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A Note on the Multiplicative Property of
the Smith Normal Form*
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This paper contains an elementary proof of the fact that if 4 and B are n-square matrices over a
principal ideal domain R with relatively prime determinants, then S(4B)=S(4)S(B) where S(4) is

the Smith normal form of 4.
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In [2; p. 33]' the following interesting result appears: If A and B are n-square matrices over a
principal ideal domain R and g.c.d. (det (A), det (B))=1 then S(AB)=S(A)S(B) where S(A) is the
Smith normal form of A.

The purpose of this note is to present a simple proof of the result that uses elementary proper-
ties of compound matrices.

LEMMA. Let Q=diag (qi, . . ., qn), P=diag (p1,. . ., Pn), 41| a5, P1| Py j=1,. .., n and g.c.d.
(P, q)=1,1,)j=1, . . ., n. Let U be an n-square matrix with the property that g.c.d. (uy, us,

. L up)=g.c.d. (uy, ug, . . ., uy)=1. Then the g.c.d. of all the entries in QUP is p,q;.

Proor. Obviously piq,|QUP, i.e., p1q: divides every entry of QUP. Write QUP = p,q,D.
Suppose that p|D where p is a prime. It is simple to see that the first row and column of D are
respectively

Doy = [u11, wizps, - . ., WinPn], pi=pipi?,
and

DY=[un, guuar, - . -, quual.  ¢i = qigi™
Now p|D(1) and since g.c.d.(wi1, . . ., win) =1 we conclude that p|py, for some k=2, . . ., n.
Similarly p|DV so plq; for some (=2, . . ., n. But then p|pi|px, p|qi|q: and this contradicts

g.c.d.(pr, q) =1.
Since 4 and S(4) are equivalent it follows immediately that AB and S(4)US (B) are equiv-
alent where U is unimodular. Thus

S(AB)=S(S(A)US(B)) . (1)
Since it is obvious that dx(S(4)S(B))=di(4)dr(B), k=1, . . ., n, we need only show that

d;(A)di(B)=dx(S(A)US(B)), k=1, . . .,n,
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to complete the proof.
If Cx(X) denotes the kth compound of the matrix X [1; p. 16] then we immediately have

Cr(S(4)US(B)) =Cx(S(4))Cr(U)Cr(S(B)) 2

and the matrix C(U) is unimodular. For, C, (UV)=C(I,) implies Cx(U)C,(V)=Cy(I,) and
thus Cx(U) has an inverse over R if U does. (Or more simply, apply the Sylvester-Franke theorem
to see that C (U) has a unit determinant.) Hence the entries in the first row (column) of C(U) are
relatively prime. The divisibility properties of the determinantal divisors together with the hy-
pothesis that g.c.d. (d,(4), d,(B)) =1 imply that any two main diagonal elements of the diagonal
matrices Cr(S(A4)) and Cx(S(B)) are relatively prime. Moreover the 1,1 entry of Cx(S(A4)) is
di(A) and similarly for Cx(S(B)). We can now apply the lemma to the matrix on the right in (2)
to conclude that di(A4)dx(B) is the g.c.d. of the entries in Cx(S(A))Cr(U)Cr(S(B)); i.e.,
di(A)di(B) is the g.c.d. of the entries in Cx(S(A)US (B)). But in view of (1),

dx(S(AB))=d;(A)d,(B)
and the proof is complete.
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