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Integral representations for three distributions of internal electric fields near isolated defects in 
ionic crystals are given. These three distributions are the Gaussian distribution for electric fi elds asso· 
ciated with phonons, and two Holtsmark type distributions for electric fields associated with charged 
impurities when the lahn-Teller effect is small and when it is large. Numerical values for the distribu· 
tions and for the averages of squared·dipole matrix elements over them are tabulated in the conclusion. 
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I ~ 1. Introduction ical values for the distributions and the averages of 
squared-dipole matrix elements. 

The author and A. M. Stoneham [1] 1 examined 
recently the effects of internal electric fields produced 

I by lattice vibrations and charged impurities on the 
lifetimes of low-lying relaxed states of isolated defects. 

I We computed in [1] by statistical methods the distri· 
,~ butions of internal electric fields produced by phonons 
k and charged impurities. These distributions are the 
r Gaussian distribution for the phonons, a Holtsmark 

distribution for charged impurities when the lahn· 

I 
Teller effect is small, and a distribution related to the 
Holtsmark distribution when the lahn·Teller effect 
is large. We then averaged the square of dipole·radia· 
tion matrix elements over these three distributions of 

1 

~ 

internal electric fields. We did not present in [1] the 
numerical methods by which we evaluated the distri· 
butions of fields and the averages of squared·dipole 
matrix elements over the distributions to avoid dis· 
tracting the reader from the major physical concepts. 

Some researchers have expressed an interest in the 
derivations of the expansions appearing in the appendix 
to [1] and in the numerical methods used to evaluate 

> the averaged matrix elements. The author now takes 
? this opportunity to present the derivations and numer· 
I ical methods used in [1]. Such mathematical pro-

cedures have applications to future studies on the 
temperature dependence of internal electric fields 
near defects. 

Section 2 contains integral representations for the 
? distributions of internal electric fields and series expan­

sions of the distributions which are valid for large 
and small values of the fields. Evaluations of the square 
of dipole-radiation matrix elements averaged over these 
distributions appear in section 3. Finally, section 4 l contains tables which give some representative numer-

I Figures in brackets indicate the literature references at the end of this paper. 

2. Distributions of Fields 

The authors of [1] describe three classes of internal 
electric fields. The first class arises from the lattice 
vibrations. The second and third classes arise from 
the static fields associated with a random distribution 
of charged impurities in the host lattice. Some exam· 
pIes of such charged impurities are substitutional 
aliovalent ions, vacancies, and interstitials. 

2.1. Lattice Vibrations 

Bennett and Stoneham [1] compute the probability 
that the internal electric field associated with optical 
phonons has a value between E and E + dE. They 
find that the probability for a harmonic lattice is pro· 
portional to the Gaussian distribution 

G(y) = 7T- 1/2 exp (- y2/4), (1) 

where y= (2£2)-1/2 E is dimensionless and where 

G(y) is normalized to unity, f 0'" G(y) dy = 1. The 

quantity E2 is the square of a characteristic electric 
field for the lattice. The Gaussian function G(y) also 
has the following integral representations; 

G(y) = ;'y fo '" exp (- X 2/y2) cos x dx (2) 

and 

2 f '" G(y) =.rr 0 exp (-T) cos (yy) dy. (3) 

The representation (3) is useful for evaluating averages 
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of squared-dipole radiation matrix elements_ Because 
eq (1) is in a convenient form, it is not necessary to 
derive expansions which are valid for large 'Y and for 
small 'Y. This is not the case for the remaining two 
distributions, however. 

2.2. Static Fields 

A charged impurity can perturb lattice defects such 
as F centers by a number of different mechanisms. 
One such mechanism is the electric field produced by 
the impurity. The authors of [1] also compute the 
distribution in the magnitude of the electric field IE I 
and the distribution in the projection of E onto a 
specific direction. 

When the lahn-Teller effect is small, they find that 
the distribution in the magnitude of I E I = E is propor­
tional to the Holtsmark function H (f3), 

2 J" H(f3) = - dx x sin x exp {_(Xff3)3/2}, 
7Tf3 0 

(4) 

where f3 = a- 2/3 E is dimensionless, and where H(f3) is 

normalized to unity, fo" H (f3) df3 = 1. The quantity a2/3 

is a characteristic electric field associated with the 
charged impurities imbedded in a dielectric host. 
Representation (4) is the convenient one from which 
to generate an expansion valid for large f3. The repre­
sentation, 

2f31" H(f3)=- dyysin (f3y) exp (_y3/2), 
7T 0 

(5) 

also the useful one from which to evaluate averages 
of squared-dipole radiation matrix elements. 

When f3 has intermediate values near unity, the 
author finds that it is necessary to evaluate numerically 
the integrals in eqs (4) to (7)_ It is convenient for him 
to integrate by Gaussian quadratures with Legendre 
polynomials. The Legendre polynomials require a 
finite interval of integration. The semi-infinite interval 
o :<.;;; x ::; 00 is approximated by the interval 10- 5 f3:<.;;; x ::; 
6.34 f3 when eqs (2), (4), and (6) are evaluated numer­
ically in the present work. Expansions valid for f3 = 1 
coverage slowly and are not competitive with the above 
numerical integration procedures when computation 
time is important. Likewise, asymptotic expansions 
which converge rapidly when f3 is very large or very 
small are more efficient than the above numerical in­
tegration procedures for such extreme values of f3. 
The next two subsections contain summaries of 
the derivation for such series expansions. 

2_3. Expansions for Large fJ 
In this subsection, expansions for the distributions 

H (f3) and H' (f3) which are valid for f3> > 1 are de­
rived. The representation (4) for H (f3) and the repre­
sentation (6) for H' (f3) are convenient ones from 
which to begin. When a = f3 - 3/2 , the distributions 
become 

H(f3) = (2/7Tf3) I(a), (8) 

and 

H' (f3) = (1/7Tf3)J(a), (9) 

where 

t 
1 

is the convenient representation from which to gener­
ate an expansion valid for small f3 and from which to 
evaluate averages of the dipole-radiation matrix 
element. 

I(a)= f~ dx x sin x exp (- ax3/2) , (10) 'I 
When the lahn-Teller effect is large, the distribu-

tion in magnitude of the projection ofE onto a specific and 
direction is proportional to a distribution H' (f3) 
related to the Holtsmark distribution; namely, J(a) = fo" dxcosxexp(-ax3/2 ) . (ll) 

H' (f3) = ~ f" dx cos x exp {_(X/f3)3/2} , 
7Tf3 0 

(6) 

where H' (f3) has the normalization, 2 i" H' (f3) df3 = l. 

Both functions Hand H' are called Holtsmark func­
tions. The function H' is intermediate between a 
Lorentzian and a Gaussian distribution. Representa­
tion (6) is convenient for developing an expansion valid 
for large f3 and the following representation, 

1 1" H' (f3) = - dy cos (f3y ) exp (-y3/2) , 
7T 0 

(7) 

readily leads to an expansion valid for small f3- It is 

Because the quantity a approaches zero in the limit 
as f3 approaches infinity, Taylor series expansions 
about a = 0 become useful representations for the 
functions I (a) and J (a). 

Using the following limits 

x sin x = ~ (- Lim + Lim) ( .!. e- px) , 
2~ p-+- i+ p-+i+ ap 

and 

cos x = -21 (Lim + Lim) e-Px , 
P-+-l + p-+l "'" 
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1 and the Laplace transformed function 

r j(p; a) = f" dx exp (-px - ax3/2) , 

I ~ 
1 we write eqs (10) and (11) in the forms 
J 

(12) 

\. lea) = ~ (- Lim + Lim) ~ !(p; a) , 
2~ ~-i+ ~i+ ap (13) 

r .. and 

I lea) = -21 (Lim + Lim) !(p; a). 
p-+-r+ p-+ ~ ... 

(14) 

I 

I: 
Expanding j(p;a) in a Taylor's series about a= 0 
and noting the Laplace transform 

I 
f'" res + I) 

O 
dx exp (- px) xS = 

pHI 

l. where r (s + I) is the gamma function, 

r (s+I) = 10'" dz ZS exp (-z), 
?j', 

and where s + 1> 0, we have 

, I (a) = ~ (- Lim + Lim) ~ f 2~ ~-i · ~,+ n=O 

? r(3n 1) 
(- a)n (3n + 1) 2" + 

n! 2 p(3n/2) 

r (3n + 1) 
I (. .) '" (- a)n 2 I, lea) = -2 LIm + LIm L --, ---:(::-3n~/2)~+I:-'- ' 

p-+-,+ ~,+ n= O n. p 

Inserting -i=exp (-1Ti/2) and i=exp (1T/2) into the 
above equations gives us 

? I(a)=- ~ (_~)nr (3n+l) (3n+l) sin (31Tn), 
n=O n. 2 2 4 

(15) 
I and 

r lea) = ~ -(--7-)n r (3n + 1) cos {(3n + 1) 7!.}. 
n=O n. 2 2 2 

(16) 

The expansions for H(f3) and H' (f3) which are valid 
when f3 ~ 1, then become 

H(f3) =~ {(7!.)1/2 i: (6m+5) (6m+3) 
1Tf3 2 m=O 2 2 

(6m+ 1) 

2 

1 a2m+l 00 (6m + 8) (6m + 6) - + L --'------'-

or 

2 (2m+l)! m= O 2 2 

(6m+ 4) 

2 
~ a2m+2 } 

. 2 (2m+2)! ' 
(17) 

15 (2 )1/2 24 10395 H(f3) ~- - f3 - 5/2+ - f3 - 4+--
/3 ..... '" 8 7T 7T 384 

., (18) 

and 

H' (f3)=_1 {(7!.)1/2 i (6m+3) (6m+I) 
1Tf3 2 m= O 2 2 

1 a2m+l 00 (6m+6) (6m+4) - + L --'----'- "":"'--'-
2 (2m+l)! m= O 2 2 

2 a 2m+2 } 

2 (2m+2)! ' 
(19) 

or 

H'( ) ~ -5/2+ __ + + . { 3 3f3- 4 945 f3-11/2 

f3 /3 ..... 00 4(27T) 1/2 f3 1T 192 (21T) 1/2 .J 
(20) 

2.4. Expansions for Small JJ 

In this subsection, expansions for the distributions 
H (f3) and H' (f3) which are valid for f3 ~ 1 are derived. 

Substituting y= X 3/2 in eq (12) and representing exp 
(- pyZ/3) by the Taylor's series expansion 

00 (_ pyZ/3) n 
exp (- pyZ/3) = L ' (21) 

n= O n! 

we obtain 

r (2n + 2) 
2 00 (_p)n 3 3 

j(p;a) =~ L -- . (22) 
3 n= O n! a[2(n+l)]/3 

Applying the operations which are indicated in 
eqs (13) and (14) to the representation (22) for j(p;a) 
gives us 

sin (1T(n-l)) r( 2n +~) 
I (a) = ~ ~ 2 3 3, (23) 

3 n=2 (n - I) ! a[2(n+ 1)]/3 

and 

r (2n + 2) 
lea) =~ ~ cos (1Tn/2) 3 3 . (24) 

3 n=O n! a[2(n+lll/3 
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Hence, the expansions for small f3 are 

(25) 

.J; 
(26) 

(27) 

(28) 

The first two terms of eqs (18) and (26) for the dis· 
tribution H(f3) appear also in [3]. To the author's 
knowledge, the expansions given above for the dis· 
tribution H' ({3) have not been reported previously. 

3. Averages of Squared-Dipole Matrix 
Elements 

Averaging the square of the dipole·radiation matrix 
elements over the distributions G(y), H(f3), and 
H' (f3) provides us with estimates of the effects which 
electric fields have on the lifetimes of relaxed F -center 
states. Discussions of these effects appear in [1]. It 
has been shown therein that the averages of the 
squares of the dipole radiation matrix elements over 
the distributions G, H, and H' are proportional to the 
following dimensionless expressions: 

M; [G; y] = ~ [1 ± fXl {1 + (a/y)2}-1 /2 G(a) da J. 
o (29) 

M; [H; f3] = ~ [1 ± j"" {1 + (a/f3)2}-1 /2 H(a) da], 
o 

(30) 
and 

M; [H'; f3]=~ [1±2j"'{I+(a/f3 )2}-1/2 H'(a) daJ. 
o 

(31) 

The ordering of the energy levels of the F center 
determines whether the plus or minus sign is used. 
The details are discussed in [1]. 

The integrals appearing in eqs (29) to (31) are evalu· 
ated by two methods. Both methods employ numerical 
integration by Gaussian quadratures [2]. The first 
method is more straightforward than the second 
method; but it requires in some cases more time for 
computation than the second method requires. In 

the first method, the distributions G (a), H (a), and I 
H' (a) are com puted explicitly. Values of G (a) for 
the region 0 ~ a ~ 00 are given directly by eq (1). ~ 
Values of H (a) and H' (a) are given by the following 
prescription. They are obtained when 1 :::; a :::; 6 "­
by applications of Gaussian quadratures to the respec­
tive representations (4) and (6). The respective ex- ' 
pansions (18) and (20) for H (a) and H' (a) are used 
when a;':' 6; and the respective expansions (26) and J 

(28) are used when a ~ 1. These values for the dis- • 
tributions G (a), H (a), and H' ( a) then are inserted_ I 
into the integrands of eqs (29) to (31). Finally, the inte- .. 
grals are evaluated by Gaussian quadratures. 

The second method does not involve explicit evalua­
tions of the distributions. Instead, the representations i 
(3), (5), and (7) are inserted respectively into eqs 
(29) to (31), namely, '"' I 

1 11'" 1'" M: [G;y] = -±- da dy {1 + (a/y)2}-1/2 
- 2 7T 0 0 

.J 

exp (_y2) cos (ay), (32) I 

} 
v; 

1 11'" 1'" M! [H;{3] =-±- da dy {l + (a/f3)2} - 1/2 
2 7T 0 0 

exp (- y3/2) ay sin (ay) , (33) 

and 

1 1 1'" 1'" M! [H'; f3] =-±- da dy {I + (a/f3)2}-1 /2 
2 1T 0 0 

exp (- y3/2) cos (ay). (34) i 

The integrations over a then are performed by re- I 
ferring to several equations in section 9.6 of [2]. I 

The results are J 
i '" {1+ (a/{3)2}-1/2 cos (ay)da=f3Ko(f3y), 

and 

f ' {I + (a/f3)2} -1/2 a sin (ay)da= f3 2Kdf3y) , 

(35) " 
I 

(36) ) 
1 

where f3y ~ 0 and where Ko and Kl denote, respec­
tively, the modified Bessel functions of zero and 
first order. Insertion of eqs (35) and (36) into eqs 
(32) to (34) yields the following expressions: 

(37) t , 
1 f32 100 

I M:[H;f3]=-± - dyexp (_y3/2)yK1(f3y), (38) 
- 2 1T 0 

and 
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1 f3 f'" M; [H'; f3] =-±- dyexp (_y3/2)Ko(f3y). 
;::J 2 7T 0 

(39) 

The modified Bessel functions are evaluated accord-
• ing to their polynomial approximations given in section 

9.8 of [2]. The final step of the second method consists 
of the numerical integration of eqs (37) to (39) by 
Gaussian quadratures. 

Eash of these two methods has its advantages. The 
• decision as to which method is most suitable depends 

upon the values of y and f3 and upon the other types of 
.. calculations included in the computer program. 

4. Conclusions 

We conclude this paper by presenting some numer-
• ical results. Table 1 gives values of G (f3), H (f3), and 

H' (f3) for 0 .;;; f3 .;;; 10.0. Table 2 contains the values of 
Q M~ for each of the three distribution functions. The 

respective values of M~ follow from the relation 
M?:..= I-M~ . 

.. TABLE 1. The distribution/unctions G(f3), H(f3) and H ' (f3) 

All Quantities are dimensionless. 

f3 G(f3) H(f3) H' (/3) 

0.0 0.56 0.00 0.29 
.04- .56 .00 .29 
.1 .56 .004- .29 
.4 .54 .06 .27 

1.0 .44 .27 .20 
4.0 .01 .08 .01 

10.0 .00 .01 .00 

> 

r 
I 

TABLE 2. The square 0/ the dipole·matrix elements averaged over 
the three distributions G, H, and H' 

All quantities are dimensionless 

f3 M~[G; y=f3] M~[H; f3] M~[H'; ,8] 

0.01 0.51 0.50 0.51 
.04 .54 .51 .54 
.1 .59 .53 .59 
.4 .74 .61 .73 

1.0 .85 .72 .84 
4.0 .97 .91 .96 

10.0 .99 .97 .99 
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