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(1) The resonator-decay and the reverberation methods for measurement of the absorption of
sound in liquids are in wide use, but their theoretical foundation has not hitherto been investigated.
The basic assumptions are in fact invalid, but under most practical conditions the errors are tolerable,
at least for three common geometries. (2) The very large excess losses always observed at the lower-
order modes are identified with anelastic effects in the envelope, for the most part, and with viscous
boundary-layer effects to a lesser, but very substantial extent. For modes of sufficiently high order

these become negligible.
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1. Introduction

There is little doubt that many of the best measure-
ments of the absorption of sound in liquids, especially
at the lower frequencies, have been made by “decay”
or ‘“‘reverberation” methods. In the first case, a
resonator formed by the sample liquid and a suitable
container is excited in a single mode; the attenuation
coefficient, «, is calculated from the decay rate after
the excitation is cut off. The second case is much the
same, except that the excitation is over a band of
frequencies.

It is curious that it has always been tacitly assumed
that o as measured on a resonator is the same as that
for a plane running wave in free space. That this cannot
be true in general is evident from an obvious counter-
example—in the case of uniform expansion (wave-
length large re dimensions) the losses are governed
by the congressional viscosity, A+2u/3, whereas
in free space the losses are governed by A + 2.

In section 2 we analyze the decay for a single mode
in general and apply the results to three common
cases: radially symmetric vibrations of a sphere,
first used by Leonard [1946]! and in wide use ever
since; radially symmetric vibrations of a cylinder,
apparently first suggested by Meyer and Tamm
[Mudlers, 1948] and the general vibrations of a rec-
tangular parallelepiped (box). It is found that for the
geometries analyzed the assumption in question is
in general false, although for suitable configurations

! Figures in brackets indicate the literature references at the end of this paper.
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the errors in measured values of « may well be small.
But even if so, it seems that a method in such wide
use, and upon which so much reliance is placed, should
rest on a firmer foundation than it has hitherto.

Once precautions are taken to minimize radiation
of sound from the resonator into the air and conduction
of sound in the supports, the most important sources
of error are probably dissipation in the envelope and
dissipation in the boundary layer. Both Leonard [1950]
and Wilson [1951] tried to calculate envelope losses
in a sphere without much success. New calculations
are presented in section 3. Boundary layer losses occur
whenever the motion of the liquid near the wall has a
component parallel to it. This was first pointed out to
Leonard by R. J. Christensen, and it is on this account
that radial modes of a sphere, for which losses are
smaller than for any other configuration, were em-
ployed by Leonard and by so many others since.
Elementary calculations of boundary layer losses,
for which no great originality is claimed, are presented
in section 4 for comparison purposes.

2. Theory

The rationale of the resonator decay method can
be summarized as follows. In a plane running wave,
the energy density is

E = E0€_2a"r

in which o is the amplitude attenuation coefficient.
The variation with time, for an observer moving with
the wave at speed c, is

E = Eoe—-Zﬂct.



Logarithmic differentiation gives for the instantaneous
fraction of E lost per unit time

1 dE
fz—+2ac. (1)

This notion is now applied to a resonator. The total
energy density is T + W, i.e., the sum of the kinetic
and potential energy densities. The viscous energy
loss per unit volume (heat conduction is here neglected
for simplicity; for most liquids it is minor) is twice
the dissipation function, 2F. The ratio —2F/(T+ W)
corresponds to the left side of eq (1), hence

_ 1 2fFdV 1 [FdV @
S T+ W)dV ~ 2¢ [WaV" )

the integrations being taken over the whole volume
of liquid. The second expression on the right in eq
(2) is not exact; its use will be justified shortly. The
assumption we wish to test is that « in eq (2) is the
same as that in eq (1).

In the foregoing, and in the sequel as well, all
first-order quantities, such as pressure, are supposed
to vary as cos wt. Second-order quantities, such as
T, W, and F, will have terms which vary as cos?wt,
sin?wt, or sin wt cos wt. We are interested in time
averages of T, W, and F only—integration over t
will yield coefficients of 3 or zero, as the cause may be.
We bear this in mind, suppress the factors which
indicate time variation, and take all first-order quan-
tities as root-mean-square.

The problem reduces to finding expressions for
T, W, and F. These are gotten from the pressure
and velocity fields, supposed known. Although these
can be determined in principle (for simple shapes)
the solutions are too cumbersome to be useful. In-
stead we make the approximation that the field is
the resultant of two others, the first appropriate to
an inviscid fluid (i.e., one having a potential) and the
second, appreciable only in a relatively thin boundary
layer, that of a locally plane shear wave launched
at the boundary along the inward normal, the magni-
tudes of the two being adjusted so that the net tangen-
tial velocity on the liquid-solid interface is zero
[Morse and Ingard, 1968]. The functions T, W, and
F are calculated from the potential-solution only.

The assumed velocity potential, s, satisfies the
wave equation

Vg =— k== (wfc?) ¥ ®)
The pressure is
_dv_ .
P=pg Lopy, (4)

in which p is the undisturbed density, and the velocity
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ui=—dl,l' (L: 192’3) (5)

The comma indicates differentiation. We need also
the strain rate

Sij:% (wi,jtuij) =—,i (6)
and the dilatation rate
A=S'ii=_lll,ii=*v2dl=k2dl. (7)

The summation convention is used throughout.
We are now in a position to calculate 7, W, and
F. First we note the constitutive equation

T = (—p + AA)8; + 2uS;; @)

in which Tj; is the stress, A and u the second and first
viscosity coefficients respectively, and 6;; the unit
tensor. The strain energy density is given by

2W =T;S;= (—p+ NA)8;S; + 2uS;;Sis 9)

In eq (9) Sj; is in quadrature with Sij and with A; the
only surviving term is that in p§;S; which equals
pA, and as A=Afio, we have from eqs (3) and (4)

2W = ph2y2. (10)
The kinetic energy density is pw;ui/2= p{ /2, from
eq (5). A special case of Green’s theorem,

frlll,itlf,,-dV+fl_wvzupdV=—L¢%: ds,

leads to the condition of resonance. It is easily seen
that it is equivalent to

_ Y < (N
jlv(T W)dy = 2L¢dnds 12)

At resonance, the total kinetic and potential energies
are equal so that the right-hand side of eq (12) vanishes.
A sufficient condition is that everywhere on the outer
surface (of the container, which we treat as a fluid
without too much error because it is relatively thin)
either the pressure (proportional to ¥) or the normal
velocity (proportional to dys/dn) is zero. In practice,
the resonator is operated at frequencies much above
resonance (breathing mode) of the empty envelope.
Hence the energy in the envelope is mostly kinetic
and therefore most of the potential energy is in the
liquid. A good approximation to the total energy is
therefore 2[,WdV, the integration being taken over
the volume of the liquid. This explains the substitu-
tion of 2W for T+ W in eq (2).
The dissipation function is given by

2F=TUSU= (—p+}\A)8USiJ-+2;LSUS,'j. (13)

Here p is in quadrature with S;; and eq (13) reduces to
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2F = (A +2u) A2+ 4u (S2, + 82 + 52, — §1,Ss

_Szzs:m_s:;:;sn):()\‘{”2#)1&4!#24‘4#]2 (14)
in which I, is the quadratic strain-rate invariant.
Equation (14) together with eqs (2) and (10) gives
finally,

e JEAV (A2 w* | 2ufldV )
2c[WdV Pc3 pck?[Y2dV

We recognize the first term on the right-hand side of
eq (15) as the plane-wave value of «; therefore the con-

dition that the resonator-decay experiment yield the
plane-wave value of « is that

(15)

JL.dV=0. (16)
For reference we repeat
I,= sz S Sf‘ A Sfl —Snszz —Szzs:;:; —S:;:;S11~ (17)

We note two special cases. In the case of a plane
wave, running or standing along x, only Si; in eq (17)
is not zero, so I,=0 and eq (15) gives the known result.
In the case of uniform expansion, the shear rates in
eq (17) are zero and Sy, :Sgg:S;;;{.:S (say), uniform in
space. Then A=3S and I,=—352=—4A2 With this
substitution, eq (15) becomes

(A +2u/3) w?
2pc?

2

which is the correct result, A +2u/3 being the compres-
sional viscosity.

2.1. Sphere, Radial Mode

Here we use spherical coordinates, r, 6, ¢, and sup-
pose that the potential, s, depends on r only. Then the
velocities are

dy
dr

= N uH:ud,:()‘

uy

The nonzero strain rates are

. __([‘Zdj 5 a8 _&__ldl‘b
2l dr2’ Se0=S60= rordr’
so that, from eq (17)
__ 2 dbdy &
L= rz dr (dr = (1’1'2> ’

and with dV = 4aridr,

o =-se 4]

r

a

0

—A4mau?,

(18)

in which « is the radius of the sphere and us= (u,)r—q.
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Equations (18) and (15) together show that for this
case the resonator-decay result underestimates o ex-
cept only for u, =0, corresponding to a rigid container.

According to eq (14) for 2F the excess in «, Aa, can
be estimated from

4‘,U,fl,12dV

Aa_ .
(A + 20) K f, 42V

(19)

o

For the radial mode of a sphere the velocity potential
for unit amplitude is

sin kr
y= (20)
r
Equations (18), (19) and (20) yield
( o5 ha — sin ka)2
%:_ia"‘ o ka . 21)
@ ka a ka — sin ka cos ka (

In eq (21) we have written aci/a for 4u/3(N + 2u)
where aq1 corresponds to the “classical” relationship
3N+2u=0. To use eq (21) for a particular case we
need the values of k£ corresponding to the various
resonances. Although these are readily calculated,
we content ourselves with an examination of the worst
case, i.e., the pressure-release case, p,=0. Then in
eq (21) sin ka=0, ka=nm, cos ka==*1. We have
Aa 1

e X
a nq?

—6 (22)

(o4

In the case of water, for which aei/a is about %, the
“error” is large for the very low-order modes; about
20 percent for n=1, five percent for n=2, etc., but
is less than one percent for n=5. For most other
liquids Aa/a is even smaller. As we shall see, there
are other, more compelling, reasons to operate at the
high-order modes, so that for practical purposes the
spherical resonator, other things aside, has a reason-
ably firm theoretical basis.

As a check on eq (21) we note that for £=0 (uniform
expansion) eq (21) yields the known result.2

2.2. Cylinder, Radial-Axial Mode

This case is not so simple, and the explicit expres-
sion for ¢ is required. If the mid-point of the axis is
the origin of cylindrical coordinates, r, 0, z, the
potential is, for amplitude unity,

U= Jo(kir) cos (k.z+ €), (23)
with the radial and axial wave numbers k, and £,
subject to

B2+ k2 =k = w?c2. (24)

2 The indeterminate form in eq (21) is easily evaluated by expansion of the sine and
cosine functions about ka=0.



The velocities are

Q£=kadw=0ﬂu=—

Uur=—
ar

a—ll! =
o szOS-

Here and in the sequel we use abbreviations like J;
for J1(k,r) and c for cos (k.z+ €). The strain rates are

o _Our ., _h
Sm= ar '—k, (.]0 krr) C,
s 2 — 2 J1
Sgo— 2 kr krr C,
S'zz=auz=k2.]()s;

dz #
Sumg (4 ) == koo
rz—2 ar 9z = rKzJ1S,
Sro=Soz=0.

These, together with dV =2nrdrdz and the limits 0 to
a for r and —L to L for z, give after some reduction

ﬂt f BdV— A B [sin (L e)laos (L re)
—sin (—k.L+¢€) cos (—k.L+e€)]
where
A=2LJ, (kra) [kgaJo(kra)
k, (25)
aF '5' Jl(kra):l

and

B=k.a{kralJ2(kra)+J?(kra)]

— Jo(kra) Js (kra) } + %Jﬁ(kra).

For the integral in eq (25) to be zero it is sufficient
that J;(kra) =0, that either sin (k.L+e€) or cos
(k.L+€) be zero, and that either sin(—k.L+e€) or
cos (—k.L+¢€) be zero. This follows from the inde-
pendence of k, and k.. Restated, a sufficient condi-
tion that the experiment measure the free-space value
of « is that the cylindrical wall be rigid and that each
end be either rigid or pressure-release. (Another con-
dition is k=0, corresponding to a plane wave.)

We can calculate the error, Aa/a, in the same way
as for the sphere. In the special case of pressure-
release ends, we get

Ji(kra) [keado(kra) + 5 Jithia) |
JEkra) + 7 kra)

oy kr
a k'a®

(26)

Again, the worst case is for a pressure-release cylin-
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drical surface [J;(kra)=0] for which eq (26) becomes

2
(4751 0, m

afy, | (nma)E]”
4.+ (58]

in which Ao, is the mth zero of Jo(x). Thus high mode

numbers m or n (or both) insure a small “error.” The

conclusion is the same as for the sphere —the method
is valid in practical cases.

Aa

o

(27)

2.3. Rectangular Tank

In rectangular coordinates, x;, the potential, for
amplitude unity, is
(28)

U = c1C2C3.

Again, we use abbreviations like ¢;=cos (kix1+€;1).
In eq (28) the k; are subject to

B4R+ R=k= (o).

We have
Yy oy
U=——= k > s U =— = k; 2C3,
1 o 151C2C3, U2 i, kscisac3
d
U= — _lp‘ = kscica83,
3x3
and
. aul
S11 == k%Clczcg, etc.
8x1
- 1 aU2 au,
==|—4+—)= x . g
S12 B (axl ax2) klkgslsz(,‘;; etc

The invariant I, of eq (17) will have three terms. The
first is

—% k2k2c2 [cos 2(kwx: + €1) + cos 2(kexs + €2) ]:

the other two are got by cyclic permutation of the
subscripts. Integration over the range —L; to L; for
x; yields an expression for [I-dV containing terms of
the form

sin (kiL; + €;) cos (kiL; + €)

—sin (— kiLi + €;) cos (— kiLi + €)
together with cross-products of these taken two at a
time. The coefficients of these are various products
of L; and powers of ki. An account of the independence
of these coefficients a sufficient condition that

fV12=0

is that each face be either rigid (sine term=0) or
pressure-release (cosine term=0). There are, of



course, other special conditions. For instance if any
two k; are zero the integrand I, vanishes — we are back
to a plane standing wave.

The actual “errors” for any particular case could be
calculated with some labor, but it seems hardly worth-
while in consideration of what we have already learned
in the other cases.

3. Losses in the Envelope
3.1. Sphere, Radial Modes

The loss in a spherical shell oscillating in the radial
(breathing) mode is not difficult to calculate if a simple
expression is obtained for the real component of the
impedance of the shell. It is the fraction 1/Qg of the
stiffness reactance (not the mass reactance; the losses
are associated with strain rates, not with inertia). The
stiffness reactance is Mpw{i/w, Mg being the mass of the
envelope and wy its resonance angular frequency when
empty. Hence the dissipation rate is

(29)

in which u, is the radial velocity at r= a, the interface.
The approximation is here made that the radial velocity
is constant throughout the thickness of the envelope.
This expression is of use only if the variation of Q with
w is known. For many solid materials, including glass,
the Q at frequencies of interest here is independent of
frequency (elastic hysteresis) [Mason, 1950] and we
shall take it as such. We seek the ratio of Dg, the dissi-
pation rate in the envelope, to D;; that in the liquid.
For the latter we use, without significant error only the
part (A+2u)k*[ ?dV [eq (14)]. This and the value of
uq in eq (29) are gotten from the potential in eq (20). The
2pp;c,,t sin? ka

result is
(%)
(AN 2u)Qk(ka)* \w) k

in which pg and ¢ are the density and thickness of the
envelope and ¢, is the speed of sound in the liquid.
Equation (30) is meaningful in our context only for those
values of w (and k= w/c) which correspond to actual
resonances.

One expression of the condition of resonance is that
on the boundary between the liquid and the envelope
the point admittance of the liquid equals that of the
envelope. The former is

Dy _
D,

(1—ka cot ka)?
a—sin ka cos ka’

(30)

Ua _ —dPlda _ 1—ka cot ka

Pa B iwpl,lllu ipra

p. being the density of the liquid, and the latter is

ye=1/iwpgt [1 ~ (%)] :

Equating these gives as the condition of resonance

(31)
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pLa

1—ka cot ka= (32)

This together with eq (30) gives, after much reduction
DS
D, cOrow(a/w?) \ w

R

2—R[1— (wo/w)2] + (ka)?[1— (wo/w)2]?’

33)

in which we have written R for pra/pgt, and have elim-
inated A +2u in favor of a/w? from eq (15). We shall see
that in most practical cases wo < w so that the brack-
eted expressions in eq (33) are nearly unity. Equation
(33) is still not free of w (or k=w/c), but the right-
hand side is seen to be a monotonic function of w, so
that the equation is usable as it stands; it is not nec-
essary to solve the frequency equation, eq (31)
explicitly.

It seems clear that, everything else being equal,
there is no optimum thickness, t, of the envelope wall,
because the wall loss would vanish at both extremes—
no wall and rigid wall. This notation is verified by eq
(33) according to which Dg/D, has a maximum for
R=ka[l— (wo/w)?]. (R varies as 1/t). The variation
of the error, Dg/D, with frequency is very rapid. For
a given set-up, and for liquids for which «a/w? is
independent of frequency, eq (33) predicts that for
low-order modes, such that R > ka, Dg/D, varies as
1/w?, and for high-order modes, such that R < ka, it
varies as 1/w°. Thus we might expect, for a given
experimental arrangement, very large errors at low
frequencies and negligible errors for sufficiently high
frequencies.

These conclusions can be checked against the
results obtained by Wilson [1951] whose report contains
all of the necessary details. The circles in figure 1
show agps/c, the ratio of the observed to the known
attenuation in water® at 4 °C, as measured in a 12-
liter borosilicate boiling flask. The errors at the
low-order modes are seen to be enormous; the observed
attenuation is too high by a factor of more than 100
at 16 kHz (mode 3). Even at the ninth mode, about 46
kHz, the factor is about 4. At the higher-order modes
the factor remains constant at about 1.4.

Wilson’s report [1951] gives all the data needed to
calculate the error from eq (33). There is some question
about the Q of borosilicate however. The value most
often cited, 1200, is taken from Mason [1950]. Wilson
[1951] measured it as 2200 for longitudinal vibrations.
Measurements made in our laboratory on two spherical
flasks vibrating in a vacuum in the breathing mode
give about 2700 at 4 °C.

The full lines in figure 1 show 1+ (Dg/D.) from eq
(33) for Qg’s of 1000 and 3000. It is clear that eq (33)
explains the low-frequency errors fairly well at least

3The “known values” are those extrapolated from high-frequency measurements on the
supposition that @/w? is independent of frequency.
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FIGURE 1. Losses in water at 4 °C, 12-liter spherical Pyrex flask.

) The circles show the ratios of the measured to the known values of the attenuation accord-
ing to Wilson [1951]. The curves show 1+ (Dg/D;) from eq (33): the upper curve is for
Qe =1000 and the lower for Q= 3000.

in a qualitative way. It must be remembered that there
are other sources of error. Some of these will be dis-
cussed later. The constant error at high frequencies,
which remains unexplained, is discussed in section 5.

3.2. Cylinder, Radial Axial Modes

The calculation is carried out much as for the sphere.
In the case of pressure-release ends, the result is

Dy _
D,

1
c.Qrw (a/w?)

R .
R2+ (kra)?[1 — (wo/w)2]2

(@) ()

In deriving eq (34) the point admittance of the envelope
was calculated in a manner similar to that for a sphere
[eq (31)]. This is probably good enough for the (£, 0, 1)
modes, but dubious for the ({, 0, n>1) modes. A
more ambitious attack was made by Lambert [1953],
but his results are not applicable here. The point
admittance of the liquid, at the interface, is

Ua _ —oyi/da _ krJ1(kra)
Da iwpro(kra) ’

(34)

twpLa
so that the condition of resonance is

kali(kva) R

Jo(kra) 1= (ww)

5 (35)

in which again, R= pra/pgt.
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The main point of eq (34) is that the envelope losses
for a cylinder behave like those for a sphere, that is,
they can be very large or very small for a given setup,
depending on whether the mode numbers are very low
or very high.

4. Losses in the Viscous Boundary Layer

The viscous boundary-layer losses are calculated
on the assumption that the boundary layer thickness,
dy= (2u/pLw)'?, is small relative to the interior
dimensions of the resonator. The method is very old;
a good simple account is given by Lambert [1953].
The viscous loss per unit area at the interface is given
by

dDy

s 30

= Vopru/2 18

in which u; is the tangential component of the fluid
velocity at the interface as calculated from the
potential.

It follows from eq (36) that if u;=0 everywhere at
the interface, the boundary-layer losses are zero. This
is the case for the radial vibrations of an ideal sphere.
In practice, the filling hole prevents the motion from
being radially symmetrical, but the resultant field is
too complicated to work with analytically.

More generally, the boundary-layer losses vanish
if the pressure is uniform, and in particular, zero, on
the interface. For then the tangential component of
the pressure-gradient, which is proportional to |wu/,
is zero. It would appear then that other things being
equal, the boundary-layer losses are smaller the thinner
and lighter the envelope, that is, the nearer the fluid
boundary is to pressure release.

For the radially symmetrical modes of a cylinder
having pressure release ends, the potential is

niw
S~ 2

Y=Jo(krr) co Y7

(37)

in which n is an odd integer. The only nonvanishing
component of u; is (u:).-«=—0y/da. This is calcu-
lated from eq (37) and substituted into eq (36). Inte-
gration over the lateral area gives

n’ma
2L

Dy (wpLp/2)2J5(kra) . (38)

As expected, D,=0 if the pressure, proportional to
Jo(kyr), is zero at r=a. We compare this to the loss
in the liquid itself, which according to eq (14) is given
with sufficient accuracy by

(N +2uw)k* J’v(bde
and get l
Dy _ 3n*m® Qwpr/w)'? oo (kra)*[1— (wo/w)*]?
D, 4(2L)2 kta a R+ (kra)*[1— (wo/w)*]?
(39)




In obtaining eq (39) we have again made use of the
resonance equation, eq (35) and written o/ for
Auf3(N+2uw).

Comparison of eq (39) with eq (34) shows that the
ratio of the boundary-layer loss to the anelastic loss
in the envelope varies as w?2. Thus we might expect
that the loss in the envelope predominates at low, and
that in the boundary layer at high, frequencies, and
that both are eventually negligible.

Computation shows that in a practical case the mode
number may be high enough so that although the loss
in the envelope is negligible, the viscous boundary
layer loss is still considerable. This viscous loss might
then be calculated by the method outlined above and
the results corrected accordingly. Mulders [1950] made
some interesting measurements on water in a cylinder
28 ¢m O.D. by 10 cm high. The reverberation method
(excitation over a band of frequencies) was used at
mean frequencies of 750, 1010, and 1500 kHz, corre-
sponding to very high-order, densely packed modes.
Mulders calculated the viscous boundary loss on an
“equipartion” basis for a rigid wall and obtained good
results even at the lowest frequency of 750 kHz, for
which the boundary layer loss was almost half the total.

5. Discussion

The resonator-decay method for the measurement
of sound absorption in liquids is known from experience
to have serious drawbacks. Our analysis, rough though
it is, elucidates the mechanism of some of the losses
hitherto considered adventitious, and thus provides a
rationale for the design of experiments.

We have shown that the basic theory of the method,
usually taken for granted, is in fact only approximate
for realistic boundary conditions, but that the errors
resulting from its application are small for sufficiently
high mode numbers. Much more serious are the ane-
lastic losses in the envelope. These are relatively enor-
mous for low-order modes, but become negligible for
modes of sufficiently high order. The same is true for
losses in the viscous boundary layer. Although we can-
not calculate these in the case of a sphere, for which
the boundary condition is not uniform owing to the
presence of the filling hole, we get a fair idea of the na-
ture of the effect from the analysis of a cylinder. In any
case, this loss can be minimized by minimization of the
mass of the envelope relative to that of the liquid.

In our example we have chosen water as a test liquid.
Water, having relatively low values of @ and of &/,
gives a ““worst-case’’ type of example, and the unwanted
losses are relatively much less in complex liquids hav-
ing high viscosities and high ratios of compressional to
shear viscosity. The envelope material used in the ex-
ample, Pyrex, having a  in the range 2000 to 3000, is
typical. A higher Q is of course better, but for a given
setup, a large increase in this Q results in a disappoint-
ingly small reduction in the lowest frequency at which
the losses are acceptable.

The major problems of the method are inherent. The
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experiments are easier to perform at the lower-order
modes because the modes are well separated and easier
to identify, and because the demands on the accuracy
of the geometry are tolerable, but the lower the mode
number, the greater the unwanted losses. Even when
the method is used differentially, using a “standard”
liquid for which the losses are supposedly known, most
workers have had to avoid the lower-order modes.

Another matter of concern is that in the experiment
we have used as an example [Wilson, 1951], there is a
residual loss of about 40 percent at the high-order
modes. It is doubtful that this is due to conduction
of sound by the supports and the discrepancy remains
unexplained. Moen [1951] in an experiment similar
to Wilson’s (water, 12-/ spherical flask) also found a
residual loss of about 40 percent. However, he found
greater losses in smaller flasks, and by plotting the
decay rate against reciprocal radius and extrapolating
the resulting straight line to 1/a =0, obtained values of
a/f? in agreement with those measured in the tens of
megahertz range even at 150 kHz, the lowest frequency
he worked with. Similar results, namely that the
residual loss is proportional to the surface-to-volume
“ratio” of the resonator, were obtained by Moen for
several other liquids. Thus it appears that this loss is a
boundary effect not accounted for by our analysis.

Mulders’ [1950] results, described in section 4, are
of great interest. He considered that the good accuracy
of his calculations of viscous boundary layer loss,
based partly on the supposition of a rigid wall, furnished
empirical proof that the walls behaved as though rigid,
and called this an “amazing fact”. According to our
analysis (sec. 3.) this behavior is to be expected under
the conditions of Mulders’ experiment.*

The lively interest in possible laboratory measure-
ments of absorption at low frequencies, say down to 1
kHz, has recently intensified. The results of our
analysis make us pessimistic about this possibility,
especially for low loss liquids, except perhaps by
methods as yet undreamt of. Mulders’ [1950] experi-
ment, properly scaled to 1 kHz, would require a tank
having dimensions of tens of meters. To keep such a
volume clean, free of air bubbles, and at uniform
temperature would tax the resources of even a labora-
tory which could afford to build the tank.

The Q-values of several empty flasks vibrating in the
breathing mode were measured by Carl E. Tschiegg.
He also made numerous measurements, not extensive
enough to report here, on the vibrations of a liquid
filled barium-titanate cylinder. These served to verify
the general nature of the variation of the losses with
mode number as developed in the text.

The work was supported in part by the Office of
Naval Research.

* However, we have considered only axisymmetric modes. An unsymmetrical mode of
the liquid, such as occurs in Mulders’ experiment, drives a flexural mode of the envelope
at a frequency much higher than its natural frequency. Hence its impedance is very high
and its motion very low. Of course this is only an informed conjecture. :
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