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The general theory of disclinations developed earlier is applied to the special case of a straight 
disclination line. First the geometrical fields are found , such as the defect loop densities which cor­
respond to Mura's new concepts of "plastic distortion" and "plastic rotation ," the basic plastic fields 
(strain and bend-twist) , the defect densities (dislocation and disclination), the characteristic vectors 
(Burgers and Frank), and the incompatibility. Then the static fields are found for the isotropic case, 
such as the displacement , total distortion, basic elastic field s, and the stress. It is shown that the dis­
clination axis is moved by adding a dislocation to the disclination line. All these special results for the 
straight disclination line are shown to satisfy the general equations of the theory. As corollaries the 
following topics are also treated: 

1. The finite and infinitesimal straight disc\ination dipole , which can be biaxial or uniaxial. It 
resembles the straight dislocation line. 

2. The dislocation models of the straight disclination line and of the finite disclination dipole. They 
are terminating dislocation walls (tilt and twist). 

3. The compensated disclination line and the bent dislocation wall. 
4. Finally we show analytically a special case of a dislocation ending on a disclination. 

Key words: Burgers vector; continuum mechanics; defect; dipole; disclination; dislocation; distortion ; 
Green's tensor; incompatibility; loop; plasticity; strain; Volterra. 
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1. Introduction 

In previous papers [1, 2, 3)1 we have developed the general linear theory of stationary discli­
nations in an anisotropic or isotropic body. In the present paper we wish to specialize some of these 
results to the case of discrete straight disclination lines. 

In 1907 Volterra [4] gave the elastic fields of straight hollow core dislocations and disclinations 
running along the axis of a long isotropic cylinder. He called these defects "distortions." Later Love 
[5] ventured to call them "dislocations." This name has been widely accepted, but its meaning has 
been narrowed to translational dislocations, because of the early importance of this type of defect 
in plastic deformation. Therefore Frank [6] introduced the new name "disinclination," later changed 
to disclination, to describe the rotational dislocation. Furthermore the word "distortion" has since 
come to stand for the gradient of the displacement, and it would therefore lead to confusion if we 
still tried to ascribe to it Volterra's original meaning as the combination of dislocations and dis· 
clinations. Still it would be useful to have a name for this combination, and we have adopted 
the word defect for that purpose. In this terminology, then, the present paper deals with discrete 
straight defect lines. This word usage does not exclude the consideration of "point defects," 
because they can be regarded as combinations of discrete dislocation loops [3]. 

We would here also like to point out that it has become customary to refer to "disclination 
theory" when really "defect theory" is meant (i.e., the theory of dislocations and disclinations). 
We have done this in our paper titles to emphasize the fact that the new results in defect theory are 
obtained because disclinations have been introduced. 

Furthermore there are at least three independent ways of defining the two types of defects, 
i.e., in terms of (1) continuous distributions, (2) discrete lines, or (3) infinitesimal loops, which lead 
to essentially different descriptions of the disclination. This means, for example, that a discrete 
disclination line contains a certain amount of dislocation density, or a certain different amount of 
dislocation loop density. In this paper we shall identify these quantities for the case of straight 
disclinations. 

In section 2 we recall that Volterra also summarized the characteristic terms in the displace· 
ment fields for straight defects. These results have to be slightly modified to obtain equilibrium 
everywhere. 

Section 3 reviews straight dislocations to show the approach used in specializing the general 
theory. It also serves as a reference for the later sections. 

In section 4 we apply the general results of [2] to our special case of discrete straight disclina· 
tions. We find the defect loop densities which are Mura's "plastic distortion" and "plastic rotation." 
Then we identify the basic plastic fields from which all other results follow. We find the defect 
densities and show that they satisfy the necessary general relations. The Burgers and Frank vectors 
are examined, and we conclude with relations for the incompatibility tensor. 

Section 5 treats the isotropic statics of straight disclinations. From the given displacement 
we derive the basic elastic fields, and show that they satisfy the field equations with the defect 
densities. Then we find the stress and show that it maintains equilibrium. 

] Figures in brackets indicate the literature references at the end of this paper. 
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In section 6 we find how the fi elds are modified when the disclination axis is moved away from 
the origin. We show that it is equivalent to adding a di slocation to the disclination. 

Section 7 treats the infinitesimal straight di sclination dipole line. 
In section 8 we give the di slocation model of the straight disclination. We show that it is a 

terminating dislocation wall (in ge neral tilt and twist). It has the same dis placeme nt , elastic strain 
and stress as the corresponding disclination lin e. In term s of the dislocati on model we find more 
precise interpretations ofMura's new concepts. 

Section 9 treats the finit e straight di sclination dipole line. We show that it reduces to the 
infinitesimal case of section 7 whe n the width approaches zero. 

In section 10 we derive the r esults for the straight compensated disclination line, using two 
different defec t surfaces. 

In section 11 we apply the results of section 10 to the bent dislocation wall, which is made up 
of two semi-infinite dislocation walls meeting at right angles. 

Section 12 shows analyti cally how a dislocation can end on a disclin ation. 
Throughout the paper we assume that th e body is infinitely extended. The geometric results 

are valid for the anisotropic case , but we have obtained the static fi elds only for the isotropic body. 
W e shall freely refer to the results of the three pre vious papers [1 , 2, 3], which will be denoted 

in the present paper as I , II , and III. 

2. Volterra's Equations 

Weingarte n' s theorem [1 , 2] s tates: On following around an irreducible circuit in a multiply­
connected body, the di splacement and rotation c ha nge by an a mount that represents a rigid body 
motion , if and only if the classical elasti c compatibility conditions are satis fi ed throughout the body. 

Thi s theorem led Volterra to conceive of th e defects he called " distortions." They have sub· 
seQue ntly also been called the most ge neral Weingarte n-Volterra di slocations. Volterra then 
proceeded to calculate the properties of such s traight defect s lying along the z axi s. H e firs t found 
the terms in the di splaceme nt field s that characterize suc h defects. Nabarro [7] considered these 
so important to di slocation theory that he quoted the m directly in his book (eq (2.20)): 

where IX is an elasti c constant. These displaceme nts maintain equilibrium under no body forces 
except at the z axis. It will be recognized that the terms with coeffi cients b re present possible di s­
placeme nts for di slocations. The terms with coeffi cients d will be seen to be poss ible di splace ments 
for straight discrete di sclinations. 

These equations have to be modified to obtain equilibrium under no body forces also at the 
z axis. Thi s can be done in several ways. One method is to calculate the body force from (2.1 ) 
by the usual equ ations of elas ti city. It is found to be singular at the z axi s. The n the di splace me nt 
fi eld of an equ al but op posite force along the z axis is derived , a nd added to (2.1 ) to get the desired 
result. We do not show the detail s in thi s paper. Another method is to use the general express ions 
from III. Eve n though s traight defects do not satisfy the necessary boundary conditions used there, 
it is still possible to find the correct fun ctional de pendence of the fields from the general expres­
s ions. The details are give n in appendix C. 

Once a set of dis place me nt fun ctions is found "by hook or crook," it is easy to verify 
that they are a solution by showing that they maintain equilibrium everywhere, including at singular 
points, and that they include the charac te ri sti c Volterra term s (2.1). Equilibrium is checked simply 
by deriving the stress and showing that it sati sfies the equilibrium equation. 
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The development in this paper can also be put in terms of the following general question: 
Given the displaceme nt as an empirical function of the coordinates representing experimental 
data, what is the system of defects that would produce such a displacement? To answer this 
question we have to determine how to divide the resulting fields into elastic and plastic parts. For 
a discrete defect this will be simple to do, because the most logical candidates for the basic plastic 
fields are the terms that are singular on a particular surface, as we shall see for the dislocation in 
section 3.2 and for the disclination in section 5. However, by another division we can also find a 
different system of defects that will give the same displacement, as we shall also see for the "dis­
location model" of the straight disclination in section 8. 

3. Review of the Straight Dislocation 

In this section we apply the general results of section II 3.2* to the special case of a straight 
dislocation. 

3.1. Geometry 

The plastic distortion for a constant displacement across a surface 5 and the dislocation 
density for the corresponding discrete dislocation along the line L are given by the general expres­
sions, (113.21, 113.23), * 

(3.1) 

(3.2) 

where L is the closed boundary qf 5, th (5) and 8p (L) are the Dirac delta functions on the surface 
5 and the curve L, respectively, defined by (All-12) in appendix A, and b/ is constant , identified 
as the Burgers vector of the discrete dislocation line. For the special case of this paper we wish 
to take L as a straight line and 5 as a semi-infinite plane bounded by L. In particular, let L run 
along the X3 axis and 5 be the part of the XlX3 plane for negative Xl. To satisfy the right-hand rule 
we take the normal of 5 in the negative X2 direction. These relationships are illustrated in figure l. 
Then the only nonvanishing components of (3.1-2) become 

(3.3) 

(3.4) 

according to (AI5-16). The plastic distortion is singular on the plane 5 , and the dislocation den­
sity is concentrated on the X3 axis. The three different cases for l = 1,2, 3 are illustrated in figures 
2-4. In figures 2 and 4 the plane 5 is also the slip plane , because it contains the Burgers vector. 

For consistency we see that these results satisfy the definition, (15.2), (113.4), 

(3.5 ) 

by (A6)_ We see also that (3.4) satisfies the continuity condition, (15.4), (113.24), 

ap/ , p= O. (3.6 ) 

Now take for a Burgers circuit A a circle of radius a in the XlXZ plane centered at the origin (fig. 1). 

· Sec tiun II 3.2 re fers to section 3.2 in reference [2J, and the symbol 013.21 ) refers to eq (3 .21) in reference r2]. 
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FIG URE 1. Geometry of the discrete straight defect line in 
the Cartesian coordinate system x ,x,x". 

The de fect line L is along the X3 axis and the defect surface S is the semi- infinite 
part of the .( . .(3 plane for which XI is a negative, with a normal in the negative X2 

direction . For th e Burgers c ircuit A, which Jjnks L. and the Burgers surface (T . 

which is pierced by L, we have chosen a c ircle of rad ius a in the .( '.(2 plane centered 
at the origin. 

FIGURE 3. Edge dislocation described by the dislocation 
density an = b,8 (x, ) 8 (x,). 
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FIGURE 2. Edge dislocation described by the dislocation 
density a3' = b,8(x ,)8(x,). 

FIGU RE 4. Screw dislocation described by the dislocation 
density a"" = b,,8 (x, )15(x2) ' 



Then we have by (3.3) and (A23) 

(3.7) 

in agreement with (II3.22), confirming that bl is the Burgers vector. We also have by (3.4) and (A22) 

LcxPldSp= Lblo(x,)O( X2)dS3= bl, (3.8) 

in agreement with (II3.2S). So in this section we have found the special forms of the plastic distor­
tion and dislocation density (3.3-4) for a straight dislocation running along the X3 axis, and these 
equations are in complete agreement with all the general results for geometry. 

We conclude this section with expressions for the inc om patibility tensor. It is in general given 
by, (15.3), 

YJpq = - (EqnlCXpl, It) (pq). (3.9) 

For our special case the only nonvanishing components are 

(3. lOa) 

(3.10b) 

(3.10c) 

from (3.4). We note that they satisfy the continuity condition, (14.2), 

YJpq, p= O. (3.11) 

The results in this section apply to an infinitely extended body, whether isotropic or anisotropic. 

3.2. Isotropic Statics 

In this section we find the static fields for a straight dislocation in an infinitely extended iso­
tropic body. The displacement is given by (appendix C) 

(3.12a) 

(3.12b) 

(3.12c) 

where v is Poisson's ratio. These expressions are well-known for a dislocation line of Burger 
vector bl running along the X3 axis. We have used a cartesian coordinate system X,X2X3, as shown in 
figure 1. The cylindrical coordinates p and cp are defined in appendix B and shown in figure 5. By 
restricting the angle cp to the range ( -1T , 1T) it becomes discontinuous on the semi-infinite plane 
S shown in figure 1, which then becomes the natural plastic displacement surface of section 3.1. 
Note that we have labeled (3.12) as the total displacement. In the literature these expressions are 
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FIGU RE 5. Relation between Cartesian coordinates X I and 
X 2 and cylindrical coordinates p and cPo 

The angle <P has the range (-1T. 7T). assumes the va lues show n at the ord inates. 
and has a jum p of 27T across the negative X I ax is. 

usualJy regarded as the elastic displacement whic h is the n take n to be multiple-valued on account 
of the a ngle cPo In the fra mework of the present theory, however , it would not be correct to regard 
(3. 12) as the elas tic di s placeme nt- For , if the elasti c displaceme nt is prescribed , the n there can 
be no dislocation s (c.f. 12.1 , 12.2 , and 15.6 , c. f. also footnote lOin II ). But if the total di s placement is 
give n the di slocations are s tilJ unspecified. We see fro m (3 .5) that they are specified when we de­
te rmine how the total di stortion is split into an elas ti c and a plasti c part- Intuitively we can see 
that it is unreaso nable to split the displacement into an elasti c and a plasti c part in the prese nt 
special case because of the fact that the angle cp cannot be s plit into a continuous and a di scre te 
part. In general we shall contend that if a total fi eld quantity of a s traight defect contains the 
angle cP , it is unreasonable to split it into an elastic and plastic part- This idea will also be applied 
in section 5. The results (3_12) show a logarithmic depe nde nce for the displace me nt at large di s­
ta nces from the dislocation line, in agree ment with table 113. 

The total dis tortion is defined in terms of the total dis placement a nd consists of an elastic and 
plastic part , (12.1 ), (113.9), 

(3. 13) 

On differentiatin g the displace me nt (3.12), the terms containing cP will produce expressions singular 
on 5, by (B4). These expressions correspond exactly to the plastic dis tortion (3.3) found in the pre­
vious section. This a pparent coincide nce is of course achieved by our special choice of 5 and the 
range of cPo These terms occur only because we chose the angle cP to be di scontinuous rather than 
multiple-valued. Altern atively, if we had no a priori knowledge of the plastic distortion, we could 
assign the singular terms to it- These term s intuitively re present a s urface along which a plasti c 
displacement has take n place, as discussed in section 3.1. So we find for the elas tic distortion of 
the straight dislocation 

(3.14a) 
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b l [ XI XIX~J b2 [ X2 Xi X 2 ] 
{321 = 47T(1 _ v) (3 - 2v) - - 2 - + (1- 2v) - + 2 - , p2 p4 47T(l - v) p2 p4 

(3.14b) 

{331 = 0, (3.14c) 

(3.14d) 

{332 = 0, (3.14f) 

b3X2 
{313=---' (3.14g) 27Tp2 

b3xI (3.14h) {323 =--
27Tp2 

{333 = 0, (3.14i) 

using (B3-7). By contrast with the plastic distortion (3.3), we see that the elastic distortion consists 
of functions that are continuous everywhere except at the X3 axis. This is reasonable to expect for 
an elastic field. To check the consistency of our results , it is easily shown that the elastic distortion 
and the dislocations density (3.4) satisfy the field equation, (15.6), (II3.1O), 

EplIlk {3kl, //I = apl , (3.15) 

by (B8- 10). This result then confirms that (3.14) represents the elastic distortion of a discrete 
dislocation line running along the X3 axis. 

Next we want to show that equilibrium is maintained everywhere. We first find the elastic 
strain, which is in general given by, (II3.13), 

(3.16) 

Hence we have from (3.14) for the elastic strain of a straight dislocation 

(3.17a) 

(3.17b) 

(3.17c) 
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(3. 17d) 

(3.17c) 

(3.171) 

The dilatation e = e kk is 

(3. 17g) 

At large distan ces from the dislocation line the elastic strain varies inversely with the distance, 
in agreement with table 113. Hooke's law for an isotropic body is in general given by, (1113.2) , 

(3.18) 

Hence we find for the stress of the straight dislocation 

(3.19a) 

(3 .19b) 

(3.19c) 

(T12 = (3.19d) 

(3.1ge) 

(3.19f) 

These expressions are also well-known in the literature. Finally, the equation of equilibrium are, 
(112.1), 

/t = - (T kt,k, (3.20) 

where/t is the body force per unit volume. From (3.19) and (B8-10) we find 

(3.21) 

everywhere, including at the X3 axis where (3.19) is singular. So the above fields maintain equilib-
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rium without body forces, including at the X3 axis. The displacement (3.12) contains the character· 
istic Volterra terms (2.1) for a dislocation. Therefore, as discussed in section 2, we may conclude 
that (3.12) correctly represents the displacement of a dislocation. 

We conclude this section with expressions for the elastic rotation of the dislocation, which is in 
general given by (1114.6), 

(3.22) 

or, from (3.14), for our special case by 

(3.23a) 

(3.23b) 

(3.23c) 

In this section we have summarized the well·known expressions for the displacement and the 
elastic fields of a straight dislocation in an infinite isotropic body. 

4. Geometry of Straight Disclinations 

In this section we shall apply the general geometrical results of section 115.2 to the special 
case of a straight disclination. For a discrete defect along the line L, which has been formed by 
plastic displacement across the surface S, the dislocation and disclination loop densities are in 
general given by, (115.12-13), 

(4.1) 

(4.2) 

where bl is the dislocation Burgers vector, flq the Frank vector, x~ a point through which the 
disclination axis passes, and O .. (S) is the Dirac delta function on the surface S, defined by (A12) in 
appendix A. The quantities (4.1-2 ) were introduced by Mura [9], who called them the "plastic 
distortion" and "plastic rotation." For our special case of a straight disclination running along the 
X3 axis, we take S to be the semi-infinite XlX3 plane for negative Xl with normal in the negative X2 

direction, as illustrated in figure 1, and set bl = O. Furthermore, for simplicity at this point, we 
let the axis of rotation pass through the origin, so that x~ = O. The effect of moving the axis will be 
investigated in section 6. Then the only nonvanishing components of (4.1-2) become 

f3i,= Elq,.f!qX rH (- Xl )0(X2)' ( 4.3) 

(4.4) 

according to (A16). For convenience, we write these results out in full 

(4.3a) 

(4.3b) 

(4.3c) 
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(4.4a) 

(4.4b) 

cpia= !l3H (-XI) O(X2) ' (4.4c) 

where we have used (AB). The basic plastic fields (plastic strain and bend·twist) are in general 
given by, (115.14-15), 

(4.5) 

(4.6) 

For our special case we easily find the only nonvanishing components for the plastic strain 

(4.7a) 

(4.7b) 

(4.7c) 

from (4.3), and by (4.6) we find that the components of the plastic bend·twist are 

(4.Ba) 

(4.Bb) 

(4.Bc) 

(4.Bd) 

(4.Be) 

(4.Bf) 

(4.Bg) 

(4.Bh) 

(4 .Bi) 

from (4.3-4), where we have used (A6). The defect loop densities (4.3-4) and the basic plastic 
fields (4.7-B) are singular on the plane S, figure 1. This is the plane on which a discrete amount of 
plastic displacement has taken place to create the disclination line along the Xa axis. 

The general expressions for the dislocation and disclination densities are given by, (115.19-20), 

aIJI(r) = Op(L) {b l+ Elq,.!lq(X,. - x?)}, (4.9) 

(4.10) 

where opeL) is the Dirac delta function on the curve L, defined by (All). For our special case, with 
bl = x~ = 0, the only nonvanishing components of the defect densities are 

(4.11) 
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(4.12) 

by (A15). Again, for convenience, we write these results out in full 

a31 = o'zx38(xd8(xz) , (4.lIa) 

a3Z = - 0'Ix38 (xd 8 (XI) , (4. lIb) 

a33=O, (4.lIc) 

831 = 0'18(XI)8(xz), (4. 12a) 

832 = 0,28 (XI) 8 (X2), (4. 12b) 

833 = 0,38 (XI) 8 (X2), (4. 12c) 

where we have used (A8). The defect densities are concentrated on the X3 axis. We illustrate the 
three different types of disclinations for q = 1, 2, 3 in figures 6-8. Figures 6-7 represent twist 
disclinations because the Frank vectors 0,1 and 0,2 are normal to the disclination line, whereas 
figure 8 represents a wedge disclination because the Frank vector 0,3 is parallel to the disclination 
line. From (4.12) we see that the twist disclinations correspond to the off-diagonal components of 
the disclination density, whereas the wedge disclination corresponds to the diagonal component 
(see table Ill). Note also that the discrete straight twist disclination contains a certain amount of 
dislocation density , given by (4.lIa-b). The significance of these expressions can be interpreted 
as follows. Consider a slice of material parallel to the XIX2 plane at the point X3. Locally near the 

X 2 

fll 
-+ 

XI 

\ 
X3 

FIGURE 6. Twist disclination with Frank vector n ,. 
It is described by the defect densities 0:32 = - n l x 3 8(XI )8(X2) and 931 = 

n,S(x.)S(x,). 

X 2 

t u2 

FIGURE 7. Twist disclination with Frank vector n 2. 
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l , 
I 

I 

I 

FIGURE 8. Wedge disc/ination with Frank vector 0 3 • 

It is described by the disclinatioll dens it y 833 = fi 3 S(x.)8(x1:). 

X3 axis the displacement jump of the disclination cannot be distinguished from that of a dislocation, 
even though there is a rotation jump. In figure 6 the deformation and the displace me nt jump near 
the point X3 is similar to that of the dislocation in figure 3 with the density given by (4.11b). Similarly 
in figure 7 the deformation near the disclination line is similar to that of the dislocation in figure 2 
with the density given by (4.11a). From this point of view it is therefore quite reasonable to regard 
the discrete disclination line as consisting of a mixture of dislocation and disclination de nsity. 
This is a particular illustration of the general assertation we have already made in II. Note that 
the dislocation density implies a dislocation line with changing Burgers vector. 

By contrast Anthony[10] does not regard (4.11) as a dislocation density , but as an integral part 
of the disclination density. The advantage of this approach is that the disclination is unambi guously 
defined, whether it is described in terms of continuous distribution of defects , or a discrete line. 
However, this approach becomes cumbersome when we try to describe a terminating dislocation 
as in section 12. Anthony has also treated several special cases of straight disclinations. For the 
wedge disclination his equations (27-28) and (30) correspond to our equations (4.12c) and (4, 11c). 
We shall compare his results for the twist disclination with ours in section 6. 

For consistency it is straightforward to verify that the basic plastic fields (4.7-8) and the defect 
densities (4.11 - 12) satisfy the general definitions, (16.3, 16.1), (114.1-2) , 

cx.pl == - €pmk (eft. m + €ktqKfnq ), (4.13 ) 

(4.14) 

by (A6) and (A8). Furthermore, it is easy to verify the general relations (116.27-28) between the 
loop densities (4.3-4) and the defect densities (4.11-12) 

(4.15 ) 
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(4.16 ) 

also by (A6) and (A8). We also see that the defect densities (4.11-12) satisfy the general continuity 
conditions, (16.8, 16.2), (115.27-28), 

(4.17) 

8pq ,p=0. (4.18) 

We next wish to calculate the total Burgers vector which is in general defined in terms of the basic 
plastic fields by, (114.5), 

(4.19) 

where A is the Burgers circuit, figure 1. For our special case we find from (4.7-8) by a somewhat 
tedious calculation that 

(4.20) 

where we have used (A8-9). The general relation for a discrete defect line is, (115.17), 

(4.21) 

and with our special assumption that bl=X~=O this reduces to (4.20). The total Burgers vector Bl 

measures the displacement jump at the origin, which vanishes in figures 6-8. The total Burgers 
vector can in general also be expressed in terms of the defect loop densities, (116.31), or the defect 
densities, (114.7), 

(4.22) 

(4.23) 

where (T is the Burgers surface, figure 1. From (4.3-4) and (4.11-12) it easily follows that these 
equations lead to the same result as (4.20). Now we take for the Burgers circuit A a circle of radius 
a in the X\X2 plane centered at the origin (fig. 1). Then we have by (4.8) and (AI9-21) 

(4.24) 

in agreement with (115.18), confirming that Oq is the Frank vector. We also have by (4.4) and (A23) 

(4.25) 

in agreement with (116.32), and by (4.12) and (A22) 

(4.26) 

in agreement with (115.30). The jump in displacement across the surface S is in general given by, 
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(lIS. 1 , IIS.S), 

(4.27) 

(4.28) 

In our special case with bl = x~.= 0, or by (4.20), this reduces to 

(4.29) 

This jump agrees with those depicted in figures 6-8. So, in this section we have found the special 
forms of the defect loop densities (4.3-4), the basic plastic fields (4.7-8), and the defect densities 
(4.11-12), for a straight disclination running along the Xa axis, and these equations are in complete 
agreement with all the general results for geometry from II. 

We conclude this section with expressions for the incompatability tensor. It is in general 
given by, (16.6), (114.12), 

YJpq=- (€qnICl'.pI , n+ Opq) (pq). (4.30) 

For our special case we find the only non vanishing components from (4.11-12) 

(431a) 

(4.31b) 

(4.31c) 

by (A9). We note that these results satisfy the continuity condition, (14.2), (114.13), 

YJpq ,p= O. (4.32) 

The results in this section apply to an infin itely extended body, whether isotropic or anisotropic. 

5. Isotropic Statics of the Straight Disclination 

In this section we find the elastostatic fields for a straight disclination in an infinitely extended 
isotropic body. If the Volterra expressions (2.1) are properly modified to maintain equilibrium 
everywhere, then the displacement is given by (appendix C) 

(S.la) 

(S.lb) 

(S.lc) 
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where v is Poisson's ratio. We have used a Cartesian coordinate system Xl, X2, X3, as shown in 
figure 1, and the cylindrical coordinates p and cp, as defined in appendix B and shown in figure 2. 
This is the displacement field of a straight disclination line running along the Xa axis, with Frank 
vector o'q. By restricting the angle cp to the range (-7T, 7T) we shall find that the semi-infinite 
plane S becomes the natural plastic displacement surface of section 4. The asymptotic dependence 
of the displacement (S.l) goes as pIn p, in agreement with table 113. 

The total distortion is in general defined in terms of the displacement by, (12.1), (113.9), 

(S.2) 

In performing these differentiations in the displacement (S.l) we shall regard three-dimensional 
space to consist of the product of the two-dimensional XIX2 plane and the independent one­
dimensional X3 line. For XI and X2 we use the results for generalized derivatives of appendix B. 
Since Xa ,appears only linearly in (S.l) the classical and generalized derivatives with respect to Xa 

coincide. So we find for the total distortion, using (B3-7), 

13;1 = - 0'IX3 [(l_2V)XI_2XIX~]_ 0'2X3 [(l_2V)X2+ 2 XTX2] 
47T (l - v) p2 p4 47T (l - v) p2 p4 

0,3 [ . X~] 
+ 47T( 1 - v) (l - 2v) In p + p2 ' (S.3a) 

137' _ _ 0'IX3 [ X2 X~X2] o'ZX3 [ XI XlX~] 
21- 47T(1-") (l-2v)-+2-4 + ( ) (3-2v)--2-

v p2 p 47T 1 - V p2 p4 

(S.3b) 

W=- 0,1 [(l-2v)Inp+X~]+O,z[.!E...+ XIX2 ] 
31 47T(l-v) p2 27T 47T(1-v)p2' 

(S.3c) 

QT _ 0'IX3 [( Xz XTX2] 
1-'12 47T(1-v) 3-2v)p2- 2 p;-

o'ZX3 [(l- 2v) ~ + 2 XIX~] + 0,3 [.!E... _ XlX2 ] 
47T(l-v) p2 p4 . 2-rr 47T(l-V)p2' 

(S.3d) 

(S.3e) 

I3I2=-0'1 [.!E..._ XIX2 ] _ 0,2 [(l-2V) Inp+ Xi], 
27T 47T(l-V)p2 47T(l-V) p2 

(S.3f) 

[ X~] [ <p XI X2] (1 - 2v) In p + - - 0,2 - - , 
p2 27T 47T(l- v) p2 

(S.3g) 

(S.3h) 

I3L=O. (S.3i) 
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Note that the total distortion contains terms whic h are singular on S and which correspond exactly 
to the dislocation loop density f3h~ given by (4.3). This result is in agreement with the general 
equation (115.34). Therefore we may be tempted to regard these terms as the plas ti c di stortion 
f3:t and consequently find the elastic distortion from (3.13). This is the point of view taken by 
Mura [9]. We shall investigate the co nseque nces of this approach in section 8. Strictly s peakin g 
we are at liberty to split the total distortion in any way we wish into an elastic and a plastic part. 
However, the present theory then implies that there are no disclinations. We note, thou gh, that 
the total distortion (5.3) still contains the angle 1>, in contrast to the dislocation case. Since 1> is 
discontinuous at the surface S, it is not possible to split it into a part that is continuous e ve rywhere 
except at the X3 axis , and a part that is localized only on the surface S. Therefore the total distortion 
cannot be split into an elastic part that should be continuous everywhere except at thex3 axis and a 
plastic part that is localized on the surface S of plastic displacement. We shall find, however, that 
the basic total fields no longer contain the angle 1> and so it will be easy to find an intuitively reason­
able way to split them into an elastic and plastic part. 

We first consider the total strain which is the symmetric part of the total distortion and con· 
sists of an elastic and plastic part, (114.14), 

(5.4) 

If we use (5.3) in thi s expression we shall find that the te rms which are singular on S corres pond 
exactly to the plastic strain er.l given by (4.7). So we find for the elastic s train of the straight 
disclination 

[ (1-2v) :~ +2xl~2 ] 

a3 [ ( ) 1 x; ] + 47T(1-v) 1-2v n p+ p2 ' (5.5a) 

(5.5b) 

(5.5c) 

(5.Sd) 

(5.5e) 

_ a l [ Xi ] a2XIX2 
e31 -- 47T (l-v) (1-2v)lnp+ p2 + 47T(l-V)p2' (5.Sf) 

The dilatation e= eh"k is 

(5.5g) 

The elastic strain consists of fun ctions that are continuous everywhere except at the X3 axis, which 
is reasonable to expect for an elastic fi eld. These expressions also show a logarithmic de pe nde nce 
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for the elastic strain at large distances from the disclination line, in agreement with table 113. 
To find the total bend-twist we first find the total rotation which is in general given by, (1115.11), 

or, from (5.3), for our special case by 

wT - 1 f f3T 
q - 2 klq kl ' (5.6) 

(5.7a) 

(5.7b) 

(5.7c) 

These expressions still contain the angle cp, which prevents us from splitting the total rotation 
into an elastic and plastic part in a reasonable way. The total bend-twist is in general defined in 
terms of the total rotation and can be split into an elastic and plastic part, (114.15), 

(5.8) 

In carrying out this differentiation on the functions in (5.7) we shall find that the resulting terms 
singular on 5 correspond exactly to the plastic bend-twist Kfq given by (4.8). So we find for the 
elastic bend-twist, using also (A6), (B3-4), and (B8), 

K31 = 0, 

flZXl 
Kzz = -- , 

27Tp2 

K32 = 0, 
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(5.9a) 

(5.9b) 

(5.9c) 

(5.9d) 

(5. ge) 

(S.9f) 

(S.9g) 

(5.9h) 

(5.9i) 



The elas tic bend-twis t , like the elas tic s train , no longer contains the angle cp and is continuous 
ever ywhere except at the X3 axis. Alternatively, if we had no a priori knowledge of the basic plas ti c 
fi elds (4.7-8), we could assign to th e m the terms in the basic total fields that are singular on S, 
because these surface singulariti es intuitively s how where the plas tic displaceme nt has taken place . 
In this manner we would the n also have been able to obtain the basic elastic fi elds (5.5) a nd (5.9), 
s tarting only with the expressions for the di splaceme nt (5.1), as discussed at the e nd of secti on 2. 

To check the consis te ncy of our res ults, it can be verified that the basic elas tic fi e lds (5.5) and 
(5.9) and the defect densities (4.11 - 12) satisfy the field equations, (16.3, 16.1), (114.17 - 18), 

(5.10) 

Eplllk Kkq, III = ()pq , (5.11) 

by (B8- 12). These results the n co nfirm that (5.5) and (5.9) re present the basic elastic fi elds of a 
discrete di sclination lin e running along the X3 axis. Furthermore it can be verified that the elasti c 
s train (5.5) and the incompatibility te nsor (4.31) satisfy the field equ atio n, (114.22), 

- E p mkEqnl,e kl , 1IIn = 'T/ pq, (5.12) 

by (B8- 12). 
Next we wa nt to show that e quilibrium is maintained everywhere. We firs t find the s tress from 

Hookes' law (3 .18) and the elasti c strain (5.5) 

(Tu = 

(5.12a) 

(5. 12b) 

(5.12c) 

(5. 12d) 

(5.12e) 

(S.12f) 

If we substitute these results into the equations of equilibrium (3 .20) we find by (BS-I0) that 

/ 1=0, (5. 13) 

e ver ywhere, so that the above fields maintain equilibrium without body forces, including at the 
X3 axis. The displaceme nt (5.1) contains the characteristic Volterra terms (2.1 ) for a di sclination. 

625 



Therefore, as discussed in section 2, we may conclude that (5.1) correctly represents the displace-
ment of a straight disclination line. ~ I 

In this section we have presented the static fields, i.e., the displacement, total distortion, basic 
elastic fields (strain and bend-twist), and stress, of a straight disclination line in an infinite isotropic 
body. 

6. Movement of the Disclination Axis 

If we do not restrict the disclination axis from passing through the origin as in sections 4-5 we 
obtain more general results. These can be found by removing the restriction x~= 0, which was used 
in those sections to find the explicit formulas from the general expressions of II. In this section 
we shall discuss a few selected expressions which are of particular interest. They will show that the 
effect of moving the disclination axis is equivalent to adding a dislocation, as was already pointed 
out in II. 

6.1. Geometry 

The general expression for the dislocation density of a discrete defect line is given by (4.9). We 
shall now consider the special case of a discrete disclination line lying along the X3 axis, but whose 
rotation axis passes through the general point x;? Then the only nonvanishing components of the 
dislocation density become by (A15), setting bl= 0, 

(6.1) 

instead of (4.11). On the other hand, the disclination density of our discrete disclination line with 
its axis shifted from the origin remains the same as (4.12). When written out in full we have for (6.1) 

(6.1a) 

(6.1b) 

(6.1c) 

where we had used (AS). These results of course reduce to (4.11) when x~ = O. In the present case 
we find that the total Burgers vector no longer vanishes, 

(6.2) 

from (4.21) with bl = O. So the displacement jump across the surface S for our special case becomes 

[Ul(r)] = Elq,.!1q(Xr - x~), (6.3) 

from (4.27 -2S) , or, when written out in detail 

(6.3a) 

(6.3b) 

(6.3c) 

The total Burgers vector (6.2) is the displacement jump at the origin. Anthony [10] has treated the 
special case of the twist disclination , 0 1 , for the case when the axis passes through the point 
Xg=X2(Z), xg=O_ To find the results forms case we set O 2 =03 =0 in the above equations. The 
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only nonvanishing components of (4.12), (6.1), and (6.3) then are 

(6.4) 

(6.5a) 

(6.5b) 

(6.6a) 

(6.6b) 

where we have set X2 = X2(PO), X3 = X3(PO) . These results correspond to Anthony's equations (31), 
(33), and (34). Hence our results are in complete agreement with Anthony. 

If we compare (6.1) with (4.11) we see that the axis has been moved from the origin to the 
point x~ by adding the dislocation de nsity 

(6.7) 

to the disclination line of section 4. This is in agreement with (115.24). From (3.4) this correspo nds 
to adding a dislocation line with Burgers vector 

(6.8) 

to the disclination line, in agreement with (115.23). In detail (6.8) is 

(6.8a) 

(6.8b) 

(6.8c) 

So the disclination axis is moved from the origin to x~ by simply adding a dislo cation with Burgers 
vector (6.8) to it. 

6.2. Statics 

The fields of a straight discrete disclination along the X3 axis whose rotation axis passes through 
the point x~ can be obtained by adding the fields of the dislocation line in section 3.2 with the 
Burgers vector given by (6.8) to the fields of the disclination line in section 5. For example, the dis­
placement is obtained by substituting (6.8) into (3.12) and adding it to (5.1) 

(6.9a) 

(6.9b) 
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(6.9c) 

This is the displacement of a straight disclination line running along the X3 axis, with a rotation 
axis that passes thru the point x~. Other field quantities can be calculated in the same way, or can 

be derived from (6.9) by the same method as used in section 5. 

7. The Infinitesimal Disclination Dipole 

In this section we wish to apply the general expressions of section 117 to the special case of 
a straight disclination dipole line. The biaxial dipole is obtained by moving the whole basic straight 
disclination (line and axis) by an infinitesimal distance gm. The uniaxial dipole is obtained by 
moving only the line and keeping the axis fixed. In both cases the negative of the basic disclination 
is left at the X3 axis. 

7.1. The Biaxial Dipole 

In general the defect densities of a biaxial dipole are given by, (117.1-2), 

(7.1) 

(7.2) 

where apl and (Jpq are the defect densities of the corresponding basic defect. For the special case 
of a discrete straight biaxial disclination dipole line the basic defect densities are given by (4.11-
12). So for the conjugate dipole the only nonvanishing components of (7.1-2) are 

~l=-ElqrDq[xrgm8, m{p) +gr8{p)], 

£Paq=-Dqgm8 ,m{p) , 

(7.3) 

(7.4) 

where 8(p) is the two-dimensional Dirac delta function defined by (B9). These results could of 
course also be found from (117.3-4) and (A15). In these expressions the tensor Dqgm represents the 
strength of the dipole. When written out in full (7.3-4) become 

(7.3a) 

(7.3b) 

(7.4a) 

(7.4b) 

(7.4c) 

where we have used (AS-9). 
In general the displacement of the biaxial dipole is given by, (117.5), 

(7.5) 

where u~ is the displacement of the corresponding basic defect. For our special case the distortion 
of the basic straight disclination line is given by (5.3), and so the displacement of the conjugate 
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dipole is 

(7.6a) 

(7.6b) 

fll~1 [ X~] fl26 [ X~] 
uf=47T(l-V) (l-2v)ln p + p2 +47T(l-V) (1-2v)ln p + p2 

(7.6c) 

where we have ignored the terms in (5.3) which are concentrated on the surface S. We presume 
that the displacement is not a state quantity because it contains the angle cPo The displace ment has 
a logarithmic dependence at large distances from the dipole line, in agreement with table 113. 

7.2. The Uniaxial Dipole 

To derive the relations for the uniaxial disclination dipole we first find the results of moving 
the axis of the basic disclination line by an infinitesimal distance ~ m, keeping the disclination line 
fixed. The dislocation density of this defect is given by, (117.7), 

(7.7) 

whereas the disclination density vanishes, (Jl~q= O. For our special case of a straight disclination 

line we find from (6.1) that the only nonvanishing components of (7.7) are 

(7.8) 

in agreement with (117.9) and (A15). The displacement of the above defect is, (117.11), 

(7.9) 

which, for our special case, becomes 

(7.10a) 
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(7.10b) 

(7.10c) 

from (6.9). If we compare (7.8) and (7.10) with (3.4) and (3.12) we see that the above results are the 
dislocation density and displacement of a discrete straight dislocation line with a Burgers vector 
given by 

(7.11) 

in agreement with (117.13). 
We now find the relations for the discrete straight uniaxial disclination dipole line. In general 

they are given by the difference between those in section 7.1 and the above. For example, the dis­
location density is found from, (117.14), 

(7.12) 

Hence from (7.3) and (7.8) we find that the only non vanishing components of (7.12) are 

(7.13) 

in agreement with (117.15) and (A15). When written out in full this expression becomes 

(7.13a) 

(7.13b) 

(7.13c) 

where we have used (A8-9). The disclination density of the uniaxial dipole is the same as for the 
biaxial dipole, 8~Q= ~q, given by (7.4). The displacement of the uniaxial dipole is given by, (117.16), 

u~= uf.- u~. (7.14) 

By (7.6) and (7.10) this becomes for our special case 

(7.1Sa) 

(7_1Sb) 
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flltl [ X~ ] fl26 [ Xi] ll~ = (1-2v)lnp+ - + (l-2v)lnp+-
. 417"(1- v) p2 417"(1- v) p2 

(7.15c) 

We note that these expressions no longer contain the angle cp, and so ll:; is a state quantity. The 

asymptotic dependence at large distances is the same as the biaxial dipole, and shown in table 113. 
Furthermore the displacement of the uniaxial dipole ll~ does not contain any contribution 

from the wedge disclination, i.e., fl3 is missing from (7.15). We may therefore conclude that it is 
possible to find the displacements of an edge dislocation from those of a biaxial wedge disclination 
dipole. Specifically if we set 

(7.16) 

we find for (7 .11) 

(7 .17a) 

(7.17b) 

If these results are substituted in (7.6 a-b) we find (3.12 a-b). This method of obtaining the edge 
dislocation displacements was first pointed out by Eshelby [11]. 

8. The "Dislocation Model" of the Straight Disclination 

8.1. Geometry 

As discussed in section 119 the dislocation model of a discrete defect line along the curve 
L is obtained by eliminating the disclination loop density (119.1) 

(8.1) 

from the corresponding defect surface S that spans L. We shall illustrate this for our special case 
and so find the dislocation model of a straight disclination. There are of course many possible 
choices for the surface S, but we consider only the one used in the previous sections and illustrated 
in figure 1. 

The dislocation loop density remains the same as before, (4.3), and becomes the plastic dis­
tortion, (119.2). So it has the only nonvanishing components 

(8.2) 

or, when written out in full 

(8.2a) 

(8.2b) 

f3f3 = f3 i3 = - fl2x IH (- XI )8(X3). (8.2c) 

The dislocation density of the dislocation model is in general given by, (119.7), 

631 

----- ---



(8.3) 

For our special case, with bl=X~=O, this reduces to 

(8.4a) 

a21 =0, (8.4b) 

(8.4c) 

(8.4d) 

(8.4e) 

(8.4f) 

(8.4g) 

a23=0, (8.4h) 

(8.4i) 

where we have used (A15-16) and (A8). The dislocation model consists of two parts, the same dis· 
location density along L as for the corresponding discrete disclination, given by (4.11), and 
a constant distribution over the surface S, given by the terms with the Heaviside function. 
We have sketched the three different type of dislocation models for OJ, O 2 , and 0 3 in figures 9-1l. 
Rather than the constant dislocation distribution over S implied by (8.4), which is somewhat dif· 
ficult to draw, we have shown the discrete distribution that most closely approximates it, and is 
somewhat easier to visualize. These figures represent the dislocation models of the straight dis­
clinations shown in figures 6-8. Figures 9 and 11 represent terminating tilt walls and figure 10 a 
terminating twist wall. The disclination density of course vanishes , (119.8), 

, , 

,,---------- XI 

FIGURE 9. Dislocation model of the twist disclination in 
figure 6. 

The tilt wall on the surface S (fi g. 1), which terminates at the X3 axis, is repre­
sented by a set of parallel edge dislocations. The arrows are Burgers vectors and 
the attached short lines show the orientation of the extra half planes. This defect 
is described by the dislocation densities ol2=- fi.H(-X, )8(.1:2) and 032=­
O,x,S(x, )8(X2)' 
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, , 

..,--------- XI 

FIGURE 10. Dislocation model of the twist disclination in 
figure 7. 

The twist wall on the surface S, which terminates at the X3 axis, is represented 
by a crossed grid of screw dislocations. The arrows are Burgers vectors and the 
attached short lines show the orientation of the extra half planes for the edge dis­
locations_ This defect is described by the dislocation densities a ll = a33 = n'lH 
(- x, )8(x,) and u" ~ 0 ",,8(x, )8(X2)' 

I 
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----------------x, 

FIGURE 11. Dislocation model of the wedge disclination 
in figure 8. 

The tilt wall on the surface S , which terminates at the X 3 axis, is represented by 
a set of parallel edge dislocations. The arrows are Burgers vectors and the attac hed 
short lines show the orientation of the extra half planes. This defect is described 
by the dislocation density 0'32=- fiaH (- x.)5(X2)' 

For consistency It IS easily verified that (8.2) and (8.4) satisfy the definition (3.5). It is also 
easily checked that the continuity condition (3.6) is satisfied by (8.4), in agreement with (119.9). 

We conclude this section with expressions for the incompatibility tensor. If we substitute 
(8.4) into (3.9) we find the only non vanishing components 

(8.6a) 

(8.6b) 

(8.6c) 

These results are identical with the incompatibility tensor of the corresponding disclination given 
by (4.31). Since the incompatibility is the source of elastic strain, (114.22) and (114.31), this means 
that the dislocation model has the same elastic strain as the corresponding discrete disclination 
line. 

8.2. Statics 

According to (119.11-12) the total displacement and distortion of the dislocation model are 
identical to those for the corresponding disclination line. They are therefore given by (5.1) and (5.3). 

To d etermine the elastic fi elds it is necessary to know how to split up the total fi elds. The dif­
ference between a discrete disclination line and its di slocation model simply results from splitting 
the total :fields up in a different way. For a discrete disclination we have argued that the total dis­
tortion cannot be split into an elasti c and plastic part. In particular in section 5 we argued that for 
the straight disclination (5.3) cannot be split because it contains the angle cpo For the dislocation 
model, however, we ignore this point of view and say that the total distortion can be split into an 
elastic and plastic part. This approach leads to Mura's new concepts of "plastic distortion " and 
"elastic distortion" of a disclination line. In particular, for the straight disclination, we assert that 
(5.3) can be split. The logical terms for the plastic part are those that are concentrated on the sur­
face S, which correspond exactly to (8.2), or the dislocation loop density of section 4. So we find 
the elastic distortion from (3.13), (5.3), and (8.2), 
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/311 = - OIXa [(1- 2/1) ~- 2 XIX~] - OzXa [(1- 2/1) Xz + 2 XIX2]' 
47T(1- /I) p2 p4 47T(1-/l) pZ p4 

0 3 [ ) X~] + 47T(1-/l) (1-2/1 lnp+ pZ' (8. 7 a) 

(S.7b) 

(S.7c) 

/312 = 

(8.7d) 

(S.7e) 

_ [ cp XIX2] O 2 [( ) xi] /332-- 0 1 27T - 47T(1-/l)p2 - 47T(1-/l) 1-2/1 lnp+ p2' (S.7f) 

(S.7g) 

(8.7h) 

/333 = o. 
This is the elastic distortion of the "dislocation model" of the straight disclination line. It also 
represents Mura's "elastic distortion" of the straight disclination line. Note that these expressions 
still contain the angle cpo For consistency it is straightforward to check that (8.7) and (8.4) satisfy the 
field equation (3.15). From the elastic distortion we can then find all the other elastic fields of the 
dislocation model. 

The elastic strain is obtained by substituting (S.7) into (3.16) and the result is identical to (5.5). 
Thus the elastic strain and hence stress of the dislocation model is identical to that of the corre­
sponding discrete disclination, as we already discussed in section 119. 

The elastic rotation is found from (3.22) and (8.7) 

(8.Sa) 

(8.Sb) 
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(8.8c) 

In general the elastic bend-twist is given by , (113.14), 

(8.9) 

For our special case (8.8) we find th e co mpone nts 

(8. lOa) 

(8. lOb) 

K3' = 0 , (8.l0c) 

(8.l0d) 

(8.lOe) 

K 32= 0 , (8.1O£) 

(8. l0g) 

_ D., X3 [1. _ 2' xi "() ] D.2X , X2X3 
K"3 - + 7Tu P +---- 27T p 2 p 4 7Tp4 

where we have used (B3-4) and (B8). The elastic be nd-twist of the di s location model consists of the 
s um of the elastic bend-twis t of the corres ponding di sclination line, (5.9)_ a nd the disclination loop 
density or Mura's "plastic rotation," (4.4)_ For consiste ncy it can easily be verified that (8_ 10) and 
(8.5) satisfy the field equation (5.11), by (B8) and (Bll-l2). 

Mura's new conce pts therefore have a clear interpretation in terms of the di slocation model. 
Mura's "plastic and elastic di s tortion" of the di sclination line are the plastic and elasti c di s tortion 
of the corresponding dislocation model. Mura's " plasti c rotation" is the excess elasti c be nd-twi st 
of the dislocation mode l over the corres ponding disclination line. 

9. The Finite Disclination Dipole 

The results for a finit e dipole can be derived simply by co mbining the field s of a positi ve a nd 
negative basic disclination which are a finit e di stan ce apart. We choose the positive di sclination 
to pass through the point (L, 0 , 0) a nd the negative one through (- L , 0 , 0) , both parallel to thex3 
axis. 

9.1. The Biaxial Dipole 
a . Geometry 

We find the defect densities for the finit e straight biaxial discLination dipole from the basic 
defect densities of the discrete straight disclination line, given by (4 .11-12), usin g the above pro-
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cedure. The only non vanishing components are 

(9.1a) 

(9.1b) 

(9.2) 

It is interesting also to find the dislocation model for this defect since it has exactly the same 
total displacement, total distortion, elastic strain, and stress. The defect densities for the disloca· 
tion model of the finite biaxial disclination dipole can be found from the basic defect densities of 
the dislocation model of the discrete straight disclination line, given by (8.4- 5). Using the same pro­
cedure again, we find 

(9.3a) 

(9.3b) 

(9.3c) 

(9.3d) 

(9.3e) 

(9.3f) 

(9.3g) 

(9.3h) 

«§3 = - DdH(x! - L) - H(x! + L)] O(X2) , (9.3i) 

(9.4) 

The dislocation model consists of two parts: the same dislocation density as for the corresponding 
defect, given by (9.1), and a constant distribution over the surface strip between (- L, 0, 0) and 
(L, 0, 0). We have illustrated this case in figures 12-14. The dislocation model of the biaxial wedge 
disclination dipole, figure 14, was examined by Li [12], who called it a "dislocation wall." 

b. Statics 

The fields of the finite straight biaxial disclination dipole can be found from the fields of the 
corresponding basic defect, i.e., the straight disclination line, given in section 5, by the same pro­
cedure as used above. We shall illustrate this by two examples. We first find the total displacement 
of the biaxial disclination dipole from (5.1) 
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FIGURE 12. Dislocation model of the finite twist disclination 
dipole (biaxial and uniaxiq1), corresponding to figures 6 and 9. 

FIGURE 13. Dislocation model of the finite twist disclination 
dipole , corresponding to figures 7 and 10. 

The dislocation densities are (t~2= n,[H (XI - L ) - H (xt+ L )Jo(X2) and a~2= 
- 0,x,[8(x, -L) -8(x,+L)]8(x , ). 

The dislocation densities for the biaxial dipole are a r)l= a~=-n2[H (X l - L ) 

- H (x ,+ L)]8 (x,) and af,= n ,x,[8(x, - L )-B(x,+L) ] B(x,). For the uniaxial 

dipole we have to add the dislocation densit y a:3 =- Ozl... [o(x1 - L) + o(x1+L)] 
S(X2) . which is indicated by the two Burgers vectors at Land - /... 

\ 
\ 

FIGURE 14. Disclination model of the finite wedge disclina· 
tion dipole, corresponding to figures 8 and 11. 

The dislocation density for the biaxial dipole is a D ={}3 [H (x\ - L) - H(x,+ 
L)]6(X2). For the uniaxial dipole we have to add the dislocation density 0.:'1. = 
n ,L[8(x, - L) + B(x, + L)]B(x,) , which is indicated by the two large Burgers 
vectors at L and - L. 

03 [ 1 - 2v {I (XI - L)2 + X~ 
- 27T X2 {<P(XI - L, X2) - <P (XI + L , X2)} - 2(1- v) "2 xJln (XI + L)2 + X~ 

-~L In «XI - L)2 + xV «XI + L)2 + xV + 2L}]. 

D _ 0lX3 [ ( X2 { XI - L XI + L }] 
u 2-- 27T <P XJ-L,X2)-<p(Xl+L,X2)-2(1_v) (XI_L)2+X~ -(xl+L)2+xi 

_ 02X3 [!(1_2v)In(xl-L)2+x~+ (xl-L)2 (xl+L)2] 
47T(1 - v) 2 (XI + L)2 + X2 {XI - L)2 + x~ (XI + L)2 + x~ 
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1 
{CP(XI - L, X2) - cp(x\ + L, X2) }-"2 {CP(XI - L, X2) + CP(XI + L, X2)} 

1-2v 1 (xl-L)2+X~J 
+2(1-v) x22ln (xl+L)2+X~ , (9.Sb) 

Ol[ 1-2v {I (xl-L)2+X~ 
uf = 27T X2 {CP(XI - L, X2) - CP(XI + L, X2)} - 2(1- v) "2 xdn (Xl + L)2 + X~ 

- ~ Lin «Xl - L)2 + X~)( (Xi + L)2+ xn + 2L}J- ~; [XI {CP(XI - L, XIl) - cp(~l + L, X2)} 

. 1-2v 1 (xl-L)Z+x~] 
-L{CP(Xl-L,Xz)+CP(XI+L,X2)} + 2(1-v)x2-2 In (xl+L)z+xJ ' (9.Sc) 

where cP (xt, xz) is defined by (B2). Second we find the stress of the biaxial wedge disclination dipole 
from (5.12), setting 0 1 =02 = 0, 

(9.6b) 

(9.6c) 

D _ _ C03X2 [ XI - L _ XI + L ] 
U12- 27T(1-v) (xl-L)2+x~ (xl+L)2+x~' (9.6d) 

(9.6e) 

uri =0. (9.6f) 

These results agree with the stress at large distances from a finite dislocation wall found by Li [12], 
except for a 90° rotation of the XIX2 plane. 

Finally, to compare the finite with the infinitesimal dipole, we let the two basic disclinations 
approach each other. When L ~ ° in (9.5) the displacement of the finite dipole approaches 

(9.7a) 

uD ~ - 2ffi2X 3 [(1- 2v) Xz _ 2 XIX2 ] + 2LOzX3 [(1- 2v) Xl + 2 XIX~J 
2 47T(1- v) pZ p4 47T(1-V) pZ p4 

-2L03 [2: 
X1X2 ] 

47T(1-v)pZ ' (9.7b) 

D 2LO I [( ) x~J [cp XIXZ ] 
U 3 ~ 47T (1- v) 1 - 2v lnp + p2 + 2L03 27T - 47T (1- v) pZ . (9.7c) 

These results agree with the displacement of the infinitesimal dipole (7.6) if we put ~r = (2L, 0, 0). 
This was to be expected since this dipole is built up by confining the translation of the basic 
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disclination to the XI axis. Next we let L ~ ° in (9.6) and find that the stress of the finite wedge 
dipole approaches 

(9.8a) 

(9.8b) 

(9.8c) 

(9.8d) 

These results sho uld agree with the stress of the infinitesimal biaxial wedge disclination dipole, 
which we did not calculate in section 7. However , we noted there that the fi e lds of such a dipole 
are the same as those of an e dge di slocation. If we substitute the translation found above , ~ r = (2L, 
0,0), into (7.17) we find b, =(O, - 2Lfl3 , 0). Now (9.8) agrees with (3 .19) with thi s partic ul ar value 
for the Burgers vector. 

9.2 The Uniaxial Dipole 

We find the finite straight uniaxial disclination dipole by moving the axis of each basic 

disclination in section 9.1 back to the X3 axis. We shall ske tc h out how to get results for thi s case. 
In general the axis of a discrete disclination line is translated from the point x?- to the point x?-' by 
adding to it a discrete dislocation line whose dislocation density is given by, (115.24), 

(9.9) 

In our special case xo' = 0, because we move the axis to the origin. For the positive di sclination 
passing through (L, O ~ 0) and the negative through (-L , 0, 0) parallel to the X3 axis we find that 
the only non vanis hin g components of opeL) are 

03(L) =O(XI -L) 0(X2), atx?= (L, 0, 0), (9. 10a) 

03(L) = O(XI + L) 0(X2), at x~.= (-L, 0,0) . (9.10b) 

by a coordinate translation of (A15). He nce, we find that the only non vanishing components of the 
additional dislocations (9.9) are 

(9. 11 a) 

(9.11b) 

We now find the dislocation density from 

(9. 12) 

Note the change in sign between this relation and (7.12). Relation (9.12) gives the di slocation density 
of the finite uniaxial disclination dipole if agl is given by (9.1), but also of the corresponding di s· 
location model if aft is given by (9.3). The disclination density of the uniaxial dipole re mains the 
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same as for the biaxial dip0le, (9.2) or (9.4). The additional dislocations (9.11) are also illustrated in 
figures 13- 14. 

The static fields of the uniaxial dipole can be found simply by adding the fields of the dis· 
locations (9.11) to the fields of the biaxial dipole in section 9.1. The procedure is straightforward 
and we leave the details to the reader. 

10. The Compensated Disclination Line 

As discussed in section 1110 the compensated disclination line is obtained by eliminating the 
dislocation loop density, (1110.1), 

(10.1) 

from the defect surface S that spans the disclination line L. We shall illustrate this for our special 
case of a straight disclination. There are of course many possible choices for the surface S. We 
shall choose two of them, first the one already used and illustrated in figure 1, and second the 
semi-infinite X2X3 plane for positive X2. 

From (10.1) and (4.5) we see that the plastic strain also vanishes, (1110.3), 

(10.2) 

With the choice for S as in figure 1 the disclination loop density remains the same as before, (4.4), 
and becomes the _plastic bend-twist, (1110.4). So it has the oniy non vanishing components 

(10.3) 

The defect densities of the compensated disclination are in general given by, (1110.5), 

apl(r) = 8pl8k (S)!lk- 81(S)!lp, (10.4) 

(10.5) 

For our special case we find the only nonvanishing components 

(10.6a) 

(1O.6b) 

(10.6c) 

(1O.6d) 

(10.7) 

where we have used (A15-16). The compensated disclination consists of the same disclination line 
along L as the corresponding discrete disclination, given by (4.12), and a constant dislocation dis­
tribution over the surface S, which is opposite to that of the dislocation model, given by (8.4). The 
latter distribution is a simple rotation wall, as we saw. The components a12 and a32 represent tilt 
walls, while the components all and CX33 represent a twist wall. 

For consistency it can be verified that (10.1-3) and (10.6-7) satisfy the definitions (4.13-14), as 
well as the relations (4.15-16). It is also easily verified that the continuity conditions (4.17-18) are 
satisfied by (10.6-7), in agreement with (1110.7-8). 
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The in co mpatibility te nsor is found by subs tituting (10.6-7) into (4.30) and we find 

(10.8) 

In general we know that th e total di s place me nt and elastic strain vanis h for the compensated 
di sclination line, (1110.11-12) , 

u?,'= O, (10.9) 

ekl = O. (10.10) 

The last result (10.10) is consistent with (10.8), because the incompatibility is the source of elastic 
strain. Since the elastic strain vanis hes we see by Hookes' law th at th e stress also vanishes. The 
only elastic field that does not vani sh is the elastic bend-twist. It is in general given by, (1110.13), 

(10.11) 

and for our special case has the only non-vanishing co mpone nts 

(10.12) 

by (10.3). 
We note that if we add the results of the compe nsated di sclination to those of the di slocati on 

model in section 8 we get the results for the disclin ation lin e in sections 4-5, as we already pointed 
out for the gene ral case in section 1110. F or exa mple, we have, symbolically, (10.1)+ (8.2) = (4.3), 
(10.3 ) + (8.1) = (4.4), (10.6) + (8.4) = (4.11), (10.7) + (8.5) = (4.12), (10.8) + (8.6) = (4.31), 
a nd (10.12) + (8.10) = (5.9). 

We now investigate the other c hoice for the surface 5, namely the se mi-infinite pla ne lying in 
the X2X3 plane for pos itive X2 a nd with a normal in the negative X I direction. This geometry can 
eas ily be obtained by rotating the plane 5 of fi gure 1 c lockwise by 90°. Then the only nonvani s hing 
component of op (5) beco mes 

(l0.13) 

instead of (A16). He nce from (4.2) the only non vanishing co mponents of the plastic bend-twis t a nd 
disclination loop densities beco me 

(10.14) 

instead of (10.3). Furthermore from (10.4) th e only nonva nishin g com ponents of the dislocation 
density now become 

(10.15a) 

(1O.15b) 

(1O.15c) 

(10.15d) 

instead of (10.6). Finally the elasti c be nd-twis t is also changed according to (10.11) and (10.14). 
All other relations r e main the same for either choice of the surface 5. 

641 



11. The Bent Dislocation Wall 

In section 10 we found the fields of the compensated disclination for two different choices of 
the defect surface S. If we take the difference between the results for these two geometries all the 
fields vanish, except the plastic and elastic bend-twist, the disclination loop density, and the dis­
location density_ The latter becomes from (10.6) and (10.15) 

(lUa) 

(lUb) 

(ll.lc) 

(IUd) 

(lUe) 

(ll.lf) 

(lUg) 

CX2:J = 0, (ll.lh) 

(lUi) 

What kind of defect is this? It represents two semi-infinite dislocation walls that meet at the X:J 

axis, i.e., it is bent .dislocation wall. It has no long range stress or elastic strain. The three different 
cases are illustrated in figures 15-17, where for clarity we have shown the discrete rather than the 
constant dislocation distribution. Figures 15-16 show the geometry that has been observed by 
Schober and Baluffi [13], their figures 6 and 7_ 

i-----Xl 

FIGURE 15. The bent dislocation wall with 0, rotation, 
described by the dislocation density C<12=-O,H(-x,) 
8(X2) and C<22=C<33=-O,8(x,)H(X2). 

642 

FIGURE 16. The bent dislocation wall with n, rotation, 
described by the dislocation density c<" = a33 = O2 H ( - XI) 
8(X2) and C<2' =O,8(x,)H(X2). 
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FIGU RE 17. The bent dislocation wall with 0 3 rotation, 
described by the dislocation densit y !X3 ,= 0 30 (X,)H(X 2) 
and !X32=-03H( -XdO(X2)' 

, , 

~------~--------- XI 

\ 
\ 

FI GURE 18. Edge dislocation terminating at a jog on a 
wedge disclination. 

12. Example of a Terminating Dislocation 

In a rece nt publication [14] we gave a concre te example of a discrete edge di slocation termi· 
nating on a jog in a discrete wedge disclination. We claimed that example illu strated th e continuity 
equation (4.17). In this section we give a detailed analysis of the geometry of this example. Th en we 
can verify the continuity equation for this case explicitly. 

We have already derived the ge neral expressions for a discrete dislocation terminatin g on a di s· 
crete disclination. The defect de nsities are given by , (II5.25 - 26), 

(Xp/( r) = op(L ){b/ + E/ql'o'q(xl' -x?) } + op( L' ){b, + E/qro'q( XI' - x?,')} + op(L") E/qro'q( X? - x?'.), 

(12.1) 

(12.2) 

Here the disclination line lies along the closed curve Land L ', and the dislocation line lies along the 
connecting link L". 

We choose the special case illustrated in figure 18. We set b/ = x? '.= O, and for o'q and x ? we 
choose the only non vanishing com pone nts fh and x~ > 0. Furthermore we choose for L a line parallel 
to the positive X3 axis passing through the point (0 , xg, 0), for L' the negative X3 axis and the small jog 

on the positive X2 axis, running from the origin to X~, and for L" the rest of the positive X 2 axis beyond 
x~. Then the only nonvanishin g co mponents of the delta fun ctions in (12.1-2) are 

(12.3a) 

(12.3b) 

(12.3c) 

(12.3d) 
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Therefore we find for (12.1- 2) the only nonvanishing components 

(12.4) 

(12.Sa) 

(12.Sb) 

where we have used (A8). These relations represent a wedge disclination with a jog near the 
origin from which an edge dislocation emerges. Specifically, the disclination consists of a straight 
wedge disclination approaching the origin along the negative X3 axis, (the second term in (12.Sb)), 
a small jog of twist disclination running along the X2 axis from the origin to xg, (12.Sa), and a straight 

wedge disclination running parallel to the positive Xa axis from the point xg on the X2 axis, (the first 

term of (12.Sb)). The dislocation consists of the following: The first term of (12.4) represents a 
dislocation that grows linearly in strength along the X2 axis from the origin to the point xg, and 

can be regarded as an integral part of the element of discrete twist disclination. The second term 
of (12.4) is an edge dislocation running along the positive X2 axis starting from the point xg. From 

(12.4) this edge dislocation has the Burgers vector 

(12.6) 

Note that the effect of the terminating dislocation is to move the disclination as well as its axis 
from X2 = 0 for L' to X2 = xg for L. 

Now we shall show that (12.4-S) satisfy the continuity equations (4.17-18) 

(12.7) 

8pq , p = O. (12.8) 

We need only consider the cases l = 1 in (12.7) and q = 3 in (12.8), for all other cases are identically 
satisfied. We have for (12.7) 

a21 ,Z+8 23 =-1130(xd H(X2) H(Xg- X2) 0(X3) + 113X2 o(xd H(xz) 0(Xg-X2) 0(X3) 

- 113Xg 0 (XI) 0 (X2 - xV 0(X3) + 113 a (xd H (X2) H (xg - xz) 0 (X3) 

= 0, 

by (A6-7) and the assumption that xg > O. We have for (12.8) 

823 , 2 + 833,3 = D30(X.) o(xz) H(g- xz) 0(X3) - 1130 (x.) H(X2) o(xg -X2) 0(X3) 

+ 113o(xl) 0(X2 - xV S(X3) - 1130(xd 0(X2) 0(X3) 

= 0, 

similarly. So we have shown here by a detailed analysis that a dislocation can terminate on a dis· 
clination, and that this is consistent with the continuity equations. 
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13. Summary 

We have specialized res ults derived for the general theory to the special case of s traight 

disclination lines. First we recalled the work of Volterra and reviewed th e straight dislocation to 
introduce the subject. 

We derived the geometry of straight disclination lines. We found the defect loop densities 
which are the same as Mura's "plastic distortion" and "plastic rotation." They are concentrated on 
the defect surface, which is a semi·infinite plane terminating at the disclination line. Then we 
identified the basic plastic fields (plastic strain and bend·twist) which are also concentrated on 
the defect surface. We found the defec t de nsiti es (dislocation and disc lination) which are singular 
along the disclination line. We noted that there is a finite dislocation density for the discrete dis· 
clination line, and we gave it an intuitively reasonable interpretation. Our results agree completely 
with Anthony's. We checked the consistency of our specific results by showing that they satisfy 
the necessary general equations: the definitions of the defect densities in terms of the basic plastic 
fields, the relations between defect loops and de nsities, and the con tinuity conditions. We illustrated 
the significance of the total Burgers vector as the displacement jump at the origin by showing that 
it vanishes for our special choice, whereas the displacement jump co ndition gives a res ult that is 
intuitively clear from the illustrations. The in com patibility tensor was found and shown to satisfy its 
continuity condition. 

Then we found the isotropic static res ults for straight disclinations. The displacements of a 
straight disclination were written down. Our point of departure was to regard these expressions as 
an educated guess. By differentiating we found th e total distortion. From this total distortion the 
basic total fields (strain and bend-twist) can be derived. They consist of two types of terms: the first 
terms are singular on the defect surface and correspond exactly to the basic plastic fields derived 
independently above and the second terms are continuous away from the sin gular disclination line . 
This then provides a natural separation of the basi c fields into elastic and plastic parts. In this man­
ner we found the elastic strain and be nd-twist of a straight disclination line. We showed that they 
satisfied the field equations with the defect densities . The stress followed from Hooke's law . It 
satisfied th e equilibrium equations, including at the singular defect line, thus confirmin g that th e 
original dis placements were correct. 

Then we showed how the fields were modified when the disclination axis was moved away from 
the origin. The dislocation density and total Burgers vector were changed whereas the disclination 
density and Frank vector remained the same. The results can be interpreted by saying that the 
axis is moved by adding a dislocation to the disclination line. This observation facilitates finding the 
static fields of the disclination with the new axis. The fields are found by adding those for a dis­
location to those for a disclination with its axis thru the origin. 

We derived results for the infinitesimal disclination dipole, which can be biaxial or uniaxial. 
We found the defect densities and displacements of both types and the relations between them. 
We noted that the displacement of the straight uniaxial dipole does not contain a wedge com­
ponent. Therefore the static fields of the straight biaxial wedge disclination dipole are the same as 
those of a straight edge dislocation, confirming a result published by Eshelby. 

The dislocation model of a straight disclination was found to be a terminating dislocation wall 
(tilt and twist). We found that the dislocation model and its corresponding disclination line have the 
same incompatibility tensor, displacement , total distortion, elastic strain, and stress. The total 
distortion contains terms that are singular on the defect surface, which correspond exactly to the 
dislocation loop density derived independently before. If these terms are identified as the plastic 
distortion , as Mura did , the dislocation model follows. In this way we found the interpretation of 
Mura's "elastic distortion" of the discrete disclination as the elastic distortion of the corresponding 
dislocation model. Finally we interpreted Mura's "plastic rotation" as the difference in bend-twist 
between the disclination and its dislocation model. 

Next we found the defect densities of the finite disclination dipole. It was also possible to con­
struct the dislocation model for this defect. The displacement of the biaxial dipole was found. It 
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approaches the displacement of the infinitesimal dipole when the width of the dipole approaches 
zero. The stress of the biaxial wedge disclination dipole was found to correspond to an earlier 
calculation of Li for the finite dislocation wall. 

We found the defect densities for the compensated disclination line, using two different defect 
surfaces. From these results we constructed the bent dislocation wall, which has been observed by 
Schober and Baluffi. These defects have no displacement, elastic strain, or stress. 

Finally we showed in analytical detail how a discrete edge dislocation can end on a jog in a 
discrete wedge disclination. The jog is a small segment of twist disclination line, which contains a 
finite amount of dislocation density. We showed that the analytic results satisfy the continuity 
conditions. 

In appendix A we show how the general Dirac delta functions for a curve and a surface, which 
are defined for and occur in the general theory , are specialized to the case of a straight line and a 
semi·infinite plane. It is essential to know this type of specialization in order to apply the general 
theory to particular geometries. We also calculate some useful Burgers circuit integrals. 

In appendix B we show how to take the generalized derivatives of the cylindrical coordinates. 
We carefully define the cylindrical angle cp in terms of the Cartesian Coordinates XI and X2, restrict· 
ing it to the range (-7T, 7T). Its derivative is regarded as a generalized derivative and contains a 
delta function. Also functions whose degree of homogeneity is - 1 or less will have generalized 
functions in their generalized derivatives. The usefulness of these generalized function tech· 
niques is that they allow us to carry through the traditional field operations, such as differentiation, 
even at singular lines and surfaces, in the field theoretic framework that is traditionally set up for 
continuous well-behaved functions only. This simplifies the work for discrete defects considerably, 
since we can apply straightforward mathematical techniques at the singularities, instead of intuitive 
notions as is done classically. 

In appendix C we show how the isotropic general results of III can be used to find the functional 
dependence of the static fields for straight discrete defects. 

14. Appendix A. Evaluation of the Delta Function on a Straight Line and a 
Semi-Infinite Plane 

The Dirac delta function 8(x) is defined by, (IIBI), 

fb 10, 
a 8(x-x')cp(x')dx'= 6,(x) , 

This relation is illustrated by the following special cases 

L OO", 8(x-x') dx' = 1, 

if X < a, 
if a < x< b, 
if b < x. 

J~ 8(x-x')dx'=H(x), 

roo 8(x- x') dx'=H(- x), 

where we have introduced the Heaviside function defined by 

H(x) == {~: if x < 0, 
if ° < x. 

The derivative of the Heaviside function is easily found from (A3) by a partial integration 
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H' (x) = aH(x) 
ax 

= r a: 8(x-x') dx' 

=_ roo -.i,8(x-x')dx' 
Jo ax 

=- [8(x-x')]0' 

= 8(x), 

since 8(x) = ° whenever x =;f 0. From (AI) we see that we also have 

8(x- x')cp(x') = 8 (x - x' )cp(x). 

A particular case of this relation is 

(x-x')8(x-x')=0. 

By differentiating this relation we find 

(x - x')8' (x - x') =-8(x- x'). 

The three·dimensional Dirac delta function 8 (r) is defined by, (IIB2), 

8(r- r') == 8(x, - x;)8 (X2 - x~ )8(X3 - x~). 

The Dirac delta fun ctions for a curve L and a surface 5 are defined by, (IIB4- 5), 

ML) == { 8(r-r')dL;, JL 

(A6) 

(A7) 

(A8) 

(A9) 

(AlO) 

(All) 

(A12) 

We want to evaluate these quantities for the special case when L is the straight line lying along 
the X3 axis and 5 is the semi·infinite plane lying in the X,X3 plane for negative x, and with a normal 
in the negative X2 direction , as illustrated in figure 1. Then we have in particular for L 

and for 5 

dL; = (0, 0, dL~) = (0, 0, dx~), 

r' = (0, 0, x~), 

dS/= (0, dS;, 0)= (0, -dx;dx;, 0), 

r'=(xi,o,xn· 

We find that the only nonvanishing components of (All-12) are 

647 

~---------- - - -----

(Al3) 

(AI4) 



= 8(xd8(X2)' 

82(S)=- 1-'''001_°00 8(x,- x ;)8(X2) 8(X3- X;) dx;dx; 

=-H(-x,)8(X2), 

(AIS) 

(A16) 

where we have used (A2) and (A4). We note that these results satisfy Stokes' theorem , (IIB26), 

(A17) 

by (A6). This was to be expected since L is the boundary of S. Ne~t we want to consider some 
integrals along a curve A that links L. We take the special case where A is a circle of radius a in 
the XIX2 plane centered at the origin, also illustrated in figure 1. Then we have 

(A18) 

on A. We wish to evaluate three typical closed line integrals on A involving generalized functions. 
The first one is 

f/(xJ8(X2) dLl = - t/(xd8(x2)x2(a2 - XV - 1/2dL2 

=0, (A19) 

where we have used (A18) to change the variable of integration, and (A8). The second one is 

1, f(xd8(x2)dL2 = 1 a f ([a2-x~]'/2) 8(X2)dx2 + f - af (_ [a2 - xJ]I /2)8(X2)dx2 
1'A - a a 

= f(a) - fe-a), (A20) 

where we have used (A18) and (AI). The third one is 

=0, (A21) 

by a partial integration and (A19). Finally, for the sake of consistency we wish to show that the 
results (AIS-16) satisfy (IIBIS). Let (T be the circular plane bounded by A (fig. 1). Then we have 
from (AIS) 

=1, 

by (AI). Next we have from (A16) 

{ 82(S)dL2=-tA H(-x,)8(X2)dL2 

=-H(-a) + H(a) 

=1, 

by (A20) and (AS). So these results agree with (IIElS). 
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15. Appendix B. Generalized Derivatives of Cylindrical Coordinates 

The expressions that are differentiated in the text contain the cylindrical coordinates p and 
cpo The geometric relation of these coordinates to the Cartesian Coordinates XI and X2 is illus­
trated in figure 5. The functional relation for p is 

(Bl) 

The relation for cp is customarily given as tan- I (X2/XI)' However, this leads to some ambiguity for 
two reasons: (1) The arctangent is usually taken to be restricted to its principal value, lying in the 
range (-1T/2, 1T/2), especially in integral formulas. (2) The angle cp is usually regarded to be multiple­
valued, a procedure that conflicts with the assumption of uniqueness for the functions that occur 
in the general defect theory. Therefore we shall arbitrarily restrict cp to the range (-1T, 1T), so 
that it is uniquely defined everywhere, but possesses a discontinuity of 21T across the negative XI 
axis, as shown in figure 5. This choice is convenient for the calc ulations in the text, for then the 
discontinuity occurs at the semi-infinite plane 5 of appendix A (fig. 1). So the fun ctional relation 
for cp is 

(B2) 

where the arctangent is res tri c ted to its principal value and the Heaviside fun ction H is defined 
by (AS). We see that cp, so defined, assumes the values indicated in fi gure 5. 

In order to maintain the necessary unique ness when diffe re ntiating the di scontinuous function 
cp, it becomes necessary to take the generalized derivative. The discon tinuity will then lead to a 
generalized function, the Dirac delta function. We refer to Gel'fand and Shilov [8] , chapter 1, 
section 2.2, for the detailed procedure on taking this generalized derivative. The result is 

CP ,I = - X2/p2, (B3) 

(B4) 

Intuitively, these results could have been anticipated. They contain the or.dinary derivatives of 
the arctangent function plus a term having a delta fun ction across the negative XI axis , which 
originates from the discontinuity of cpo 

By contrast the generalized derivatives of p and In p are the same as the straightforward 
classical ones. For the latter we have 

(B5) 

(In p) ,2 = X2/p2. (B6) 

Another function whose generalized and classical derivatives coincide is the following 

( x cr X{3) =-2 Xcr X{3XY + X"O{3Y + X{30ycr ( Q = 1 2) 
2 4 2' CY.., fJ , Y , , 

P ,"I P P 
(B7) 

where we have used the convention that Greek subscripts have the range 1, 2. When written out 
in full these equations are 

(X~) = XIX~ 
2 2 4' 

P , I P 
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The above derivatives (B5-7) are all locally integrable in the X\X2 plane, including the singularity 
at the origin. This is the reason why the generalized and classical functions coincide. 

However, if we take further derivatives of (B7), the results (having a p - 2 dependence) will no 
longer be locally integrable at the origin, because then the algebraic singularity has the same 
strength as the dimension of the space (i.e., 2). To maintain uniqueness it becomes again necessary 
to take the generalized derivative. We refer also to Gel'fand and Shilov [8], chapter III, section 3.3, 
for the detailed procedure on taking this type of generalized derivative. The results will contain 
expressions homogeneous of degree - 2 (such as p - 2), which have to be regarded as generalized 
functions. One result is 

(B8) 

where we have defined the two·dimensional Dirac delta function 

(B9) 

When (B8) is written out in full we have 

- --2-( 
X2) _ X,X2 

p2 " p4 ' 
( 

Xz ) 1 x~ - =--2-+7TO(p). 
p2 , 2 p2 p4 

Another result is 

or, when written out in full 

Further generalized derivatives can be taken similarly, leading to homogeneous generalized 
functions of degree -3. Two results we need are 

(Bll) 
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(Bl2) 

The latter equation written out in full is 

( XI) X 3l Xl 37T - =-4-+2---~ I (p), 
p4 ,I p6 p4 4 ' 

(
X2 , X2X2 7T --..!) =-4-'---~ 2(P) p4 ,2 p6 4' , 

16. Appendix C. Derivation of Static Fields of a Straight Defect from the 
General Theory 

In III we derived general expressions for the static fields in an infinitely extended isotropic 

body, We showed there that a condition on the plastic strain for the integrals to converge is that 
e~(r) approaches zero faster than r - I as r~ 00 . This condition is not satisfied for straight defect 

lines, as can be seen from (3,3) and (4.7), However, it is still possible to find the functional depend· 
ence of the static fields from the general formulas by ignoring infinite terms that appear in the in· 
tegrations. The correctness of the resulting static fields can then be assessed by checking them in 
the general field theory, as is done in the text. 

The general expressions that we shall use are the following: For a dislocation lin e, the dis· 
placement, (III4.21), 

u f( r) =...l J [R ,jjkb kdS; + R , jkk,bidS~ - _1_ R ,ijkb kdS; + _v_ R ,ijjb kdS ~.J ' (C 1) 
87T S 1 - v 1 - v 

and the elastic distortion, (1114.23), 

(C2) 

For a disclination line with its axis through the origin, the displacement, (1116.10) , 

uf(r) = -81 1 EkIiWOIllX ;, [RJjkdS;+RJI/OikdS; - -11 R ,ijkdS; +-V-R ,ijjdS~ ] , (C3) 
7T s -v I-v 

and the basic elastic fields, i.e., the elastic strain, (1116.11), 

( R ;ij "R )A dL' ] + I-v - Vij ,nn ~£m "', (C4) 

and the elastic bend-twist, (III6.14), 

(C5) 
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where 

(C6) 

X;=xi-xi. (C7) 

The expressions (CI-5) are line and surface integrals. For the special geometry of figure 1 the 
.curve L is given by (A13) 

dL! = (0, 0, dL~) = (0, 0, d~), r' = (0, 0, ~). (C8) 

Hence we have 

R= (p2+X})1 /2, (C9) 

(CI0) 

by (Bl). The surface S is given by (AI4) 

dS; = (0, dS~, 0) = (0, - dx; dx~, 0) ,r' = (x;, 0, x~). (Cll) 

Hence 

(CI2) 

We shall first investigate the line integrals. All the necessary results can in general be derived 
from differentiating the basic integrals f RdL; and f x; RdL;. From (C8) the only non-vanishing 
components of these integrals are f RdL 3 and f.x;; RdL; . Since these integrals are along an in­
finite straight line they will diverge. So we first find the finite integral 

(CI3) 

The integral we want is obtained when L ~ 00, but then the terms in (CI3) containing L will also 
approach infinity. However, these terms can be regarded as constants in the subsequent differentia­
tions. Therefore they do not contribute to the fields and we can ignore them for practical purposes. 
So the functional dependence of the desired integral goes as 

i RdL~~q, (CI4) 

where we have defined the function 

q == _p2 In p. (CI5) 

The justification for this procedure can also be given as follows: A sufficiently high derivative of 
(C I3) will converge for L ~ 00 to a finite function of p. The same derivative of (CIS) will give the 
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same finite function. Now the re lations (CI -5) contain only derivatives of integrals s uch as f RdL;. 
Therefore we can use (C14-15) in the m directly. We find the functional depe ndence of the other 
integral in the same way. First we find the finite integral 

(CI6) 

and he nce, comparing with (CI3), 

J ~;Rdx; -7 X3 Q· 
/, (C I7) 

We now consider the surface integrals . All th e necessar y results can in general be obtained from 
f RdS; and f X;RdS;. From (C ll) the only nonvanis hin g co mpone nts are fRdS~ , f x;RdS~, and 

f x~RdS ~ . The derivation of the firs t integral may be indicated as foUows 

(C I8) 

Here the first result follows from th e geo metry of the s urface S in fi gure 1, the seco nd by integra· 
tion over x; whic h goes through the same as above but with R give n by (C I2) instead of (C9), and 

the third by a change of variable. So the fun ctional de pe nd ence becomes 

Is RdS ~ -7 g, (C I9) 

where we have defined the function 

(C20) 

The next integral goes as 

f x'RdS'-7Jo X'(X2+ X2) In (X2+x2)I/2dx' I 2 I I 2 I 2 I 
S - L 

-7flO (XI-XI) (Xi+xD In (X~+xnl/2dXl' 
x , 

(C21) 

This leads to the functional dependence 

(C22) 
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where we have defined the function 

(C23) 

The last integral goes as 

r x~ RdS~ ~ _JL JO X~ Rdx; dx~ ~ xag. Js -L -L 
(C24) 

The functions q, g, and h depend only on XI and X2. The derivatives of q that we shall need are the 

~~g l 
Xl 

q,1I = - 2 in p - 1 - 2 2' 
p 

XIX2 
q,12 = - 2 -2-' 

P 

X2 
2 q 22 = - 2 in p - 1 - 2 -, p2 

q,ao= -4 (In p+ 1), 

XI XIX~ 
q --2--4-

,111- 2 4 ' 
P P 

X2 X2X2 
qll2=-2-+4-1-, p2 p4 ' 

XI XIX~ 
q,l22 = -2 2 + 4 -4-' 

P p 

XI 
q,laa=-4 2 , 

p 
X2 

q,2aa = -4 2' 
p 

( 1 xy ) 
q,lIaa=-4 p2 - 2 p4 +1T8(p) , 

XIX2 
q,12aa=8 -4-' 

p 

( 1 X2 ) 
q,22aa=-4 p2 -2 p:+1T8(p) . 

(C25a) 

(C25b) 

(C25c) 

(C25d) 

(C25e) 

(C25f) 

(C25g) 

(C25h) 

(C25i) 

(C25j) 

(C25k) 

(C251) 

(C25m) 

Here the Greek indices range only over 1 and 2. The results (C25k-m) follow from (B8). The other 
derivatives we shall need are 

XIX2 
g,1I2=-2-,;z' 
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,-

g,I22 =-2 (In p+t+ ~), 

XIXZ 
g ;222 = 4 cp + 2 -2- , 

P 

g,'a,,=-4(ln p+ 1), 

g;2aa=4cp, 

h,'aa=-4x, In P+4X2CP-X I, 

h ,2aa=4X2 In p+4x,CP+6x2-1x2. 

The displacement of the dislocation (Cl) now reduces to 

The individual components are 

(C26b) 

(C26c) 

(C26d) 

(C26e) 

(C27a) 

(C27b) 

(C27c) 

(C27d) 

(C28) 

(C29a) 

(C29b) 

(C29c) 

which give (3.12) by (C26), except for some trivial constants. The elastic distortion of the dislocation 
(C2) reduces to 

(C30a) 

(C30b) 

(C30c) 

where Ea{3 is the two dimensional permutation symbol, i. e., EII=E22 =0, EI2= -E21=1. The non­
vanishing components of (C30) are 

(C31a) 

(C31b) 

655 



_ b l [q ,IZ2 ] bz [q ,112 ' ] 
/31z--8rr I-v -q,lvv + 8rr I-v +q ,2w , (C31c) 

- _ J!J [ q ,222 _ ] J!:l [!L!E.. _ ] (3.22- 8 1 q ,2w + 8 1 q,lvv , rr -v rr-v (C31d) 

(C31e) 

/3 b3 
23 =- 8rrq , I VV, (C31f) 

which give (3.14) by (C25), The displacement of the disclination (C3) reduces to 

D :l [ 1 v] Di 
u;= 8rr h ,2aa Oi2 - 1 _ v h ,i22+ I_v h ,i"a + 8rr Eijlh ,2aa 

(C32) 

The individual components are 

D3 [ 1 v ] -8rr I-v h ,122 - 1 _ v h ,laa , (C33a) 

D3 [ 1 2-V] - 8rr 1 - v h ,222 - 1 _ v h ;1.aa , (C33b) 

T_Dl[_l __ v ]_112[_1 ] 
U 3 - 8rr I_v g ,22 I-v g ,yy 8rr I_v g ,12 +h,2aa , (C33c) 

which give (5.1) by (C26-27), except for some trivial linear terms. The elastic strain of the disclina­
tion (C4) reduces to 

(C34a) 

(C34b) 

(C34a) 

The individual components are 

_ D lx3 [ q ,lll ] D 2x3 [ q ,11 2 ] D3 [ q ,ll ] 
ell--S;- I-v -q,lw -s:;;:- I-v -q,2w +8rr I-v -q ,w , (C35a) 
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!~ 

__ Dlx:l [~_ ] _ D2X3 [q ;1.22 _ . ] D3 [ q ,22 _ ] 
e22- 8 I q ,IW 8 I q ,tw +8 I qpv, 7T - v 7T - v 7T - V 

(C35 b) 

(C35c) 

(C35d) 

__ DI~_D2 [~_ ] 
e23- 87T I-v 87T I-v q ,vv , (E35e) 

(C35f) 

which give (5 .5) by (C25), except for some trivial constant terms. The elasti c bend-twist of the 
disclination (C5) reduces to 

(C36a) 

(C36b) 

K 3Y =0. (C36c) 

The individual co mponents are 

(C37a) 

(C37b) 

K 3 1 = 0, (C37c) 

(C37d) 

D2 
K 22 = - 87T q , Ivv (C37e) 

K 32 = 0, (C37f) 

DI X3 D 2X3 D3 
KI3=- 87T q ,12vv + 87T q ,II VV + 87T Q,2vv , 

(C37g) 

(C37h) 

(C37i) 

which give (5 .9) by (C25). 
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