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The validity of the Griineisen equation of state for a solid having a continuous distribution of 
frequencies is investigated. It is shown that one cannot generally replace as! a V with the heat capacity 
multiplied by appropriate Griineisen constants. A model frequency distribution is used to show the 
difference that can arise. 
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1. Introduction 

The Griineisen equation of state has been widely 
used to discuss the thermal properties of solids. While 
it is reasonably successful with simple monatomic 
solids, it has been found to be less adequate with 
polyatomic solids and the need to expand its definition 
has been well established. 

The principal idea in the modification of the simple 
Griineisen equation has been the recognition that the 
frequency spectrum of a solid is not characterized by 
just a single frequency. Rather, many frequencies are 
involved and not all of them shift with volume in the 
same way. Thus, Blackman [1, 2] I replaces the 
simple Griineisen equation 

with 
a = I'Cv/B r V 

a = 2: 'YiCvi/BrV 
; 

(1) 

(2) 

where the Griineisen constant is defined as 'Y; = 

- dIn vdd In V, BT = - V [:;1, Cvi is the specific 

heat for frequency Vi, P is the pressure and Vis the 
molar volume. Blackman does go further and allows 
the summation to become an integral where now 

a = f 'Y(v)Cv(v)p(v)dv/BTV (3) 

where p(v) is the spectral density for frequency v. 
However, eq (2) directly implies only an integral over 
the index i (or the wave vector q) and it should be asked 

1 Figures in brackets indicate the literature references at the end of this paper. 

as to whether eq (3) is a proper integral. If the index 
is one-dimensional and if there is a unique value of v 
associated with every value of the index, then the 
transformation will go through to eq (3). If the index 
is an n dimensional wave vector, then there will be an 
n - 1 dimensional surface of constant v and only if 
for all the points on the surface is 'Y a constant, will 
eq (3) result. Obvious cases where this will hold, such 
as having only one force constant or having all the 
force constants have the same logarithmic derivative 
actually lead to eq (1) rather than (3) since 'Y is a 
constant for all v. If v involves sums of force constants 
multiplied by functions of the wave vector, and if 
each force constant has a different logarithmic deriva­
tive then the conditions for (3) are clearly not satisfied 
and the question of a proper replacement for (3) 
arises. 

In the course of previous work [3,4] on soft crystals, 
it became apparent that eq (1) was quite inadequate 
to reproduce the thermal expansion and yet it was 
felt that the quasi-harmonic approximation inherent 
in the Griineisen equation still might be adequate. 
This consideration has led to the extension of simple 
Griineisen theory described below that in proper 
limits reduces to eqs (1) and (2) and yet is more 
widely applicable. 

2. Theory 

The derivation of the main equation is straight­
forward and is within the scope of general quasi­
harmonic theory. In the following equations we will 
consider a solid with n dispersion curves characteriz­
ing its frequency spectrum with no attempt to distin­
guish between acoustic or optical branch values 
unless indicated. Furthermore, only one branch will 
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be considered at a time since the general result will 
be a simple summation over like terms for each 
branch. 

From thermodynamics, 

a2A 
aB T=--. 

aTaV (4) 

Using quasi-harmonic lattice dynamics, one may write 
the Helmholtz free energy as 

I>2 

A = v, F(v)p(v) dv (5) 

where F (v) is the Einstein free energy function [5] for 
frequency v and p(v) is the frequency density func­
tion. In order to ensure that all functions are properly 
single valued and smooth, the integral may be restricted 
to the frequency interval [v!, V2] and to only one branch 
of the frequency spectrum. When this is done A will 
simply be the sum of integrals like that of eq (5). 

Using the quasi-harmonic approximation, p(v) is a 
function of volume only and so are VI and V2 while F (v) 
is a function of temperature but not volume. Therefore, 

a IV2 aBT=--v S(v) p(v) dv 
a v, (6) 

where S (v) is the Einstein entropy function and the 
indicated temperature differentiation has been carried 
out. 

The main point of this paper is the interesting obser­
vation that eq (6) is as far as one can go and keep the 
full generality of the quasi-harmonic approximation. 
It should be noted that no further assumptions have 
been added and the mathematics has been quite 
rigorous. 

The question arises as to how a Griineisen equation 
can be derived from eq (6). The answer is that if A is a 
function of 81T and 8 which is equal to hvlk is volume 
dependent only, then one can reduce eq (6) to eq (1) as 
has been shown by Kittel [6]. This assumption also 
validates eq (2) since a summation of terms in 8dT 
also can be carried out. Unfortunately, eq (3) cannot 
be so obtained. This can be seen by applying the 
Leibnitz rule for the differentiation of a definite 
integral to eq (6) to obtain 

IV2 ap (v) 
aB T = - S (v) -V- dv 

v, a 

Equation (7) is now seen not only to have a different 
integral but to include two extra terms that cannot be 
related in any manner to eq (3) since they involve 
entropy terms that will not reduce to heat capacity 
terms or will not cancel in general. Therefore, it is 

eq (7) and not eq (3) that is the proper expression to 
use for a continuous distribution of frequencies. 

A Griineisen type analysis can be obtained if p (v) is 
p(v; VI, V2, ••• Vm) where p is a function of volume 
only through the parameters Vi, which are expressed 
as frequencies. Then eq (7) can be written 

rV2 ap (v) 
aRTV = L Yi Vi J. S (v) -a-,- dv 

i "1 V 1 

Note that unlike eq (3) there is no y(v) appearing in 
(8). This is a result of the use of a definite integral; the 
variable v is a variable of integration and merely 
serves to define a function of the other variables. 
Therefore, it is not available for formation of a 
Griineisen parameter and there is no rigorous physical 
way to define any y(v) when using only a p(v). It is 
only when the frequency spectrum changes with 
volume with respect to a finite number of critical 
frequencies that a Griineisen parameter analysis can 
be used and then only in the form of eq (8). Again it 
should be noted that in the special case that a Debye 
or Einstein distribution is used, eq (8) will reduce to 
eq (1). 

3. Application 

While eqs (7) and (8) look more forbidding than the 
usual extensions to Griineisen theory its application 
can be straightforward since, if the entropy as a func­
tion of state is known, only differentiations are re­
quired. This is illustrated quite well by the previous 
work on linear carbon chains [3,4]. 

In that work an approximation scheme was used to 
generate the frequency spectrum of a finite linear 
chain. Each branch of the spectrum was assumed to 
be such that the frequency density was proportional 
to the frequency between the free chain frequency and 
a higher frequency that was the root of the sum of 
the squares of the free chain frequency and the highest 
lattice frequency corresponding to the entire chain 
moving as a unit. Only the latter frequency was allowed 
to vary with volume as only it depended on interchain 
force constants. This is in analogy with a linear di­
atomic chain of equal ' masses and alternating force 
constants, where for small changes in the weaker force 
constant there is little change in shape of the dis­
persion curves and the limits on the frequencies 
correspond to the assumptions made for the finite 
chains. 

This model allowed an easy application of the 
method of this paper with rather good success. For 
this model 

2v 
p(v) = -2--2' 

V 2 -VI 

(9) 
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TABLE 1 

.1 .5 .9 

1 as 1 as 1 as ,~"'I~ -- Gv/R -- Gv/R -- Gv/R 
kT/hv2 yR av yR av yR av 

0.05 0.0187 0.02781 0.0001 0.0004 0.0000 0.0000 
.1 .1149 .1348 
.2 .4142 .4437 
.4 .7486 .7831 
.6 .8573 .8931 
.8 .9013 .9375 

1.0 .9228 .9593 
10.0 .9627 .9996 

In applying eq (8) to (9), Vt was assumed to be inde­
pendent of frequency so that 

(10) 

where D (v), E (II) and F (v) are the two dimensional 
Debye fun·ction, the Einstein internal energy function 
and the Einstein free energy function respectively and 
where R is the gas constant. If Vt approaches zero, eq 
(10) is seen to become the ordinary Griineisen relation 
with the heat capacity being that for a two-dimensional 
Debye solid. However, as Vt becomes greater than zero, 
departures will occur. This is . illustrated in table 1 
where both the heat capacity and as/yaVare compared 
for a few different frequency intervals. Note the 
different assymptotic limits for the two functions. 

4. Conclusion 

From the above considerations, it can be seen that 
the extension of the quasi-harmonic approximation and 
Griineisen analysis to complex solids is not as simple 
as has been generally postulated. One must introduce 
Griineisen parameters with care and they can be 

.0189 .0410 .0032 .0069 

.2108 .3371 .1014 .1987 

.5077 .7343 .3362 .6373 

.6125 .8683 .4330 .8145 

.6557 .9229 .4745 .8901 

.6770 .9497 .4953 .9279 

.7168 .9995 .5347 .9992 

defined only on the more restrictive condition that the 
frequency spectrum is defined , as a function of volume, 
by a discrete numQer of critical frequencies. Even for 
this case one canrtot use a simple Griineisen eq (1) 
but must replace the heat capacity term by a proper 
derivative of the entropy function as in eq (8). 

If this is done, however, it is then possible to write 
explicit forms for the equation of state that introduce 
no further assumptions into the model. 

This is a great benefit in investigating model calcula­
tions. Also, it can be seen that empirical checks of 
quasi-harmonic approximation in terms of thermal 
expansion are more involved than generally realized 
since the quantity (as/avh is not one that is readily 
available experimentally and yet is the quantity that 
must be used. 
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