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In the Rosenbluth and Rosenbluth method of computing polymer configurations, the configurations 
are weighted in order to remove bias of the estimated parameters of the configurations. This weighting 
method is investigated and generalized for importance sampling and Boltzmann factors. The estimates 
are found to be unbiased in the limit for an infinite sample of configurations, but to have a bias for a 
finite sam pit'. The standard deviations of the estimates are also derived. 
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Polymer molecules in solution have been simulated by non-self-intersecting random walks 
on a lattice by many investigators [1-7J 1. The procedure is to calculate many non-self-intersecting 
random walks of a given number of steps or segments , n , and calculate a parameter of each walk, 
such as the square of the end-to-end distance, r2. The values of the parameter are then averaged. 
If the generated walks are a random sample of all non-self-intersecting walks of length n, then 
the average value of the parameter, such as (r2), will be an estimate of the average value of the 
parameter over all non-self-intersecting random walks of length n. Of course, for very small values 
of n , all possible walks may be generated and the average value of a parameter of the walks directly 
calculated. However, for large values of n, the number of possible walks becomes too large to gener
ate even on a computer, so it is possible to generate only a sample of the possible walks. 

The direct method of generating a sample of non-self-intersecting random walks is to generate 
a sample of random walks and discard those that intersect themselves. However, for large n this 
method is impractical because almost all generated random walks will be self-intersecting and 
must be discarded. Three practical methods, chain enrichment [1], dimerization [6] and the method 
of Rosenbluth and Rosenbluth [2] have been used to generate non-self-intersecting random walks 
for Monte Carlo studies of polymer configurations. This paper investigates the accuracy and bias 
of estimates of the parameters of walks generated by the method of Rosenbluth and Rosenbluth. 
Rosenbluth and Rosenbluth gave an intuitive justification, but no proof that their method is un
biased. Formulas for the bias and variance of the estimates are given in the appendix of reference 
[4], but without detailed derivations. Also, importance sampling and Boltzmann factors that are 
used in a current Monte Carlo study rll] are not considered in [4]. This paper gives complete deriva
tions of the bias and variance of the estimates and generalizes the derivations for importance 
sampling and Boltzmann factors. 

Although random walks are usually generated on three dimensional lattices for large values 
of n, the methods of generation will be illustrated for n = 4 on a square lattice, following Rosen
bluth and Rosenbluth r2]. All 25 nonintersecting random walks are shown in figure 1. 

In the Rosenbluth and Rosenbluth [2] method of generating random walks, only steps for 
which the walk does not intersect itself are taken. Thus, in the walk shown in figure 2, either 

I Figures in brackets indicate the literature references at the end of tlus paper. 
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FIGURE 1. All nonintersecting walks oj 4 steps on a square lattice. 
The direction oj the first step is fixed. 
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FIGURE 2. Three possible steps Jor a walk on a square lrtttice. Stev r: 
is not allowed Jor a nonintersecting walk. 

step A or B would be chosen, each with probability t. Although there is still attrition of the walks 
due to trapping [3], this method allows efficient generation of long walks. However, different walks 
are generated with different probabilities. In the example of figure 1, walks 1 to 21 are each gen· 
erated with probability (t)3 while walks 22 to 25 are each generated with probability of (t)2 t. 

Consider a very large number, m, of random walks generated by this method. The average 
value of r2 over the sample will be 

(1) 

where r2 and Pj are the square end· to· end distance and probability for each of the 25 walks of 
J 

figure 1. However, the correct average [2] obtained by averaging r2 over the 25 configurations is 
7.04. This method is seen to produce compact walks with too great a probability, so simple averages 
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of the walks produce incorrect, biased, results. In order to remove the bias, Rosenbluth and 
Rosenbluth [2] weighted each configuration to give, for any parameter v, 

111 

L VkWh' 

< v) = _k=_I __ 
111 

(2) 

L Wk 
k = 1 

where the weights, Wk, are the reciprocals of the probabilities of the walks. They gave an intuitive 
argument, but no proof, for the weighting procedure. In the above example, w/,=33 for walks 1 to 
21 and Wk = 322 for walks 22 to 25. 

Also, the number of walks, T, of n steps was estimated by 

A 1 111 

T=- L Wk. 

m k = 1 
(3) 

The carets placed over v and T indicate that eqs (2) and (3) give estimates for < v) and T rather than 
their true values. 

We first prove that eq (3) gives a correct estima.te. A complication arises due to trapping [2] 
of the walks, when the walk cannot be continued to n steps. In this case the walk is terminated 
and its weighting factor is defined to be zero. Let W1' be the number of trapped configuration of 
walks of less than n steps, so that every walk gives ei~h.er one of the Tn-step walks or one of the 
WT trapped configurations. The expectation [9] of W is given by the sum mation of WiPi over all 
walks where Pi is the probability of the walk. That is: 

A T 1 wT 

E(T)=E(w)=L wi-:+L O·Pi=T. 
i= 1 W, i = 1 

(4) 

Thus eq (3) estimates the number of walks. This proof follows the method of Lehman and Weiss [8]. 
The variance and standard deviation of T are also of interest. The variance of W is 

Varw=E(w 2 ) - (EW)2 (5) 

T 1 
=~ w2--T2 
~ 'Wi 

T 

=L Wi-T2. (6) 
i=l 

Because T is an average of m independent values of w, its variance is [9] 

VarT=! Varw= [~Wi -T2] / m (7) 

and its standard deviation is 

A [ T ] 1/2 / a-(T)= ~ wi-T2 Ym (8) 
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The investigation of the estimate given by eq (2) that was outlined in reference [10] is now given in 
detail as follows: 
For a parameter v, define: 

so that 

1 m 
R=- L VkWk 

m 
k=l 

(v)=RIT. 

A A 

Let E(R) and E(T) be the expectation values of Rand T, with 

E(T)=T. 

The expectation of R is given by the expectation of vw as 

TIT 
E(R) = L ViWi W, = L Vi= T(v) 

i=1 t i= 1 

(9) 

(10) 

(11) 

(12) 

As the sample size m tends to infinity, Rand f tend to their expectation values and (~) tends to 
the average of v over the walks. Thus, eq (2) is asymptotically unbiased, i.e., it is unbiased in the 
limit of infinite sample size. A 

To investigate eq (2) for large but finite values of m, (~) is expanded about E(R) and E(T) 
to give 

A E(R) 1 E(R) A A 1 A A 

(v) =-A +-A [R - E(R)]- A [T- E(T)]- A [R -E(R)][T-E(T)} 
E(T) E(T) [E(T)}2 [E(T))2 

E(R) A A 

+ A [T - E (T) F + higher order terms. (13) 
[E(T)}3 

We now take the expectation value of (~). The first term gives (v) and the expectation value 
of the two first order terms vanish. Expansion and substituting for E(R) and E(T) from eqs (12) 
and (11) in eq (13) gives the approximation 

E«~») = (v) + [(v) E(T2)- E(RT)]/P (14) 

By the definition of the variance, 

A A A 

Var T=E(T2) _[E(T))2· (15) 

Substituting eqs 4 and 7 gives 

A 1 T m-l 
E(P)=- L Wi+-- T2 

mi=t m 
(16) 

A 

To evaluate E (RT), we substitute from eqs (3) and (9) and rearrange terms to give 
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(17) 

The first term on the right hand side gives 1.. ± ViWi. The second term is a summation of 
m i=1 

m (m - 1) quantities, and because VkWk and WI are independent, the expectation value of their 
product is the product of their expectation values, so 

= m(m-I)E(R)E(w) (18) 

Substituting eqs (16), (17), and (18) in eq (14) finally gives 

(19) 

This gives the apvroximate bias for the average given by eq (2). That is, (;) caleulated from a 
sample of m walks will, on the average, differ from the true average (v) by the right· hand term. 
However, for increasing sample size m, the bias will approach zero, so the average is asymptotically 
unbiased. 

For the simple example shown in figure I, the summation was evaluated to give 

E[ (;2)] = (,2) - 0.233/m 

Thus, for a sample size of 100 walks, the mean value of ,2 calculated by eq (2) would be on the 
average too low by about only 0.002 lattice units squared. For longer walks on three·dimensional 
lattices, it is not practical to calculate the bias from eq (19). Methods of estimating the bias for 
these cases will be given in a later publication [II]. 

Using the formulas of Ku [12], the approximate standard deviation of (;) (from its average 
value, not from the true value (v») is derived: 

(20) 

The standard deviation decreases as the square root of the sample size. Therefore, for suffi
ciently large sample size, the bias will be much smaller than the standard deviation, so the bias 
may be neglected. For the example of figure I, 

0"«;2») = 3.58/Ym 

For m= 100, the standard deviation of this estimate is about 0.36, which is much larger than 
the bias of the estimate. 

To apply this method to long walks on various lattices, weighting factors, w, must be computed 
for each walk as the walk is generated. Let q be the maximum number of choices for a step of a 
walk on a lattice, i.e., one less than the coordination number of the lattice. Thus, q=3, 5 and II 
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for square, simple cubic, and face-centered cubic lattices, respectively_ Also, when two non
adjacent sites of a walk lie within one lattice distance of each other, they are said to form a contact. 
Thus in figure 1, walks 4, 7, 18, 19, and 22 to 25 contain a contact. Now let the ith site of a walk 
form Ci contacts , so the next step of the walk has q - Ci possible directions_ One of these direc-

tions is chosen randomly, so it is chosen with a probability of ~C - Therefore, the probability 
q- i 

n - l 1 n - I 

of generating a particular walk of n steps is II _ C. and W = II (q - Ci )_ 
i=1 q, i=1 

During generation of the walks, some of the walks are trapped, i.e., all surrounding sites are 
occupied so the walk cannot be continued. Because Wi is defined to be zero for these walks, they 
should not be used in the calculation of eq (2). 

Average for Walks With Boltzmann Factors 

In calculations for polymer walks with nearest neighbor interaction energies, the averages 
over parameters of the walks multiplied by Boltzmann factors Cti = exp (-Pi E/ kt) are desired, where 
Pi is the number of contacts of the ith walk, E is the energy per contact, k is the Boltzmann constant, 
and t is the temperature. That is, the quantities 

T 

5=2: Cti 
i = l 

and 

T 

(v) = 2: Ctiv;/5 
i= l 

are to be estimated. The derivation follows as previously. Thus corresponding to eq (4). 

T 1 
E(wCt) = 2: WiCti-= 5 

i = 1 Wi 

so an estimate of 5 from a sample of m walks is 

to estimate (v) we propose 
m 

2: VkCtkWk 
(~) = :.::.,k=...:.I __ _ 

m 

2: CtkWk 
k = 1 

(21) 

(22) 

(23) 

(24) 

(25) 

The derivation is the same as previously with CtW replacing wand 5 replacing T (except for limits 
of the summations). Equation (19) then becomes 

and eq (20) becomes 

A 1 T 
E[( v)] = (v) - - 2: (Vi- (v) )CtiWi 

m52 i=1 

[ IT ]1 /;' (T«~»= -2: (Vi-(V»2 CtiWi Vm 
52 i= 1 
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Importance Sampling 

In the described method , all allowable steps from a given site have been given equal proba
bilities. However, walks are sometimes performed in which the allowable steps are taken with dif
ferent probabilities. In this way, many walks for which a desired parameter is large (important 
walks) will be generated. The average of the parameter over this sample of generated walks will 
be calculated with a higher accuracy. This technique is called Importance Sampling [l3].One 
method used gives twice the probability to allowable steps that point toward the origin than to other 
steps_ Thus, in figure '3a on the rectangular lattice, step A would be taken with a probability of t 
and steps Band C would be taken with a probability of t each. In figure 3b, step A would be taken 
with a probability l and step B with probability!, With this method many more coiled walks con
taining large number of contacts are generated than when all steps have equal probability. 

For walks with large nearest-neighbor interaction energies of attract;on, the Boltzmann fac-
I tors (Xj are large for walks containing many contacts. Then, for a parameter v such as end-to-e nd 

di'stance, many walks for which Vk(X" is large are generated by the above method so that more ac
curate values for the average of v by eq (25) should be obtained than for walks generated in the 
ordinary way. This method of generating walks will b e used in reference [11]. 

Many other methods of choosing unequal probabilities for the steps may be used. For another 
example, the step in the same direction as the preceding step may be given a higher probability 
than the other steps. For any such method, weighting factors Wj may be calculated so that eq (2) 
will apply. We now derive the weighting factors for a ge neral method of chain generation with 
Importance Sampling. 

For any step in a walk, le t there be s allowable steps. Let a multipli city mdk = 1 to s) be as 
s igned to each s te p proportional to the probability of the step. For example, let steps toward the 
s tart of the walk be given twice the probability of other steps. Thus, in figure 3a, s = 3, step A has 
a multiplicity of 2 and steps Band C each have a multiplicity of 1; in figure 3b, s = 2, and steps 
A and B have multiplicities of 2 and 1 respectively. In general, the probability of a step is 

(28) 

where me is the multiplicity of the chosen step. The probability of a given N step walk is then the 
product of the factors (28) for all steps of the walk and the weighting factor is the reciprocal of the 
probability , or the products of the factors 

over all steps of the walk. 
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FIGU RE 3. Typical configurations on a square lattice illustrating 
assignment of multiplicities to allowed steps. 

199 

(29) 



Conclusions 

The biases and standard deviations for parameters of walks with excluded volume generated 
by the method of Rosenbluth and Rosenbluth [2] have been derived and extended to the cases of im
portance samplinog and Boltzmann factors. The direct calculation of the biases and standard devia
tions involve summations over all walks so is generally not feasible. However, the formulas will be 
used to estimate the biases and s tandard deviations from Monte Carlo calculations in a later paper. 

I wish to thank Jacob Mazur and Charles Guttman for their help and discussions. 
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