x; axis we find that
the only nonvanishing components of 6, (L) are

83 (L) =6(x1 —L) 8(x2), at x2= (L, 0, 0), (9.10a)

83 (L) =8(x + L) 8(x2), at x4= (—L,0,0). : (9.10b)

by a coordinate translation of (A15). Hence, we find that the only nonvanishing components of the
additional dislocations (9.9) are

oy = Q3L [8(xy— L) +8(x1 +L)]8(x2), (9.11a)
oty =— WL [8(x; —L) +8(x1 + L)]8(x2). (9.11b)

We now find the dislocation density from
o = o + o 9.12)

Note the change in sign between this relation and (7.12). Relation (9.12) gives the dislocation density
of the finite uniaxial disclination dipole if ), is given by (9.1), but also of the corresponding dis-
location model if & is given by (9.3). The disclination density of the uniaxial dipole remains the
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same as for the biaxial dipole, (9.2) or (9.4). The additional dislocations (9.11) are also illustrated in
figures 13—14.

The static fields of the uniaxial dipole can be found simply by adding the fields of the dis-
locations (9.11) to the fields of the biaxial dipole in section 9.1. The procedure is straightforward
and we leave the details to the reader.

10. The Compensated Disclination Line

As discussed in section II10 the compensated disclination line is obtained by eliminating the
dislocation loop density, (I110.1),

Bx=0, (10.1)
from the defect surface S that spans the disclination line L. We shall illustrate this for our special
case of a straight disclination. There are of course many possible choices for the surface S. We
shall choose two of them, first the one already used and illustrated in figure 1, and second the
semi-infinite x.x3 plane for positive x,.

From (10.1) and (4.5) we see that the plastic strain also vanishes, (I110.3),

el =0. (10.2)

With the choice for S as in figure 1 the disclination loop density remains the same as before, (4.4),
and becomes the plastic bend-twist, (II10.4). So it has the only nonvanishing components

K5y =@5,=QH (—2,)8(x2). (10.3)

The defect densities of the compensated disclination are in general given by, (I110.5),
api(r) = 8,0 (S)Qx—8:(S)Qp, (10.4)
Opa(r) =58,(L)Qq. (10.5)

For our special case we find the only nonvanishing components

an =—H (—x1)8(x2) (10.6a)
=M H (—x1) 8 (x2) , (10.6b)
s = QgH (—x1) 8 (x2) , (10.6¢)
azz3=—Q2H (—x1)8(x2), (10.6d)
O30 =Qd (x1)8 (x2) , (10.7)

where we have used (A15-16). The compensated disclination consists of the same disclination line
along L as the corresponding discrete disclination, given by (4.12), and a constant dislocation dis-
tribution over the surface S, which is opposite to that of the dislocation model, given by (8.4). The
latter distribution is a simple rotation wall, as we saw. The components a;, and a3, represent tilt
walls, while the components a1 and ass represent a twist wall.

For consistency it can be verified that (10.1-3) and (10.6-7) satisfy the definitions (4.13-14), as
well as the relations (4.15-16). It is also easily verified that the continuity conditions (4.17-18) are
satisfied by (10.6-7), in agreement with (I110.7-8).
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The incompatibility tensor is found by substituting (10.6-7) into (4.30) and we find
Npe=0. (10.8)

In general we know that the total displacement and elastic strain vanish for the compensated
disclination line, (I110.11-12),

ul=0, (10.9)

ek[:0. (1010)

The last result (10.10) is consistent with (10.8), because the incompatibility is the source of elastic
strain. Since the elastic strain vanishes we see by Hookes’ law that the stress also vanishes. The
only elastic field that does not vanish is the elastic bend-twist. It is in general given by, (I110.13),

Kig = — Kiogs (10.11)
and for our special case has the only non-vanishing components
K2q=—Q¢H (— x1) 8(x2), (10.12)

by (10.3).

We note that if we add the results of the compensated disclination to those of the dislocation
model in section 8 we get the results for the disclination line in sections 4-5, as we already pointed
out for the general case in section I110. For example, we have, symbolically, (10.1)+ (8.2) = (4.3),
(10.3) + (8.1) = (4.4), (10.6) + (8.4) = (4.11), (10.7) + (8.5) = (4.12), (10.8) + (8.6) = (4.31),
and (10.12) + (8.10) = (5.9).

We now investigate the other choice for the surface S, namely the semi-infinite plane lying in
the x.x3 plane for positive x» and with a normal in the negative x, direction. This geometry can
easily be obtained by rotating the plane S of figure 1 clockwise by 90°. Then the only nonvanishing
component of 6, (S) becomes

8:1(S) =—0(x) H(xz), (10.13)

instead of (A16). Hence from (4.2) the only nonvanishing components of the plastic bend-twist and
disclination loop densities become

kfy = @i9= Qg 8(x1) H(x2), (10.14)

instead of (10.3). Furthermore from (10.4) the only nonvanishing components of the dislocation
density now become

sz =06 (x1) H(xs), (10.15a)
as = Q3 8(x1) H(xz), (10.15b)
oy =— 0 8(x1) H(x2), (10.15¢)
agy=—0,8(x1) H(x2), (10.15d)

instead of (10.6). Finally the elastic bend-twist is also changed according to (10.11) and (10.14).
All other relations remain the same for either choice of the surface S.
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11. The Bent Dislocation Wall

In section 10 we found the fields of the compensated disclination for two different choices of
the defect surface S. If we take the difference between the results for these two geometries all the
fields vanish, except the plastic and elastic bend-twist, the disclination loop density, and the dis-
location density. The latter becomes from (10.6) and (10.15)

an=0:H(—x,) 8(x2), (11.1a)
a1 = W:8(x1) H(x2), (11.1b)
az = Q38(x1) H(xz), (11.1c)
ap=—QH(—x1) 8(xs). (11.1d)
@ =—08(x1) H(xz), (11.1e)
ag=— QH(— x1) 8(x2), (11.19)
aig =0, (11.1g)
=0, (11.1h)
azz = — 118(x1) H(xz2) + Q2H(—x1) 8(x2). (11.1i)

What kind of defect is this? It represents two semi-infinite dislocation walls that meet at the x3

axis, i.e., it is bent dislocation wall. It has no long range stress or elastic strain. The three different
cases are illustrated in figures 15—17, where for clarity we have shown the discrete rather than the
constant dislocation distribution. Figures 15-16 show the geometry that has been observed by
Schober and Baluffi [13], their figures 6 and 7.

FIGURE 15. The bent dislocation wall with Q. rotation, FIGURE 16. The bent dislocation wall with €, rotation,
described by the dislocation density az=—QH(—x;) described by the dislocation density o,y = azz= QY2 H(—x,)
8(x2) and az=az=—08(x1)H (x2). 8(x2) and oz =028 (x1) H(x).
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FIGURE 17. The bent dislocation wall with €3 rotation, X
described by the dislocation density azi=38(x1)H (x2) 2 \

and oz =—Q3H(—2x,)8(x2).
FIGURE 18. Edge dislocation terminating at a jog on a
wedge disclination.

12. Example of a Terminating Dislocation

In a recent publication [14] we gave a concrete example of a discrete edge dislocation termi-
nating on a jog in a discrete wedge disclination. We claimed that example illustrated the continuity
equation (4.17). In this section we give a detailed analysis of the geometry of this example. Then we

—~ can verify the continuity equation for this case explicitly.

We have already derived the general expressions for a discrete dislocation terminating on a dis-

crete disclination. The defect densities are given by, (115.25-26),

api(r) =8, (L){bi+ €1gr-Qq(xr —x2) } + 8 (L") {1+ €1 Qg (xr —x2") } + 8p (L") €19rQg(x0—x2".),
(12.1)

Bpa(r) =5, (L+L')Q,. (12.2)

Here the disclination line lies along the closed curve L and L', and the dislocation line lies along the
connecting link L".

We choose the special case illustrated in figure 18. We set b;=x2".=0, and for (, and x° we
choose the only nonvanishing components )3 and x > 0. Furthermore we choose for L a line parallel
to the positive x3 axis passing through the point (0, x9, 0), for L’ the negative x3 axis and the small jog
on the positive x» axis, running from the origin tox?, and for L” the rest of the positive x» axis beyond
x5. Then the only nonvanishing components of the delta functions in (12.1-2) are

85 (L) =8(x1)8(x2—x9)H (x3) , (12.3a)
B2(L') =8 (x1) H (x2) H (20— x2) 8 (x3) , (12.3b)
83(L") = 8(x1)8(x2) H(—x3) , (12.3¢)
82 (L") = 8(x1) H (2 — x8) 8 (x3). (12.3d)
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Therefore we find for (12.1-2) the only nonvanishing components
ax = — Qax2 8(x1) H(x2) H(x§— x2) 8(x3) — Q3xd 8(x1) H(xs—x9) 8(x3), (12.4)
Os3 = Q3 8(x1) H(x2) H(x)— x2) 8(x3), (12.5a)

033=Q38(x1) 8(x2 —x9) H(xz) + Q3 8(x1) 8(x2) H(—x3). (12.5b)

where we have used (A8). These relations represent a wedge disclination with a jog near the
origin from which an edge dislocation emerges. Specifically, the disclination consists of a straight
wedge disclination approaching the origin along the negative x3 axis, (the second term in (12.5b)),
a small jog of twist disclination running along the x: axis from the origin to x9, (12.5a), and a straight
wedge disclination running parallel to the positive x3 axis from the point x9 on the x; axis, (the first

term of (12.5b)). The dislocation consists of the following: The first term of (12.4) represents a
dislocation that grows linearly in strength along the x2 axis from the origin to the point x9, and
can be regarded as an integral part of the element of discrete twist disclination. The second term
of (12.4) is an edge dislocation running along the positive x» axis starting from the point 2. From
(12.4) this edge dislocation has the Burgers vector

by=— Q:;xS. (12.6)

Note that the effect of the terminating dislocation is to move the disclination as well as its axis
from x2 = 0 for L' to x2 = xJ for L.
Now we shall show that (12.4—5) satisfy the continuity equations (4.17—18)

Apl,p ar elpqepq = Oq (127)
Opq.p = 0. (12.8)

We need only consider the cases /=1 in (12.7) and ¢ = 3 in (12.8), for all other cases are identically
satisfied. We have for (12.7)

a2+ 023 = — Q36 (x1) H(x2) H(Xg—xz) 8 (x3) + Qs 6 (x1) H(xz2) 8(xf_,’—x2) 6 (x3)
— Q3x9 6(x1) (w2 —x9) 8(x3) + Q3 8(x1) H(x2) H(x)— x2) 6(x3)

:0’

by (A6—7) and the assumption that x} > 0. We have for (12.8)

923,2 A 033,3 = Q;;B(X1) S(X2) H(g— X2) S(X-;) —938(.X1) H(Xz) 8(&(2 —X‘z) S(X:i)
+ Q38(x1) 8(x2 —x9) 8(x3) — QL3S (1) 8(x2) 8(x3)
= 0’

similarly. So we have shown here by a detailed analysis that a dislocation can terminate on a dis-
clination, and that this is consistent with the continuity equations.

644



13. Summary

We have specialized results derived for the general theory to the special case of straight
disclination lines. First we recalled the work of Volterra and reviewed the straight dislocation to
introduce the subject.

We derived the geometry of straight disclination lines. We found the defect loop densities
which are the same as Mura’s “plastic distortion’ and ‘‘plastic rotation.” They are concentrated on
the defect surface, which is a semi-infinite plane terminating at the disclination line. Then we
identified the basic plastic fields (plastic strain and bend-twist) which are also concentrated on
the defect surface. We found the defect densities (dislocation and disclination) which are singular
along the disclination line. We noted that there is a finite dislocation density for the discrete dis-
clination line, and we gave it an intuitively reasonable interpretation. Our results agree completely
with Anthony’s. We checked the consistency of our specific results by showing that they satisfy
the necessary general equations: the definitions of the defect densities in terms of the basic plastic
fields, the relations between defect loops and densities, and the continuity conditions. We illustrated
the significance of the total Burgers vector as the displacement jump at the origin by showing that
it vanishes for our special choice, whereas the displacement jump condition gives a result that is
intuitively clear from the illustrations. The incompatibility tensor was found and shown to satisfy its
continuity condition.

Then we found the isotropic static results for straight disclinations. The displacements of a
straight disclination were written down. Our point of departure was to regard these expressions as
an educated guess. By differentiating we found the total distortion. From this total distortion the
basic total fields (strain and bend-twist) can be derived. They consist of two types of terms: the first
terms are singular on the defect surface and correspond exactly to the basic plastic fields derived
independently above and the second terms are continuous away from the singular disclination line.
This then provides a natural separation of the basic fields into elastic and plastic parts. In this man-
ner we found the elastic strain and bend-twist of a straight disclination line. We showed that they
satisfied the field equations with the defect densities. The stress followed from Hooke’s law. It
satisfied the equilibrium equations, including at the singular defect line, thus confirming that the

original displacements were correct.
Then we showed how the fields were modified when the disclination axis was moved away from

the origin. The dislocation density and total Burgers vector were changed whereas the disclination
density and Frank vector remained the same. The results can be interpreted by saying that the
axis is moved by adding a dislocation to the disclination line. This observation facilitates finding the
static fields of the disclination with the new axis. The fields are found by adding those for a dis-
location to those for a disclination with its axis thru the origin.

We derived results for the infinitesimal disclination dipole, which can be biaxial or uniaxial.
We found the defect densities and displacements of both types and the relations between them.
We noted that the displacement of the straight uniaxial dipole does not contain a wedge com-
ponent. Therefore the static fields of the straight biaxial wedge disclination dipole are the same as
those of a straight edge dislocation, confirming a result published by Eshelby.

The dislocation model of a straight disclination was found to be a terminating dislocation wall
(tilt and twist). We found that the dislocation model and its corresponding disclination line have the
same incompatibility tensor, displacement, total distortion, elastic strain, and stress. The total
distortion contains terms that are singular on the defect surface, which correspond exactly to the
dislocation loop density derived independently before. If these terms are identified as the plastic
distortion, as Mura did, the dislocation model follows. In this way we found the interpretation of
Mura’s “‘elastic distortion” of the discrete disclination as the elastic distortion of the corresponding
dislocation model. Finally we interpreted Mura’s “plastic rotation’ as the difference in bend-twist
between the disclination and its dislocation model.

Next we found the defect densities of the finite diselination dipole. It was also possible to con-
struct the dislocation model for this defect. The displacement of the biaxial dipole was found. It
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approaches the displacement of the infinitesimal dipole when the width of the dipole approaches
zero. The stress of the biaxial wedge disclination dipole was found to correspond to an earlier
calculation of Li for the finite dislocation wall.

We found the defect densities for the compensated disclination line, using two different defect
surfaces. From these results we constructed the bent dislocation wall, which has been observed by
Schober and Baluffi. These defects have no displacement, elastic strain, or stress.

Finally we showed in analytical detail how a discrete edge dislocation can end on a jog in a
discrete wedge disclination. The jog is a small segment of twist disclination line, which contains a
finite amount of dislocation density. We showed that the analytic results satisfy the continuity
conditions.

In appendix A we show how the general Dirac delta functions for a curve and a surface, which
are defined for and occur in the general theory, are specialized to the case of a straight line and a
semi-infinite plane. It is essential to know this type of specialization in order to apply the general
theory to particular geometries. We also calculate some useful Burgers circuit integrals.

In appendix B we show how to take the generalized derivatives of the cylindrical coordinates.
We carefully define the cylindrical angle ¢ in terms of the Cartesian Coordinates x; and x. , restrict-
ing it to the range (—, 7). Its derivative is regarded as a generalized derivative and contains a
delta function. Also functions whose degree of homogeneity is —1 or less will have generalized
functions in their generalized derivatives. The usefulness of these generalized function tech-
niques is that they allow us to carry through the traditional field operations, such as differentiation,
even at singular lines and surfaces, in the field theoretic framework that is traditionally set up for
continuous well-behaved functions only. This simplifies the work for discrete defects considerably,
since we can apply straightforward mathematical techniques at the singularities, instead of intuitive
notions as is done classically.

In appendix C we show how the isotropic general results of III can be used to find the functional
dependence of the static fields for straight discrete defects.

14. Appendix A. Evaluation of the Delta Function on a Straight Line and a
Semi-Infinite Plane

The Dirac delta function 8(x) is defined by, (IIB1),

5 0, ifx<a,
f S(x—x')e(x')dx' =1 p(x), ifa<x<b, (A1)
“ 0, if b<ux.

This relation is illustrated by the following special cases

f’ Sx—=)da' =1, (A2)
f: S(x—x")dx'=H(x), (A3)
J:O d(x—x')dx'=H(—x), (A4)

where we have introduced the Heaviside function defined by

_ [0, if x <O,
H(x) = {1, if0< 1. (L5

The derivative of the Heaviside function is easily found from (A3) by a partial integration
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dH (x)

H' (x)= Y

_ xi ! ’
= ax&(ac x')dx

0

Ly

N 0 ax'
=—[8(x—x") 1§
=5(x), (A6)

since 8(x) =0 whenever x # 0. From (A1) we see that we also have
d(x—x")p(x')=8(x—x")p(x). (A7)
A particular case of this relation is
(x—x")8(x—x")=0. (A8)
By differentiating this relation we find
(x—x")8 (x—2a')=—8(x—x"). (A9)
The three-dimensional Dirac delta function 8(r) is defined by, (IIB2),
d(r—r') =8(xi—x7)8 (22— x5)8 (23— x3). (A10)

The Dirac delta functions for a curve L and a surface S are defined by, (IIB4-5),

di(L) Ef' d(r—r')dL], (A11)

8:(S) = L 5(r—r')dS!. (A12)

We want to evaluate these quantities for the special case when L is the straight line lying along
the x3 axis and S is the semi-infinite plane lying in the x,x3 plane for negative x; and with a normal
in the negative x. direction, as illustrated in figure 1. Then we have in particular for L

dL;= (0,0, dL;)= (0,0, dx;),
( a) = ( x3) (A13)
r'=(0,0,x3),
and for S
dS; = (0, dS}, 0) = (0, —dx/dx;, 0),
(A14)
r'=(x,0,x).

We find that the only nonvanishing components of (A11-12) are
53(L)=f°° 8(21)8 (x2) 8 (x5 — x}) da
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=8(x1)8(x2), (A15)

% 0
82(S)=—J: f_ S(x1 —x) 8 (x2)8 (x5 — x3) dx (dxy

=—H(—x1)8(x2), (A16)

where we have used (A2) and (A4). We note that these results satisfy Stokes’ theorem, (IIB26),
€ijx0i,;(S) =—0k(L), (A17)

by (A6). This was to be expected since L is the boundary of S. Next we want to consider some
integrals along a curve A that links L. We take the special case where A is a circle of radius @ in
the x;x2 plane centered at the origin, also illustrated in figure 1. Then we have

xt+x2=a? (A18)

on A. We wish to evaluate three typical closed line integrals on A involving generalized functions.
The first one is

if(xl)fs(xz)dLl =— ﬁf(xl)S(xz)xz(a2 —x%)~1V2dL,
=0, (A19)

where we have used (A18) to change the variable of integration, and (A8). The second one is

§ s ebdta= [ f(lat=a31) du)dut [ F (- [@—1)5 ()
=f(a) = f(=a), (A20)

where we have used (A18) and (Al). The third one is

ﬁf(xl)ﬁ'(xg)dId:—ﬁf’(xl)a(xz)dlq
=0, (A21)

by a partial integration and (A19). Finally, for the sake of consistency we wish to show that the
results (A15—16) satisfy (IIB15). Let o be the circular plane bounded by A (fig. 1). Then we have
from (A15)

f(, 83(L)dS3=ffS(xl)ﬁ(xg)dxldxz
=1, (A22)

by (Al). Next we have from (A16)

ﬁ 8,(S)dL,= —ﬁ H(—x1)8(x2)dL,

=—H(—a)+H(a)
=1, (A23)

by (A20) and (A5). So these results agree with (IIB15).
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15. Appendix B. Generalized Derivatives of Cylindrical Coordinates

The expressions that are differentiated in the text contain the cylindrical coordinates p and
¢. The geometric relation of these coordinates to the Cartesian Coordinates x; and x» is illus-
trated in figure 5. The functional relation for p is

p(x1, x2) = (22 + a2)12, (B1)

The relation for ¢ is customarily given as tan™! (x2/x;). However, this leads to some ambiguity for
two reasons: (1) The arctangent is usually taken to be restricted to its principal value, lying in the
range (— /2, 7/2), especially in integral formulas. (2) The angle ¢ is usually regarded to be multiple-
valued, a procedure that conflicts with the assumption of uniqueness for the functions that occur
in the general defect theory. Therefore we shall arbitrarily restrict ¢ to the range (—, 7), so
that it is uniquely defined everywhere, but possesses a discontinuity of 27 across the negative x;
axis, as shown in figure 5. This choice is convenient for the calculations in the text, for then the
discontinuity occurs at the semi-infinite plane S of appendix A (fig. 1). So the functional relation
for ¢ is

<p(x,, x;) =tan! (xz/xl) ar 7TH(_961) [H(xz) —H(—xg)] 5 (B‘))

where the arctangent is restricted to its principal value and the Heaviside function H is defined
by (A5). We see that ¢, so defined, assumes the values indicated in figure 5.

In order to maintain the necessary uniqueness when differentiating the discontinuous function
@, it becomes necessary to take the generalized derivative. The discontinuity will then lead to a
generalized function, the Dirac delta function. We refer to Gel’fand and Shilov [8], chapter 1,
section 2.2, for the detailed procedure on taking this generalized derivative. The result is

©.1=—x/p, (B3)
@2=x1/p* +2mH (— x:) 8 (x2). (B4)

Intuitively, these results could have been anticipated. They contain the ordinary derivatives of
the arctangent function plus a term having a delta function across the negative x; axis, which
originates from the discontinuity of ¢.

By contrast the generalized derivatives of p and In p are the same as the straightforward
classical ones. For the latter we have

(In p) 1= x1/p?, (B5)
(III p) 2= xg/pz. (B6)

Another function whose generalized and classical derivatives coincide is the following

XaXB . XaXpXy x11837+ xBSYa _
(p—2>y__2 p4 + p2 ’ (a’Ba‘y_lvz)v (B?)

where we have used the convention that Greek subscripts have the range 1, 2. When written out
in full these equations are

e X142 22 x2x;
-
P/ 1 P P~/ 2 P
x2x; : : iz
<x1;62> =9 142+x_;’ (xl:z) — 142_'_%’
p* )4 pt p p* )2 pt o p
649

508-076 O - 73 - 6



x32 X142 202 x2x;
<—§> =—2=22 (—2) =22
P/ a P P/ 2 P

The above derivatives (B5—7) are all locally integrable in the x;x» plane, including the singularity
at the origin. This is the reason why the generalized and classical functions coincide.

However, if we take further derivatives of (B7), the results (having a p~2 dependence) will no
longer be locally integrable at the origin, because then the algebraic singularity has the same
strength as the dimension of the space (i.e., 2). To maintain uniqueness it becomes again necessary
to take the generalized derivative. We refer also to Gel’fand and Shilov [8], chapter I1I, section 3.3,
for the detailed procedure on taking this type of generalized derivative. The results will contain
expressions homogeneous of degree —2 (such as p~2), which have to be regarded as generalized
functions. One result is

Xa 8(1 XoX
(,7 ) B=p—f—2—p43+ Toapd (P) (B8)

where we have defined the two-dimensional Dirac delta function

8(p) =58(x1)8(x2). (BY)

When (B8) is written out in full we have

X1 1 G2 (m) X1X2
—= =——2—+ 7 g G =—2 5
( ).1 pt " 2 p* /.2 p?

p* p*

; : g 1 ;2
(ﬁ) :_2x1x27 <£f> =——2—i+778(p).
p? /. p? p* /.2 p* P

Another result is

<——-—ax Y) —__—4, s i 6—{-— o OYs o ! 2% ¢ +_(8 BS)’S 8V 835 88'}’6 B)S(P)
l fe7 o « ’
)

p* e p

or, when written out in full

5 5 ;37T x3 x3xs

= || ==ti=ard=ar=—=—0(1D): (—’) =—4 ,

() =—stsBit o, () =4

3% 2 x1X 2 292 2
() oot () e
x1%3 x3x3 i w G002 x1%3 X1X2
( ot ) 1——4 = +E+Za(p), < 7 ) —4 = 2 s

%\ 55 3 i S
(—4>’1——4‘ 50 <E>’2=—4—é+3—4+18(p)

Further generalized derivatives can be taken similarly, leading to homogeneous generalized
functions of degree —3. Two results we need are

<p—12>~a=—2%—7r8,a P, (B11)
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o2 O (XS + 5 «@
(F2) =—aRemy MR R (5,001 (p) +0.0(p) + Bud.a(p)).  (B12)

The latter equation written out in full is

55 g5 I & 2\ x2x2 T
(p4),‘ D425 8, (o), (p‘,)‘z— i)
X1X2 xixy x2 W X1X2 X1X3 Xy
( p* >1=_4 ;1)“ toimg8ee), < p* )22_4 p“z+;r_ A2
x5\ o xwxyow 5 xy 3w
(33) == 4e =700, (%)= iy 0P,

16. Appendix C. Derivation of Static Fields of a Straight Defect from the
General Theory

In IIT we derived general expressions for the static fields in an infinitely extended isotropic
body. We showed there that a condition on the plastic strain for the integrals to converge is that

e{}(r) approaches zero faster than r—1! as r— . This condition is not satisfied for straight defect

lines, as can be seen from (3.3) and (4.7). However, it is still possible to find the functional depend-
ence of the static fields from the general formulas by ignoring infinite terms that appear in the in-
tegrations. The correctness of the resulting static fields can then be assessed by checking them in
the general field theory, as is done in the text.

The general expressions that we shall use are the following: For a dislocation line, the dis-
placement, (I114.21),

1 1
uiT(r) :8_ f [R ,jjkbkds; +R ,jkkbids_;-" '—_1 R ‘,-j,‘.bde}f aF — R _,‘jjbk(ls;\.] s (C1)
™IS

—v I—v

and the elastic distortion, (I114.23),

bl p ' R ,ijk ’
Bij(r) = ET fi [R ,Inneijk([Lk +R .IcnnEik[([Lj + (Ijj_ - 8in .kun) lem(llz,,,] ' (C2)
For a disclination line with its axis through the origin, the displacement, (I116.10),
1 , , , 1 , v ,
u;r(l‘) = g L eknmﬂmx" [R ,;jdej+ R ,;u8ikdsj — :R ,.-jdej aF —1——-_V R‘ijj(lsk] s (C3)

and the basic elastic fields, i.e., the elastic strain, (I116.11),

Rijk
e,,(r) 87T § [flpq()px(; { lmn(fzkldL )(u) aF ( T= 81]R knn)fklmdL;n} + Rann (deLr' )(ij)

R
i ( UR Bi,-R,,,,.)deL;,,], (C4)
| =m
and the elastic bend-twist, (1116.14),
1 ’ ! !
kij(r) = o ﬁ [expeQpx; {RkinndL’;— %R jimndL 1} — R inn€irilidL’] (C5)
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where
R= (XX;)'2, (C6)
Xi=xi—xi. (C7)

The expressions (C1-5) are line and surface integrals. For the special geometry of figure 1 the
curve L is given by (A13)

dL!= (0,0, dL})= (0, 0, dx}), ¥ = (0, 0, x}). (C8)

Hence we have
R= (p*+X})'"2, {8
p= (a3+x3)12, (C10)

by (B1). The surface S is given by (Al14)
dS;= (0, dS;, 0)= (0, —dx|dx},0), r' = (x], 0, x3). (C11)
Hence
R= (X324 x2+X2)12. (C12)

We shall first investigate the line integrals. All the necessary results can in general be derived
from differentiating the basic integrals [ RdL; and [ x{ RdL;. From (C8) the only non-vanishing
components of these integrals are [ RdL3; and [ x; RdL; . Since these integrals are along an in-
finite straight line they will diverge. So we first find the finite integral

L+x3 L
f Rdx§,=f RdX3
-L

—L+xy
=[4p2In X3+R)+3x3R]:,

2 2)1/2
L+(p:L) 4L

=p*In (p*+L2) 12 (C13)

The integral we want is obtained when L — o, but then the terms in (C13) containing L will also
approach infinity. However, these terms can be regarded as constants in the subsequent differentia-
tions. Therefore they do not contribute to the fields and we can ignore them for practical purposes.
So the functional dependence of the desired integral goes as

f RdL,— q, (C14)
L
where we have defined the function

g=—p?Inp. (C15)

The justification for this procedure can also be given as follows: A sufficiently high derivative of
(C13) will converge for L— o to a finite function of p. The same derivative of (C15) will give the
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same finite function. Now the relations (C1—5) contain only derivatives of integrals such as [ RdL;.
Therefore we can use (C14—15) in them directly. We find the functional dependence of the other
integral in the same way. First we find the finite integral

L+xy L
f XI;R(]X..;: J’ (x;;—X;;)R(lX;;
—L+x3 —L

L
= [%x:;pz In (Xs+R) + 3 xXoR —%Ra] : (C16)

—L

and hence, comparing with (C13).

x, Rdx; = x3q. .
J,, v (C17)

We now consider the surface integrals. All the necessary results can in general be obtained from
J RdS; and [x/RdS!. From (C11) the only nonvanishing components are [RdS], [ x;RdS}, and
[ x;RdS,. The derivation of the first integral may be indicated as follows

L [0 0 L
f RdS,— —f f Rdx dx; — (SxezEign2) RIn (28 2) 2 0l —>_f (X2+x2) In (X2+x2)12dX,
s iz, dl=ii @

—L

., L
= [@Xi+ ) I (G- b e 2o gxaixe | 9

Here the first result follows from the geometry of the surface S in figure 1, the second by integra-
tion over x; which goes through the same as above but with R given by (C12) instead of (C9), and

the third by a change of variable. So the functional dependence becomes

L RdS;— g, (C19)
where we have defined the function
g=—(3x}+x1x}) Inp+ Fado+ (Gai+ 3x1x3). (C20)
The next integral goes as
Lx;Rds;efbx;(Xng) In (X2+2x2) V2dx’

L
= (x1—X1) (X2+23) In (X2+x2)12dX,. (C21)

Iy

This leads to the functional dependence

f x;RdS,— h, (C22)
S
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where we have defined the function

The last integral goes as

L 0
f %, RdS]— — f f R
S —L J-L

h=xg+ 1p* In p+isxt—5a2x3.

(C23)

(C24)

The functions ¢, g, and A depend only on x; and x». The derivatives of g that we shall need are the

following

o
(1,11:—2 In p—1_2 p_i’
X1Xs

q,12=—2 l2l»
x3
go2=—2Inp—1—2 p_2

Goea=—4 (Inp+1),

x x1%3
gin=—2 ;é—‘l- pl" 23
X2 x2x2
gi2=—2 z+4 4,
o)
5% xX1X3%
l],122:_2_; 1 ;)4
59 b2oe
szz=—2p_z 4 ‘;42,
X1
q.10a 4‘;3
X2
q20a 4‘;;»

(C25a)

(C25b)

(C25¢)

(C25d)

(C25¢e)

(C25f)

(C25¢)

(C25h)

(C25i)

(C25j)

(C25k)

(C251)

(C25m)

Here the Greek indices range only over 1 and 2. The results (C25k—m) follow from (B8). The other

derivatives we shall need are

X1X2

82 =—2 ot ’
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2
g2 =—2 (lnp+f+—§), (C:26b)

€222 _4(p+2x;)xl (C26¢)
&iea=—4(Inp+1), (C26d)
gr0a=4¢, (C26e)
hi2e=—2x Inp +4x:0—% x,, (C27a)
h 222 =6x5 In p+4dx,0+ 622+ 3 x5, (C27b)
hiea=—4x1 In p+dxe — x4, (C27¢)
h2aa=4%2 In p+dx,0+ 622 —% x5 (C27d)

The displacement of the dislocation (C1) now reduces to
il =g | EansbadatBamabi— T2 Binabat T 2 Binabs | (C28)

The individual components are
== %;_ [ﬁg.uz —g‘200:| = %ZT [%g,lzz - l—iyg.ma] ; (C29a)
ulb=— ?1;71,- [1—1__—Vg,|22 "g,ma] — %7 [%gzzz - 21%1;&2,".], (C29Db)
u§=ﬂgm, (C29¢)
8w

which give (3.12) by (C26), except for some trivial constants. The elastic distortion of the dislocation
(C2) reduces to

BaB_ |:€an )\vu+ €\ (ila_B'; - Ban,m/v)]’ (C3oa)
bs .
Ba}“ o (’an JBAXA ((.‘30[))
Bs3i=0, (C30c)
where €,g is the two dimensional permutation symbol, i.e., €;;=€22=0, €;2=—¢€>;=1. The non-

vanishing components of (C30) are

b 12 b R
Bu=—gt [ g |+ 22 [0 g, , (C31a)
_ b1 [q2 ﬁ quz2
le— e [1 _V+q,1vv] aF H— [1—1/ q,zw:l, (C31b)



_ b1 di122 2 q.112
[312— 877 [I_V q1vv:|+8ﬂ_ |:1_V+ q,ZVv:|,

_ b, G222 by g2
,822_ W[I—V q,ZVu] Sﬂ[l_y q1uu:|,

_ b
,313— gwq,zw,

__bs
,323— 87Tq,1w,

which give (3.14) by (C25). The displacement of the disclination (C3) reduces to

Q;

Q
T — =t
(/b — T

t 8m

L h oo + Z h,iaa]-i' €ijth 20a
—v v

|:h20¢a812 1_

1

+ GaBQﬂ

The individual components are

r— s 1 L Qoxy [ 1 —
IS8 [ T=p8 T 18 | T 8r [T 8T Y

uTZQIx;; 1 _2_V _ ng;; 1 _
2= g I_Vg,zzzz —1_Vg,277 87 _l_yg,lzz &.1vy

Qg 1 A=
—% [I—V h,222_ — h,zaa] ’

1 v 0, 1
uﬁ:?[l———yé’ﬂ‘l——ué’”’]_ﬁ [T——g”] ’

v I:ng,aWBi‘z"l'x:ig,ZYW/aia e (x;g) pat T 1 (ng) zw&u] .

(C31c)

(C31d)

(C3le)

(C31f)

(C32)

(C33a)

(C33b)

(C33c)

which give (5.1) by (C26—27), except for some trivial linear terms. The elastic strain of the disclina-

tion (C4) reduces to

1
eaB:_%[ny.?(l._ quVVV>+Q’i<m_8aBQW>j|,

1 1
eay=g— [ Qagqpp T 0pq.ap ] ;

es3=0.

The individual components are

__le:; G ]_szs q.112 :| &[q,n . ]
€= ar l:l—V q v 8 1—7p q 2w +87T 17 quw |
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(C34a)

(C34b)

(C34a)

(C35a)



_ Qs [ g . . Qoxs [ g _ & q22 ~
€22 = — [ T—p q.llrv] q 2vv +87T —m qQyv ) ((:35}\))

8m 8w [1—vw
es3=0, (C35¢)
D S el " et =y ek s
ez;,=—§—7;%—§—; [%—q] (E35e)
e [P | (C351)

which give (5.5) by (C25), except for some trivial constant terms. The elastic bend-twist of the
disclination (C5) reduces to

Q ;
Koy = 57_: €apq Brvy ((‘363)
N
Koz = % [ny.’!eﬁ)’q,aﬁuu+Q3€u[3q,ﬂuu] ) (C36b)
K3y =0. (C36¢)
The individual components are
o, )
K11 — 87T q,2VV’ ( A37d)
Q
K21 = — 8_771' q2vv, (C37b)
K31 :05 ((:37(')
)
Ki2 = %{ q,Zuus (C37d)
Q.
K22:_8_7: q.vw (C37e)
K32 =0, (C37f)
_ le;g sz.'i &
Ki3= 877 q,12uu + 87T q,lluV + 87T q2v0, (C37g)
Qx: Q. Q.
K23=——8‘;%§q,22w+*8% q,mw—g—;q,m, (C37h)
Q Q.
K33 = _8—7'; qa2mwt 8_7: q.1v, (C371)

which give (5.9) by (C25).
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