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A photometric integrating sphere containing a single disk-shaped baffie and a point source with 
an arbitrary angular intensity distribution is described by an integral equation. Numerical solutions 
of this equation are presented for several different source distributions. The errors involved in com­
paring the various sources are evaluated as a function of baffie size and position. 
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1. Introduction 

The integrating sphere is used in photometry to 
h.- measure total luminous flux. In a sphere with a dif­

fusely reflecting coating, the illuminance by reflected 
> light is approximately the same at all points on the 

sphere surface and is proportional to the total flux 
emitted by the lamp. This reflected light is measured 
at a point on the sphere surface which is shielded 
from the direct rays of the lamp by a baffle. Its in­
tensity depends somewhat on the geometry and re­
flectance of the objects inside the sphere and on the 
angular intensity distribution of the light from the lamp. 
Unless this dependence is known, errors will occur 

7 in measuring the luminous flux from different types of 
lamps. 

It is possible to describe the nonempty integrating 
sphere by an integral equation [1),1 whose solution 

i gives the illuminance by reflected light at every point 
~ on all the surfaces inside the sphere: The present 

paper describes a numerical solution of this equation 
for a sphere containing a point source with an arbitrary 
angular intensity distribution and a disk-shaped baffle 
located perpendicular to the polar axis of the sphere. 
The existence of an oo-fold axis of symmetry simplified 
the work considerably by making it possible to do the 
azimuthal integrations analytically. The illuminance of 
the surface inside the sphere was calculated for 
several values of the baffle radius and its position along 
the polar axis. Although hemispherical source distribu­
tions were used for most of the calculations, the results 
are applicable to any small lamp whose intensity distri­
bution is known. The extension of the technique to 

I Figures in brackets indicate the literature references on page. 

larger sources, like fluorescent lamps , should not be 
difficult. For convenience, uniform reflectance was 
assumed for all surfaces. The model, however, re­
quires only that the reflection coefficient have axial 
symmetry about the polar axis. No consideration was 
given here to the effects of nondiffuse reflection. 

2. Theory 

2.1. General Integral Equation 

Let da be an area element of the baffle or inside 
sphere surface about a point labeled a, and let da' 
be another element of area about a point a'. Let x 
be the vector directed from a' to a, and let n' and n be 
the respective unit outward normals to da' and da. 
Let E(a) represent the illuminance at point a by 
reflected light only, and let Eo(a) be the illuminance 
caused by direct light from the source. This latter 
quantity is determined by the overall geometry and 
angular intensity distribution of the source. All surfaces 
are assumed to be perfect diffuse reflectors. Let 
p (a) be the total reflectance at point a. The flux 
dF(a, a') coming from da' to da is given by the 
expression 

dF(a, a') =p(a') [Eo(a') + E(a')] 

da' (-x' n ') da (x' n) X Sea, a')j(rrx4 ). (1) 

A derivation of this equation is given by Jacquez and 
Kuppenheim [2]. In the present work a factor Sea, a') 
has been introduced to account for the screening of 
one part of the sphere's surface from another by the 
baffle. If all points on da' can be seen from a, then 
S (a , a') = 1. If da' is completely or partially screened 
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from a by the baffle, then S (a, a') will be zero or some 
number less than unity. The illuminance E (a) of da by 
reflected light is then equal to the integral of the 
quantity dF(a, a')/da over all the area elements 
da' on the inside of the sphere. This, of course, in· 
cludes the baffle surface as well as the sphere surface. 
The unknown quantity E(a) is thus expressed as an 
integral containing itself and quantities which are 
known. We have then, 

E(a) = L pea') [Eo(a') 

+ E(a')]T(a, a')S(a, a')da' /TT (2) 

where 

T(a, a') == (-x' n') (x' n)/x4 • (3) 

The numerical solution of (2) can be obtained by 
first dividing the surfaces involved into a number of 
small area elements oa' having roughly the same size, 
and approximating the integral by a sum over these oa'. 
Values of the functions Sea, a') and T(a, a') for all 
possible pairs of area elements are fixed by the geom· 
etry of the system, while pea) and Eo(a) are assumed 
to be specified. One then guesses a solution for E (a), 
say EO(a), and uses (2) to get a first approximation 
E 1 (a). The process is repeated using this first approxi· 
mation in (2). Repetition of this procedure gives a se· 
quence of functions Ei(a) which may converge. If it 
does, the accuracy of the solution may be checked by 
repeating the whole calculation wtth smaller area ele· 
ments oa', or with a better approximation to the inte· 
gral, to see whether the limiting value of the function 
E (a) changes significantly. The former method was 
used in the present work. 

Equation (2) is quite general except for the restriction 
that the surfaces be diffuse reflectors. In practice, the 
difficulties involved in evaluating S (a, a') and T( a, a') 
make it desirable to keep the geometry as simple as 
possible. This will also reduce the number of terms 
needed in the representation of (2) as a sum, thereby 
saving time on the iterative calculations. In particular, 
the use of an experimental arrangement having an 
co·fold (C:o) axis of symmetry greatly simplifies all as· 
pects of the analysis. Furthermore, this symmetry reo 
striction does not impose any symmetry requirements 
on the angular intensity distribution of the source. It 
need be applied only to the geometry and reflectance 
of the surfaces in the sphere. 

2.2. Specific Model Used in the Calculation 

a. Classification of Surfaces 

The sphere geometry in the present calculation was 
chosen to approximate the substitution method of using 
the sphere. Positions of the various surface elements 
were specified in spherical coordinates with the origin 
at the sphere center. This model had the following 
characteristics: 

(a) A point source at the center of the sphere of ra· J 
dius R, with no restrictions on its angular intensity I 

distribution. 
(b) A flat, infinitely thin, circular baffle of radius B {. 

with its center on the polar axis a distance D from the 
sphere center and oriented normal to the polar axis. 

(c) Uniform reflectance for sphere and baffle 
surfaces. 

For this model, the solution of (2) requires the evalua· H 

tion of five integrals. Let the symbol s designate points 
on the sphere, aN points on the north side of the baffle , 
and as points on the south side. Let dE= dEC a, a') be 
the illuminance at point a produced by the area ele· 
ment da' around a'. Equation (2) then takes the form 

E(s) = I, dE(s, s') + 1 dE(s, aN') + 1 dE{s, as,) 
s aNI as' 

E(aN) = 1 dE(aN, s') 
s' 

E(as) = 1 dE(as, s'). 
s' 

(4) 

/ 

Numerical integration of (4) is necessary only for 
the polar angle {} since the integration over the azi· 
muthal angle cp can be done analytically. Throughout 
the discussion, points on the sphere surface will be 1 

specified by the coordinates {} and cp written without 
subscripts. The radial coordinate T is a constant equal 
to R for these points. Baffle points will be designated by 
the subscript B on the spherical coordinates. The 
radial coordinate TB is related to (}B by the equation 

(5) 

b. Separation of the Azimuthal and Polar Integrations 

<: 

When both a and a' are on the sphere, T(a, a') is a 
constant. If one of the points is on the baffle, the de· 
termination of Sea, a') is trivial. To carry out the inte· 
gration involving the azimuthal variable it is therefore 
only necessary to calculate the azimuthal dependence \ 
of S (a, a') when both points are on the sphere, and 
that of T(a, a') when one point is on the baffle. These 
calculations are outlined in appendices I and II. Fol· 
lowing this, Eo(a) for the different surfaces must be 
calculated in terms of the angular intensity distribution ~ 
of the source. This is done in appendix III. For con· 
venience, it will be assumed that the source intensity 
distribution is independent of the azimuthal angle cpo 
This means that E (a) will also be independent of cpo It 
is important to note, however, that the value of E(a) at 
a pole of the sphere depends only on the values of Eo(a) 
averaged over cp, provided the reflection coefficient has 
Coo symmetry. If the observation point is at a pole there 
are no restrictions on the azimuthal variations in the 
source intensity. This point will be discussed in ap· 
pendix IV. 

c. Method of Integrating Equation (2) over the Polar Angle 6 

Because of the C" symmetry ofthe sphere and baffle , 
it was possible to perform the integration of (2) over 
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t~e azimut~al angle rt analytically. This integration is 
i) ~iscussed Ill. appendlCes II and III. After this integra· 

tlOn the five Illtegrals in (4) become 

C\ 
1 J d£(s, s') = ( 1T p(8') [£0(8') 

8' Jo 
+£(0')]0-(8,8') sin O'd8'/(47T) 

7(8, 8B,) X D2 cos OB' sin 08' d8B'/7T, 

l i, d£(aN' s') = LBe p(8') [£0(0') 

);; +£(8')] 7(8', OB)R2 sinO'dO'/7T 

~ J d£(as, s') = [7Tp(8') [£0(8') 
i s' JOe 

+£(8')]7(8',OB)R2 sin8'dO'/7T. (6) 

~ The functions £0(8), £O(OB), cr(8, 0'), and 7(0, ( 8) 
~ have .been defined. by (A7), (A8) , (A3), and (AS), reo 

spectively. ReflectlOn coefficients are designated by 
p(O), prv.(8) , and Ps(O) for sphere points, north 
baffle pomts, and south baffle points. The functions 
£(8), £N(OB), and £s(8B) are averages over the 
aZimuthal angle of the indirect illuminance for the 
sphere and baffle points. The parameters 8s and Oe are 
discussed below. The next step, integration over the 
polar angle, was done numerically, by a modified form 
of the trapazoidal rule. 

'1 To do this, the range covered by 8 was divided into 
20 (or 40) equal in terv als 88. These are shown in figure 1 
along with the other sphere and baffle parameters, 
D, B, R, 8s , Oe, and 8 j • The angle 8s has the value 
tal! - I (B/D); it defines the portion of the sphere 
shielded from the direct rays of the source. Thus, 
we have £0(8) =0 for 8 < Os. The angle 8e is deter­
mined by the intersection of the plane of the baffle 
with the surface of the sphere. It has the value COS-I 

(D/R). Sphere points for which 8 < 8e cannot be 
seen from the south side of the baffle while those 
for which 8 > Oe cannot be seen from the north side. 

I We have adopted the restriction that 8e must equal a 
value of 8 which marks a boundary between two 

~, M intervals (see figure 1). This in turn limits the 
I number of D values that may be used. This is an un­

necessary restriction which could be relaxed. The 
angles 8 j are defined by the equation 

8j = (i-!)80 i = 1 ... 20(or 40). (7) 

---.----------------------------~ 

It-B-tI,' 

, , , 
f----;-------

D " 

1 " 
~\ 

FIGURE 1. Definition of sphere parameters. 

R is the radius of t~e sphere; B, is the baffle radius. and D its distance from the center of the 
sphere where the light source, IS I.o~ated: The positive z axis passes through the north pole . 
The range of the polar a,ngle 618 dIvided mlo 20 equal intenals 88. Their centers are denoted 
by the polar angles 0,. t = 1 .' .. 2O,~, defines the portion of the sphere shielded from the 
direct rays of the source. (J~ IS determmed by the intersection of the plane of the baffle with 
the surface of the sphere. 

They thus lie at the midpoints of the 88 intervals. In 
figure 1, the circles on the perimeter of the semicircle 
indicate the 8 j values, and the other index lines show 
the boundaries of the 88 intervals. 
. The range covered by 8B was not divided into equal 
Illtervals. Instead, the baffle radius was divided into 4 
equal parts, of length 8B = B/4. The centers of these 
intervals fall at distances Bi from the center of the 
~affle. The B i are given by the equation B j = (i - !) 8B, 
£ = 1 ... 4. The values of 8n j corresponding to these 
positions are given by 

i = 1 ... 4. (8) 

The increment 88n thus depends on i; 

i = 1 . .. 4. (9) 

Before representing the integrals in (6) by summa­
tions, let us examine how rapidly the different functions 
in the integr~ls vary over intervals of size 00. A study 
of figure 1 will show that the functions £(8), £ N(On), 
£s(08)' and 7(0, 8n) experience only small relative 
changes over any of the 80 or 88B intervals. The func­
tions £0(8), £0(8B), and cr(8, 0'), however, can 
change markedly over certain 80 intervals. For instance, 
£0(0) has a discontinuity in the 80 interval which con­
tains 8s . To cope with these rapid variations the slowly 
varying functions were assumed to be co~stant over 
the interval 88 and were taken out from under the inte-
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gral sign. The remammg portion of the integral was 
then approximated by dividing SO into 10 equal parts 
and summing over these smaller intervals. The saml, 
procedure could be used for the intervals MB if ever 
there is a large variation in Eo (0 B) . 

Written as a summation, the integral equation (4) has 
the form 

m 

Ei = L [(DAA)ij+ (AA)iftj] 
j=! 

4 

+ L [ (AN) iftNj + (DAS)ij 
j=! 

i= 1 ... m 

e 
ENi = L [ (DNA)ij + (NA)iftj] i= 1 ... 4 

j=1 

m 
ESi = L [ (DSA)ij + (SA)iftj] i= 1 ... 4 

j=e + l 

(10) 

where Ei is the value of E( 0) when 0 = Oi, ENi and 
ESi are the values of E N( OB) and Es( OB) when OB = OBi , 
e = Oe/SO, m = 20 or 40, and the various coefficients 
are defined as follows: 

lj+ 

(AA)ij = p(Oj) j_ O'(Oi, 0) sin OdO/(47T) (ll) 

where j±= OJ±tM, and the integral is evaluated 
numerically; 

(AN)ij = PN(OBj)T(Oi, OBj)D2 cos OBj sin OBjM Bj/7T 

i= 1 .. e 

=0 i = e+l m 

i=e+l m 

=0 i=l .. e 

j= 1 .. e 

=0 j=e+l m 

(SA)ij = p(Oj)T(Oj, OBi)R2 sin OjM/7T 

j=e+l m 

=0 j= 1 .. e. 

(12) 

(13) 

(14) 

(15) 

The coefficient (DAA)ij is given by (11) with the addi· 
tion of Eo(O) under the integral sign. We can write 
(DAS)ij = Eo(OBj) (AS)ij unless Eo(OB) shows appreci-

able variation over (5()Bj, in which case (DAS)ij should 
be written as an integral over 88Bj . The remaining ~ 
coefficients (DNA )ij and (DSA )ij are equivalent to ,~ 
the expressions (14) and (15), each multiplied by Eo(O) 
and integrated over the rangej± as in (11). 

2.3. Solution of the Integral Equation 

As outlined in (IIA), an iterative method was used '> 
to solve (10), which is the integral equation (2) ap­
proximated by a summation. Equation (10) contains c: 
the unknown quantities E i, ENi, and ESi and a series 
of coefficients which depend on the geometry and 
reflectance of the surfaces, and on the angular _ 
intensity distribution of the source. I 

A convenient zeroth order approximation is the c"'i 

solution of (2) for a sphere containing only a point 
source with a uniform intensity distribution. For area 
elements on a spherical surface, T(a, a') = 1/ (4R2) 
for all a, a'. Without the baffle, we also have S (a, a') 
= 1 for all a, a'. The integral (2) in this case becomes , 

~ 
E(a) = Lp(a') [Eo(a') +E(a')] da'/(47TR2) 

(16) 

where the integration is over the sphere surface. Since 
this integral contains nothing which depends on a, 
we must have E(a) independent of position. Letting 
E (a) = E, we can solve (16) for E to get 

(17) 

For uniform reflectance p, and a centrally placed 
source with a uniform angular intensity distribution, 
one has Eo(a) = Eo, and (17) becomes - ') 

E = pEo/(I- p). (18) 

The value E calculated from this equation was used 
as the first approximation to all the unknowns, E i , 

ENi , andES i . 

With p= 0.9, values of E(a) satisfied (10) to better 
than 1 part in 105 after about 35 iterations on a high 
speed computer for both the 24 and 44 point models. I 

The solutions were checked to see that they satisfied c 

the condition of flux balance. This is given by the 
relation 

fa Eo(a)da= fa [1-p (a) ][Eo(a) + E(a) ]da 

where the integrations are over all the surfaces in the 
sphere. The integral on the left is the total flux into 
the sphere, and that on the right, the total flux out. 
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3. Calculations and Results 

3.1. Description of Source Distributions 

Two source intensity distributions, each uniform in 
one hemisphere and zero in the other, were used for 
most of the calculations. Specifically, these distribu­
tions were 

IN(O) = 2 Im/sr o ~ 0 < 7T/2 

=0 7T/2 ~ 0 ~ 7T 

Is(O) = 0 o ~ 0 < 7T/2 

=2 7T/2 ~ 0 ~ 7T. (19) 

The total flux F 0 in each case is, by (AlO) , equal to 
47T 1m. 

With the sphere geometry discussed in the next 
section, an additional group of distributions having 
the form 

~ 1;(0) = [sin 0; sin (t BO)] - ( Im/sr 

0; - t 80 < 0 < 0; + t DO 

= 0 (all other 0 values) (20) 

was used. The Oi are given by (7). The total flux is 
the same for each distribution and is equal to 47T 1m. 
We shall discuss later how the results obtained from 
this series of distributions can be used to determine 
E (a) for an arbitrary source distribution. 

3.2. Results for a Reference Sphere 

For much of the work, a particular set of sphere 
parameters was used. They were chosen to correspond 
roughly to those of a _typical _~xpetif!1ental sphere. 
They were, R = 1, B = 0.1, and D = 0.31 m. A uniform 
reflection coefficient of 0.9 was used for all surfaces. 
Calculated values of the indirect illuminance E (0) 
for the 24-point model are shown as polar plots in 
figures 2 and 3 for the north and south hemispherical 
source distributions, respectively. If there were no 
baffle, E(O) would have a uniform value of 9 Im/m 2 • 

The E(O) values shown in figures 2 and 3 are lower 
than this on the average because of light absorption 
by the baffle. The E (0) values are enhanced on the 
side of the sphere opposite that being directly illumi­
nated. Values of the indirect illuminance of the baffle 
show the same effect. They are shown in table 1 for 
the reference sphere and the hemispherical distribu­
tions. For the north distribution, the north side of the 
baffle, being opposite the directly illuminated surfaces, 
receives more indirect illumination than the south side. 
The opposite situation holds for the south distribution. 

FIGURE 2. Variation with the polar angle of the indirect illumi­
nance E(()) for the northward directed hemispherical source distri­
bution, and the reference sphere geometry. 

Eo(6) is the direct illuminance. 

--+--,90° 

FIGURE 3. Variation with the polar angle of the indirect illumi­
nance E(()) for the southward directed hemispherical source distri­
bution, and the reference sphere geometry_ 

£0(0) is the direct illuminance. 
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TABLE 1. Indirect illuminance of baffle for reference sphere 
dimensions, p = 0.9, hemispherical source distributions, and 
24·point model 

IN((J) (lm/sr) I s(II){lm/sr) 

i IIB;(deg) EN;Om/m2 ) ES;{lm/m2 ) EN;{lm/m2 ) ES;(lm/m2 ) 

1 2.32 9.5510 8.2733 8.0889 9.7416 
2 6.94 9.5522 8.2736 8.0888 9.7413 
3 11.46 9.5547 8.2743 8.0886 9.7407 
4 15.86 9.5583 8.2754 8.0883 9.7398 

This table also shows the large difference in indirect 
illuminance of the north and south sides of the baffle, 
and its large dependence on the source distribution. 
Actually, it is the large change in EN; which is pri· 
marily responsible for the change in EI "'"E(O=O) 
(see figs. 2 and 3) when the distribution shifts from one 
hemisphere to the other. The changes in the amount of 
light coming to the 01 position from the other surfaces 
are small by comparison. 

Because the detector would normally be at the north 
pole, it is the change in EI that is of primary interest. 
For the reference sphere, EI changes by 0.25 percent 
when the hemispherical source distribution is switched 
from north to south; values of E (0) at other 0 values 
change to a greater or lesser degree. 

3.3. EHect of Changing the Baffle Position 

The effect of changing the position of the baffle along 
the polar axis is shown in figure 4. Here, values of 
E(O) are plotted as a function of 0 for four different 
baffle positions D, including that occurring in the 
reference sphere. The radius of the baffle was held 
constant at B= 0.1 m. For each case, there are two 
curves corresponding to the two hemispherical dis· 
tributions. That arising from the north distribution is 
labeled N. Of the four positions, the difference in E 1 

between the two source distributions is smallest for 
the baffle position used in the reference spijere. This 
position does not, however, minimize this difference. 
A plot of E I(N)-E 1(5) versus D at constant B, where 
Nand 5 designate the distributions, is shown in 
figure 5 by the filled-in circles. This plot shows that 
for D "'" 0.28 m there would be no difference at all in 
E 1 between the two distributions. This optimum baffle 
position differs considerably from the value of D = 
0.372 R, which minimizes the screened areas of the 
sphere surface [3]. Minimizing the screened areas does, 
however, minimize the change in E(O) averaged over 
the sphere that occurs when the hemispherical source 
is directed from north to south. The sum of the squares 
of the differences E ;(N) - E ;(5), each weighted by 
sin 8 j to account for the different sizes of the sphere 
areas represented by the fJ;, was smaller for D = 0.38 
than for D=0.31, 0.45, or 0.28 m. (Values of E;(N) and 
E ;(5) forD = 0.28 and 0.38 m were estimated by 
interpolation between the curves shown in fig. 4.) Thus, 
while the dependence of the E(8) values around the 
sphere on the source distribution is minimized by 
D= 0.372, the experimentally important quantity 

9.20 r- f 
8.90 

9.00 r-

~ V, 
~ 

w 
N 

9.00 

8 .90 t-

8.90 N 0:0.31 0:0.16 

~II 
900 18(f8·80 90 0 1800 

e e 

FIGURE 4. Indirect illuminance E(II) versus II arisingfrom the north 
(labeled N) and south hemispherical distributions for different 
values of the baffle position. 

The other parameters have reference sphere values. 

E I (N) - E I (5) is minimized by D = 0.28 m. At this 
stage in the calculations it is not possible to generalize 
this result to other source distributions. The optimum 
baffle position may not be the same for source distribu· 
tions differing from the hemispherical ones considered 
here. 

3.4. Effect of Changing the BaHle Radius 

At a fixed value of D, decreasing the baffle radius 
will decrease the error E I(N) - E I (5) made in 
observing the hemispherical distributions. Examples 
of this are shown in figure 5. The three points con· 
nected by the dotted line correspond to combinations 
of Band D which keep constant the area of the sphere 
screened by the baffle from the observation port. 
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FIGURE 5. Difference E,(N) - E, (S) between the indirect iLLumi­
nances near the north pole produced by the north and south hemi­
spherical distributions as a function of baffle radius and position. 

3.5. Determination of E(8 = 0) for an Arbitrary 
Source Intensity Distribution '( 8) 

Calculations of E 1 using the reference geometry 
with the 24-point model were done for a number of 
the distributions Ii «()) defined by (20). Several of the 
E 1 values were obtained from the others by graphical 
interpolation. All are shown in table 2. 

Consider a source with an intensity distribution 
I«()) which can be approximated by a linear combina­
tion of the I;(()) distributions. Let 

20 

I«()) = L W;/i«()), 
i= 1 

where the weights Wi satisfy the relation 

20 

L Wi= 1. 
i=l 

Then, if we define E, (i) as the value of E 1 calculated 
for the distribution I;(()) we have simply 

and ls«()). The use of interpolated values for some of 
the E 1 (i) is probably responsible for most of the 
difference. 

TABLE 2. Indirect illuminance of north pole re{,,'ion for reference 
sphere dimensions , p = 0.9, source distributions II (0), and 24-point 
model 

i 0, [,(0) E, 
(deg) (lm/sr) (lm/m2) 

1 4.5 159.4 7.8329 
2 13.5 54.65 8.1143 
3 22 .5 33.33 9.0464 
4 31.5 24.41 9.0216 
5 40.5 19.64 9.0010 

6 49.5 16.77 8.9823 
7 58.5 14.96 8.9666 
8 67.5 13.81 8.9542 
9 76.5 13.12 " 8.951 

10 85.5 12.79 " 8.950 

11 94.5 12.79 8.9500 
12 103.5 13.12 " 8.950 
13 112.5 13.81 " 8.949 
14 121.5 14.96 8.9487 
15 130.5 16.77 " 8.947 

16 139.5 19.64 " 8.944 
17 148.5 24.41 8.9387 
18 157.5 33.33 8.8056 
19 166.5 54.65 8.4642 
20 175.5 159.4 8.0655 

" These values were obtained by graphical inter­
polation betwee n the unmarked values. 

4. Discussion 

The integral equation description of the integrating 
sphere offers an accurate way to determine the errors 
caused by the screening effects of objects inside the 
sphere. While its numerical solution is possible, in 
principle, for any sphere geometry, a great simpli­
fication results when an oo-fold axis of symmetry exists 
for the various surfaces and their reflection coefficients. 
The computation time is so short for such a system, 
that it becomes feasible to improve the accuracy by 
using smaller area elements and to extend the calcu­
lations to spheres containing several objects. 

The effect of increasing the number of sphere points 
from 20 to 40 is shown in table 3 for the reference 
sphere dimensions. The biggest change in the Ei 
values occurred for E1• There were decreases in EI (N) 
and E 1(5) of around 0.03 percent and an increase in 
their difference EI (N) - EI (5) of 3.1 percent. Further 

20 improvements in the accuracy of the calculation could 
E 1 = L w;E I(i), be achieved by using more points, and/or by using a 

i= 1 better approximation to the integral. 
where E 1 is the value for the distribution I«()). Values An extension of the method to spherical and cylindri-
of E 1 (i) from table 2 were used with appropriate cal sources located anywhere along the sphere axis 
weights to calculate E 1 for the hemispherical dis- appears feasible. This would greatly increase the 
tributi6ns I N«()) and I s«()). The results differed by number of systems to which the method could be 
0.03 percent from those calculated directly from I N«()) applied. 
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TABLE 3. Effect on indirect illuminance near" the north pole of The azimuthal dependence of S (0; 0' , cp') is thus 
decreasing the interval size B(), for reference sphere dimensions, 
p=O.9, and hemispherical source distributions S(O; 0', cp') = 1 for 0 2 cp' 2 cp; and 

20 sphere points 40 sphere points b Change 
(percent) 

El(N) 8.9277 Im/m 2 8.9259 Im/m 2 0.020 
El(S) 8.9087 8.9063 0.027 

El(N)- El(S) 0.0190 0.0196 -3.1 

a The E(() values given here are those at ()= 4.5°. 
b The values at ()=4.5° for the 40 sphere point case were obtained 

by linear interpolation between the E(() values calculated at 
()=2.25 and 6.75°. 

The writer thanks S. R. Kraft for suggesting the 
integral equation approach to the baffle problem and 
for guidance in the initial phase of the work. Ac­
knowledgment is also given to W. B. Fussel for many 
valuable discussions. 
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6. Appendix I: Azimuthal dependence of 
Sea, a ') when both a and a' are on the 
Sphere Surface 

Consider two points (0, cp) and (0', cp') on the sur­
face of the sphere. These points determine a line which 
intersects the plane containing the baffle at some point. 
Let f3 be the distance in the plane of the baffle between 
this point of intersection and the polar axis. Because of 
the Coo symmetry of the sy-stem, the azimuthal depend· 
ence of f3 can be specified in terms of the difference 
cp - cp'. One can thus let cp = 0 and calculate f3 as a 
function of the three parameters 0, 0', and cp'. It. can 
be shown that 

where 
f32 = f + g cos cp' (AI) 

f= t R2 [ (l - f)2 sin2 0 + (l + f)2 sin2 ()' ] 

g = t R2 (l - f) (l + f) sin 0 sin ()' 

f=[2D-R(cos O+cos O')][R(cos O'-cos 0)]-1. 

The line between (0, cp) and «()', cp') will intersect the 
baffle under the conditions, 02 () < Oe < 0' 2 7T, and 
f32 2 8 2 , where Oe is the polar angle determined by the 
intersection of the baffle plane with the surface of the 
sphere (see fig. 1). Let cp; be that value of cp' for which 
f32 = 8 2 • From (AI) we have 

27T - cp; 2 cp' 2 27T 

= 0 for cp; < cp' < 27T - cp; 

= 0 for 0 2 () < Oe < ()' 2 7T. 

For the integral over cp' we have 

J21T 

(T(O, 0') == 0 S(O; 0', cp')dcp' = 2cp;. (A3) 

The azimuthal integration in the evaluation of the 
first integral f sldE(s, s') in (6) is thus accomplished 
since Sea, a') is the only factor in the integrand which 
contains cp'. 

7. Appendix II: Azimuthal Dependence of 
T(a, a') When One Point Is on the Baffle 
and the Other Is on the Sphere 

Consider a point (0, cp) on the sphere surface and a 
point «()B, CPB) on the baffle. It can be shown that 

T«(), cp; OB, CPB) = k[fl + gl cos (cp - CPB)] 

(A4) 

where 

f 1 = R - D cos2 OB cos 0 

g2 = - 2RD cos OB sin OB sin (). 

In the expression for k, the negative sign is used for 
baffle points on the north side, and the positive sign 
for points on the south side. 

As one would expect from the Cx symmetry, T(O, cp; 
()B, CPB) depends on the difference cp - CPB between the 
azimuthal angles. The integral over either azimuthal 
angle is 

CP.; = COS-I [(8 2 - f)/g). (A2) 
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This function r( 0, OB) furnishes the azimuthal portion 
of all the integrals in (4) except the first. 

8. Appendix III: Determination of the Direct 
Illuminance E o(a} 

Let 1 (0, cp) be the angular intensity distribution of 
the point source in lumen/steradian. The direct 
illuminance Eo(O, !p, r) at a point (0, cp, r) is given 
by the expression 

Eo(O, cp, r) =/(0, cp)(r· n)r- 3 (A6) 

where r is the vector from the source (located at the 
origin) to the point and n is the unit outward normal 
from the area element about the point. For sphere 
points (r· n)r-3 has the value I/R2, while for baffle 
points it has the value 1/ (D2 cos 0 B). When p (a) has 
Coo symmetry, E (a) at the poles is independent of the 
azimuthal dependence of 1(0, cp). If the observation 
point is at a pole it is permissible (see appendix IV) 
to use the average of Eo (0, cp) over cp in the 
calculation. 

For points on the sphere surface, excepting those 
screened from the source by the baffle, we have 

Eo(O) == (l/27T) L21f Eo(O,cp)dcp 

= (l/27T) !o21f 1(0, cp) dcp/R2. 

(A7) 

For baffle points, we have 

Eo (OB) == (l/27T) D1T Eo (OB, CPB) dCPB 

= (D2 cos OB) - ) (l/27T) f021T I(OB, CPB) dcpB. 

(AS) 

The north, south designation is not needed here, since 
EO(OB) is zero on the north side of the baffle. One 
need only know 1(0, cp) averaged over cP; i.e., 

J21T 
1(0) == (l/27T) 0 1(0, cp)dcp. (A9) 

The total flux F 0 from this source is given by the 
integral 

Fo=l 1(0, CP)df!=·27TJ1T 1(0) sinOdO 
41T 0 

(AIO) 

where df! is the element of solid angle and the integra­
tion is over 47T steradians. 

9. Appendix IV: On the Absence of Symmetry 
Restrictions on the Source Intensity 
Distribution 

When the reflection coefficient has Coo symmetry, 
and the observation point is at the pole, there are no 
symmetry restrictions on the angular intensity dis­
tribution of the source. To see why this is so consider 
the integral equation (2) for points on the sphere near 
the north pole. 

E(O, cp) = i1T p(O')[fo21T [Eo(O', cp') 

+E(O', cp')]S(O, cp; 0', cp')dcp'] X sin O'dO'/47T 

+ fS PN( OB') [ f1T E N( OB', CPB') T( 0, cp; 0', cP' )dCPB'] 

The average of E (0, cp) over cP is 

E(O) == (l/27T) f1T E(O, cp)dcp 

= i 1Tp (O')[Eo(O')+E(O')]cr(O, 0') sin O'dO'/47T 

(All) 

where we have used the relations (A3) and (AS). The 
function Eo(O) is the average of Eo(O, cp) over cp as 
defined by (A7), and EN(OB) is defined for the baffle 
points in the same way that E(O) was defined for the 
sphere points. This expression shows that E(a) values 
averaged over the azimuthal angle will satisfy the 
integral equation. 

The flux striking a small round observation port of 
radius p, centered on the north pole of the sphere, is 
given by the integral 

(27T [ fOP ] fOP Jo 0 E(O, cp) sin OdO dcp=27T 0 E(O) sin OdO 

where the upper limit of integration is equal to sin- I 
(P/R). As (All) shows, this integral depends only on 
the average azimuthal dependence of the source 
intensity distribution. 
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