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The Stieltjes Constants are the coeffi cients in the Laurent expansion of the Riemann Zeta function 
g(z ) about its s imple pole at z= l. They can be represented as the limit of the difference between the 
sum of the first n terms of a series and the integral of its n-th term. 

The first 20 coefficients have been computed to 15 D using the Euler-Maclaurin method. As a 
by-product the sums of the series 

~ T"=+ (-1)k(logk)"lk 

have been obtained to 15 D for n = 1 (l) 20. 
Key words: Bernoulli numbers; Euler-Maclaurin method; Euler transform; Eule r's constant; multiple 
precision package; Riemann zeta function. 

1. Introduction. 

The Riemann ~-function defined by 

00 

~(z) = L n- Z 

o 

is regular if x=~z > 1; a continuation into the half plane ~z > 0 is given by 

'" (2t-z-ln(z) = L (-1)lIn - z. 

(1.0) 

(1.0' ) 

We can avoid the introduction of the idea of continuation by defining ~ (z) in ~z > 0, except 
at z=l, by (l.O'). Uniform COnVf~TgenCe in .~z > O follows since ~(-l)lln-X is convergent as an 
alternating series for x > O. (Cf. Knopp. [10, p. 441)1.) The fact that 

(z-l)~(z)~l 

'" 
as z ~ 1 then follows since L (_1)nn- 1 = -log 2 and since the exponential series gives 

1 

(2 1- Z -1) = e(l-z) log 2 - 1 

= - (z - 1) log 2 [1 + (z - ~! log 2 +. . . J. 
This function has a Laureni. expansion about the simple pole at z= 1: 
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where the coefficients are given by 

where 

= Ii {~.m (log k)n _ (log m)n+l} = 0 1 2 
Yn m L,; k l' n ",.. 

m--+ OO k=1 n + 
(1.2) 

(We have changed the notation of Stieltjes and Jensen to agree with that of Hardy and Briggs 
and Chowla.) 

It is clear that yo= y, Euler's constant. Stieltjes proposed [3, I, Letter 77] the computation of 
(the first five of) these constants and gave [3, I, Letter 71] the value 

and estimated 

Hermite [3, I, Letter 74] wrote that, during a session of the Academy of Sciences, he found some 
objections to Stieltjes' proof of (1.2) and that he had obtained a more correct proof. Stieltjes 
[3, I, Letter 75] gave a detailed proof of (1.2). This result was also obtained by Jensen ([9] and [3, n, 
p. 451]) and stated by Hardy [8] and by Ramanujan [12]. Two proofs have been given recently by 
Briggs and Chowla [2]- we reproduce one of these in section 4. 

We note that tables of the A's have been prepared by Jensen [9], who gives Ai, i = 1 (1) 9 to 
9D, and by Gram [7], who gives Ai,i = 1 (1) 16 to I6D. In section 9 we describe Gram's method of 
computation. In each table the later coefficients are zero to the number of decimals given. We 
shall see that these results appear to be correct. It is interesting to note that one of the reasons 
for calculating these constants was the determination of the small complex zeros of ~(s). (See 
also Lammel [21].) The apparently irregular behavior of these coefficients has been investigated 
analytically by Briggs [1]. 

Our first calculations were based on extensions by Hardy [8] of a result of Vacca [15] which 
leads to expressions for the y's in terms of elementary constants and the series 

= ~ (_ I)k (log k)n 
7n L,; k' 

k =2 

n= 0,1,2, .... 

For jnstance, Hardy gave 

70 = I-log 2 = 1- 0.69314718 = 0.30685282 

1 
71 =-"2 (log 2)2 + y log 2 = 0.15986 890 

1 
72 = -3(lOg 2)3 + y (log 2)2 + 2Y110g 2 = 0.06537259. 

(We have corrected errors of sign in Hardy's expressions for 71, 72.) The general form of the relations 
connecting the 7'S and y's has been given by Briggs and Chowla and is discussed in section 3. 
We calculated the 7'S by use of a delayed Euler transform and then obtained the y's by solving 
the triangular system of linear equations. However (see sec. 5) this method proved unsatisfactory 
and we made direct calculations of the y's using the Euler·Maclaurin series. This is a natural 
extension of the calculations made by Knuth [11] in which he obtained y to 1271 D. Error estimates 
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are easier to obtain in the Euler-Maclaurin computation, but these computations are more lengthy 
than the direct ones. 

We have only given error estimates for the cases of YI, Y2 but representative computations 
for the later y's suggest that our values of yare secure. We have therefore to regard the y's as 
our primary results and the T'S as derived from them. 

Our interest in the present problem was aroused by an entry (giving YI) in the tables of Wheel on 
[6] which we used for exercises in courses dealing with the Euler transforms. 

Professor H. Zassenhaus has called our attention to rapidly convergent series for y obtained 
by lacobstahl [24] (see also Addison [25]) which might lead to alternative attacks on the higher y's. 

2. The y /5 

The limits by which the y's are defined clearly exist, e.g., in view of a supplement to the 
integral test (Knopp, [10, p. 295]), since 

is ultimately decreasing because 

I". ( ) _ (log x) k 
J k X -

X 

f,'. (x) = (log X )k-I [k -log x], 
, x2 

which is negative for x> ek • The sequences y<~), y~2), y~), ... where 

() ~ (log V)k 1 (l )k +1 
Y % =.LJ v - k + 1 og n - Yk 

11 = 1 

are ultimately monotone decreasing since 

- y(n ) _y(I/ + I)=_I_ (log (n+ 1»k+1 __ 1_ (log n)k +1 _ (log (n+ I»k 
k k k+I k+I n+I 

j " +1 
= fdt)dt - fk(n + 1) 

It 

> 0 iffk(t) is decreasing for t ~ n, i.e. , if n ~ ek. 

We shall now investigate the size of y~It), i.e., the speed of convergence of 

~ (log v) k __ 1_ (1 ) k + 1 
.LJ v k + 1 og n 
11=1 

to its limit Yk. It will appear that 

y(It)=l (log n)k+0(n_2+< ) 
k 2 n 

(2.1) 

(2.2) 

which means that direct computation of Yk does not come in question. We follow the analysis 
given in the case k = 0 by Francis and Littlewood [5, (Question B7, p. 2, 19)]. 

We require the following lemma which is a simple case of the Euler-Maclr. urin formula. (See 
Hardy [22, p. 300, Ex. 4]). 
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LEMMA. If g is three times differentiable in [0, 1] then 

where 0 < 0 < 1. 
PROOF. Consider 

g(l) = g(O) +!2 [g' (0) + g' (1)] _1- gil' (0) 
12 

C(x) = g(x) - g(O) - ~ x [g' (0) + g' (x)] - X 3 [ g(l) - g(O) -~ {g' (0) + g' (l)} J. 
We have 

1 1 [ 1 ] C'(x) =g'(x) -2 [g'(O) +g'(x)] -2 Xg"(x)-3x2 g(l) -g(O) -2 {g'(O) +g'(l)} 

and 

C" (x) = - ~ xg"' (x) - 6X[ g(l) - g(O) - ~ {g' (0) + g' (I)} J. 
We note that C(O) = C(l) = 0 and so C'(Oo) = 0 for some 00 ,0 < 00 < 1. Also C'(O) = O. 

Hence C" (0) = 0 for some 0, 0 < 0 < 01 • Since 0 ~ 0 we have 

g"'(O) =-12[g(1) -g(O) -~ {g'(O) +g'(l)}] 

which is the result required. 
Applying the lemma in the case 

g(x) == (log (x+ n»k+lj(k+ 1), 

gives (cf. (2.1»: 

(log(n + 1) ) k+ 1 (log n) HI (log(n + 1) ) k 
":""""'::'-'-k"--+--'l-'--- - k + 1 - n + 1 = y< k') - y< ~l+ 1) 

(2.3) 
1 ="2 [ fk(n) - fdn + 1)] + e(n,k) 

where 

e(n,k)=O«(logn)kjn3). 

Summing (2.3) for n = m to m = M -1 gives for a suitable K, 

1 M-I 

I'~m) _1'~M);:3"2 [hem) - heM)] - K L (log n)kjn3 

n=m 

and 

1 M-l 

I'~m) _I'~M) :S;"2 [Jdm) - heM)] + K L (log n}kjn3• 

n=m 
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Letting M ~ 00 gives, for any E > 0, 

which is the result (2.2) announced. 

3. Derivation of the 'T-'Y Relations 

We have seen that as n ~ 00: 

n (log 1I)k (log n) k" + 1 
L II = k+1 +Yho+o(l). 
v= l 

(3.1) 

Hence 

(log 2n)k"+1 
k+1 +yk+o(l). (3.2) 

The binomial series for (log 211)ho = (Jog 2 + log lI)k gives 

(3.3) 

where we have used (3.1) in the last stage. 
Integrating (with respect to f3) the binomial expansion of (a + f3)k from 0 to b, or otherwise, 

we find 

k (k) ak- t bt+1 = [(a+ f3 )k+I]b= (a+b)k+l_ ak+1. 
~ t t+1 k+1 0 k+1 k+1 

We use this with 
a=10g2, b = logn 

to get ± (k) {log2)k- t {logn)t+l _ .:.....(l-'og=:...2_n...:...)k_·+_1 {log2)k+1 

t=O t t + 1 k + 1 k + 1 
(3.4) 

Substituting from (3.4) in (3.3) we get 

n (lOg211)k _ (log2n)k+l (log2)k+1 k (k) 
2 ~1 211 - k+1 - k+1 + ~ t (log2)k - tyt + o (l) (3 .5) 

and then subtracting (3.5) from (3.2) gives 

_ ~ (-1). -~(lOgll)k =_ (l~g~ik+l + % (:) (log2)k - tyt + o (1), 
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the last term (t = k) in the summation with respect to t cancelling the 'Yk on the right of (3.2). We 
now let n ~ 00 and find 

(log2)k+1 k-I (k) 
7h'=- k+ 1 + ~ t (log2)k-tyt. (3.6) 

For k= 1, 2, ... we find 

1 
71 =- 2(log 2)2+y log 2 

1 
73 = - 4(log 2)4 + y(log 2)3 + 3YI (log 2)2 + 3Y210g 2. 

The result for k = 0 is, trivially, 

TO = (~ - ~ + ~ ... ) = 1 - ( 1 - ~ + ~ - . .. ) = -log 2 + 1. 

4. Proof of Representation 

If we differentiate the relation 

'" g (z) == (21-z-1),(s)= L (_l)nn- z 
n=1 

k times with respect to z we get 

'" tk)(z) = (-l)k L (-l)n(log n)k/nZ 
n=l 

and, in particular, 
(4.1) 

We have 

and multiplying this by 

'(s) = (Z-l)-I + ~ An(z-l)n 
o 

we get 

g(z) = ~ 'f (-1)t(~og2)t Ak_t(z-l)k 
k=O t=1 t. 

where A- I = 1. Hence 

(4.2) 
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We now use the representation (3.6) for 'Tk to find from (4.1) and (4.2) 

(-l)k [- (log2)k+1 + ~I (k) (log2)k- tyt] =k! ~ (-1)1(:og2)t A k - t. (4.3) 
k + 1 t=O l t= It. 

If we use this relation for k= 1, 2, 3 respectively we find 

y= yo=A o, 

These suggest the general solution 

y" = (- l)nn! An 

which is readily verified. The term outside the summation on the left in (4.3), 

(-l)k+l (log2)k+1 /(k+ 1), 

is the same as the term for t = k + 1 in the summation as the right. Then the l·th term on the 
left, for t = 0, 1, ... , k -1 , can be identified with the (k - t)·th term on the right. 

5. Calculation of the 1"s by Euler Transforms 

Knowing the efficiency of the Euler transform in handling the logarithmic series, it is natural 
to apply this to calculate the 7'S. 

Specifically, the Euler transform of 1 (-l)n/n, when there is a delay of r, is 

1--+-- ... +(_1)r-I_+(_1)r_- -+_._-+_. +. 1 1 1 1 [1 1 1 1 1 . 2 
2 3 r r+l 2 4 r+2 8 r+2'r+3 .. J-

Since the sequence {n- I } is completely monotone, all the terms in the tail of the transform are 
of one sign and we can readily estimate the error. When we take n terms in the tail this error is 

1 [1 1·2· .. ·n 
log2-(s(r)+c(r,n»=(-1)r_- --. + 

r+12n+1 r+2·r+3···· (r+n+l)1 . .. ] 
and is less in absolute value than 

«r+ 1)2n+1 )-1. 

Various hypotheses lead to various optimal choices of r,n. But these are not critical. It has also 
been pointed out that the optimal choice of r,n did not seem to depend critically on the (alternating) 
series being summed (see, e.g. Todd, [14]). 

The Euler transform is, of course, convergent if the original series is, but improvement in 
the speed of convergence of 1 (-l)nun has only been established in case the sequence {Un} is 

completely monotone and if (Un+I/Un) "'" k > ~ (see, e.g., Knopp [10, p. 253]). 
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When Un is completely monotone the terms in the remainder are all of one sign and error 
estimates are easy to obtain. However the terms in n· are not even monotone: since 

d [(logX)k] (log X)k-I - = [k-~g~ 
dx x x2 

we expect the terms in 7k to increase up to about the [e k ] -th and then to decrease. Continuing we 
see that 

!i:... [(lOg X)k] = (log X)/H [2 (log X)2 - 3k log x + k(k -1)] 
dX2 x X3 

which vanishes for 

so that the second difference may be expected to decrease, become negative and then increase 
to positive values. 

We have not obtained useful error bounds for the Euler transforms of the 7k (k > 1). 
We shall discuss these matters in some detail elsewhere. 

6. Calculation of the 'Y/S from the TiS 

In section 3 we have derived the relations: 

71/= - (log2)"+I/ (n+ 1) + ~ ( ~) (log2)II - rYr, n = 1 ,2,3, ... , (3.6 ) 

which we have used to compute the 7'S from the y's. From this triangular system of linear equations 
it is also trivial to obtain the y's, given the 7'S. Although the solution of a triangular system is a 
numerically stable process (see, e.g. , Wilkinson [17, 247]) we have obtained the exact inverse 
of the 20 X 20 matrix 

{C) j=0,1,2, . . . , i-l . 
A = [aij], aij = JO . . l = 1 ,2 , 

J > l 

so that the y's can be obtained with less rounding from the 7'S. 

1 "'2 log 2 + 7dlog 2 yo l 
ydlog2 =A-I X 

Yl/-t! (log 2) II-I 
1 

n+ 1 10g2+ 711/ (log 2)" 
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It is easy to find A-I when n = 10, e.g., by inverting A and identifying the appropriate rational 
entries in A-I. Specifically, we find 

1 

1 1 
2 2 

1 1 1 
-

6 2 3 

0 
1 1 1 
4 2 4 

1 
0 

1 1 1 - -
30 3 2 5 

A - I = 0 
1 

0 
5 1 1 

12 12 2 6 

1 
0 

1 
0 

1 1 1 
- -

42 6 2 2 7 

0 
1 

0 
7 

0 
7 1 1 

- -
12 24 12 2 8 

1 
0 

2 
0 

7 
0 

2 1 1 
- -

30 9 15 3 2 9 

o - 3 
0 

1 o - 7 
0 

3 1 1 
- -

20 2 10 4 2 10 

This naive approach will not work to find A-I in the 20 X 20 case, owing to the condition of A. We 
are indebted to Morris Newman for providing us with the inverse in the general case: 

1
0 if i < j 

[A-I] ij= i= 1,2, ... 

C·) Bi-j . >- . 
• -.-, £ ~J 

£ 

where the Bk'S are the Bernoulli numbers (Bo= 1, BI=-~' B?=~, B 3 =0, etc. )which are readily 
available as rational fractions or as decimals. Incidentally the characteristic vectors of A can be 
expressed as Stirling numbers of the second kind. 

7. Calculation of the y's by Euler-Maclaurin 

The Euler-Maclaurin summation formula can be written as 

q jq 1 k B· L f(j) - f( t) dt = - {J(p ) + f( q)} + L ~ {PH) (q) - j<2H ) (p)} + R k (p, q), 
j = p p 2 j=1 (2J). 

(7.0) 

, . 1 -1 1 
where the Bk s are the Bernoulli numbers, B2 =6' B4 = 30' B6 = 42' .... We give expressions for 

the remainder: 

R" (p, q) = (2k ~ 1) ! f P2k+dt) .f2k+l) (t) dt, 
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where 

P () _ ~ 2 sin 2v7Tt. 
2k+1 t - L.. ' 

v=1 (27TV) 2k+1 

1 [ [q-I ] Rk(p, q) =-- B2k (t) Lj12k) (v + t) dt, 
. (2k)! 0 V=P 

(7 .1b) 

where B2dt) is the Bernoulli polynomial. For up-to-date discussions of these results see Ostrowski 
[19] . 

We use (7.0) in the following way. We first takep= 1, q=n: 

(7.2a) 

We next assume fis such that f'1L) (t) ~ 0 for all relevant J.t and that R ,. (1, r:x;) exists. Letting n ~ r:x; 
gives 

[ n In ] 1 k B· lim L f(j) - f(t)dt = "21(1) + L --:- { - j12j -I)(1)} + Rkl1, r:x;). 
j = 1 1 j=1 (2))! 

(7.2b) 

If we now subtract (7.2a) from (7.2b) we get 

1 k B2 , 

lim g'(m) = g'n--2 !(n)-L -( .)\f2j -l)(n)+R k (n , oo). 
moo"" j = 1 2) . 

(7.3) 

This is the formula which is used to calculate the y's. We have to choose n, k so that Rk(n, r:x;) 
is appropriately small. In the cases with which we are concerned, the series 

is easily seen to be divergent using the well known (Knopp, [10, p. 237]) estimates for B2j+2IB2j 

and the form of j12j-1) (t) whenf(t) = (log t Fit. Indeed, using the expression for j1r) (t) given below 
(7.11), we find 

= (2j+1)(2j+2) X 1 x-,-(2~j+-,--1),-,,(,-,,2)---,·+_2....!....) 
47T2 (2j+l)(2j+2) n2 

which tends to infinity with j, nand k being fixed. 
We shall discuss the behavior of Rdn, r:x;) in the case of Yl, Y2 using Ostrowski's estimate for 

(7.1b). We shall begin with an examination of y using (7.1a) which is a convenient way of finding 
an estimate which we require. 

Taking f(x) = x- I in (7.3) we have, with the remainder in the form (7.1a), 

1 y=l+-+· 
2 

. +- -log n - - + PI (t) - dt 1 1 1'" [-lJ 
n 2n n t 2 
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so that 

1 1 1 f oo 1 +-+ ... +-=log n+y+-+ PI (t)t - 2dt. 
2 n 2n 11 

By the Second Mean V dlue Theorem, there is an 'YJ ;:3: n such that 

Now it is known that the graph of PI (t) has the following form: 

-1 

It follows that 0;:3: (PI (t)dt;:3: -1/8. Hence Jll 

1 1 
log n+y+- ;:3: 1 +-+. 

2n 2 
1 1 1 

·+- ;3 10g n+y+---· 
n 2n 8n2 

We shall use this result presently. 
By a similar argument, starting from 

we obtain 

1 log n log 1 log 2 
- (log n)2 +YI +-- ;:" --+--+ 2 2n ~ 1 2 . 

(Cf. Boas and Wrench [20].) 

logn .+-­
n 

;:" .! (1 CT)2 +logn_.! [l -logn] 
~ 2 0" n + y I 2 8 ? • n n -

(7.4) 

(7.5) 

We now want to discuss the error in (7.3) in the case of YI, i.e. , when/(t) ==/1 (t) = (log t ) /t. 
We have to find the derivatives of/I (t). 
LEMMA 1. I/fl(x) = (log'x)/x then/or r;:3: 0 we have 

(-I)'(r !) 
f~r) (x) = r+1 [log x - dr] 

x 

where do = 1 and/or r > 0 

PROOF. Induction. 
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The error estimate given by Ostrowski is 

(7.7) 

and this is valid if .f2k) (x) is monotonic in (n, (0). In our case we shall examine when.f2h'+I) (x) 
is of one sign in (n, (0). In view of Lemma 1 we have to determine a value of x for which 

log x > d2k+1. 

Using the estimate (7.4) we see that we require 

1 1 
logx> log (2k+1)+Y+2(2k+1) 8(2k+ 1)2 

i.e., 

Fork= 10 this gives 

x> 21 X 1.7811 X 1.025=38.34. 

A rough estimate ofthe error in the case k= 10, n=40 is, from (7.7), 

1 IB201 (20)! [ 1 1 )] 1 5.2912 X 102 
2. 1 . (20)!· 4021 log40-(l+"2+ .. ·+20 =2· 4021 [3.6889-3.5977] 

which is certainly negligible to the precision tabulated. 
We now turn to the case of Y2. The analogue of Lemma 1 IS 

LEMMA 2. If f2(x) = (log x)2jx then for r;;?; 0 

where ao = bo = 0 and for r ;;?; 0 

1 
br+1 = br + 2/(r + 1) giving b r =2[1 + '2.+. 

PROOF. Induction. 
In order to apply our estimates we have to find a value of xo(r) such that 

E(r, x) == [a r - br log x+ (log x)2] ;;?; 0 

(7,8) 

(7.9) 

if x ;;?; xo (r). From the recurrence relations defining the {ar }, {br } we conclude that br - 2 log r, 

ar - (log r) 2 which suggests that the critical value will be 0 (r). Computations also suggest that we 
may take Xo= OCr). We examine this theoretically. 

From the recurrence relations (7.9) we have 

br 2 log x 
E(r+l x)-E(r x)=----· 

, 'r+ 1 r+ 1 
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Summing this we find 

r - \ 

E(r, x) = (log x)2-2(log x)dr + L (b 8/(s+ I)). 
8= \ 

We shall use our estimates (7.4), (7.5) to approximate E(r, x). We have, with errors of 0(1), 

. r-\ {lOg (s + 1) y I} 
E(r, x) =:= (log x)2 - 2 (log x) {log r+ y} + 2 ~ s + 1 + s + 1 - 2 (s + 1)2 

~ (log X)2 - 2 (log x) {log r+ y} + (log r)2 + 2y log r. 

Trying x= 2r, i.e., log x = log r+ log 2, in this we get, to the same accuracy, 

E (r, 2r) ~ (log r) 2 + 2 (log r) (log 2) - 2 (log r) 2 - 2 (log r) (log 2 + y) 
+ (log r)2+2y(log r) 
=0. 

More precise investigations can be made but this discussion seems adequate in the context 
of practical computation. 

We shall now indicate an alternative approach. Let tr be the larger root of the quadratic 

ar - brt + t2 = 0, i.e., tr = i (br + y' b;' - 4ar ). Then any number larger than exp tr can be taken as 

Xo. From the recurrence relations (7.9) we have, if ~r = b'f. - 4a r , 

Summing this we find 

.. )} 

2~ {I 1 
<3- 4 (r+1)(r+2) + (r+2)(r+3) +. .. } 

3 r+1 

From (7.4) we find 

1 (7f2 1 )\/2 tr<log r+y+-+ ----
2r 6 r+ 1 

~ log r+ 1.8599. 
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L 

This estimate is in agreement with computations. We find 

b25 = 0.7632 X 101 , log 25 = 0.3219 X 101 , 

Hence we can take xo(r) = 6.5 X r. 
We give here a typical exploratory calculation which we made in the case of Y2: 

n=400: 3 Bernoulli terms give - 0.12455 

which with the head of series gives Y2 = - 0.96903 

57727 

63192 

57476 

87234 

We use the Ostrowski error estimate (7.7) which in the present case is: 

1 ( 1)B6[6! ] "21-26 6! n7 {a6-bdog n +(logn)2}; 

(-4) 

(-2) 

This is valid if log n exceeds the larger root of a6 - b6 t + t2 = 0, where a6 = 203/45 and b6 = 49/10, 
which is ts = 3.6712. With n = 400, log n ~ 6. The term in braces { . . . } is about 11 and so the trun· 
cation error estimate is about 1O- 19 -so that the round off errors will dominate. Note that in dealing 
with the head of the series we are summing 400 terms, each involving the square (or cube) of a 
logarithm. 

We have not made any detailed error analyses for the cases of Ym, for m > 2. In our final 
computations we have taken n = 400. For instance, in the case of Y15, 

3 Bernoulli terms give 0.36042 49967 32360 (+6) 

which with the head of the series gives YI5 = - 0.28369 16022 44191 (-3) 

so that, there is a massive cancellation. Similarly, in the case of Y19, 

3 Bernoulli terms give 0.67068 88575 83315 (+ 9) 

which with the head of the series gives YI9 = 0.21630 66613 69313 (-3) 

It is because of this that we used the Tooper multiple precision package, with quadruple precision. 
We conclude this p:lragraph by recording the recurrence re lations which we used to calculate 

the derivatives needed in the Bernoulli terms and in the error estimates. 
LEMMA 3. IJfm(x) = {log x)m/x then 

(7.10) 

where 

1 
ao r+l=aO r+-+1 al r , 'r ' 

2 
ai , r+1 = ai, r+ r+ 1 a2, r 

(7.11) 
m 

am-I, r+1 = am-I, r+ r+ 1 am, r 

am,r == 1 
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with appropriate initial conditions: 

aO, 0= a I , 0= · . . = alll- 1, 0= 0, am, O= 1. 

PROOF. Induction. 
U sing the same ideas as in our discussion of/~7') we can estimate 

which gives 

/\f,) (x) ~ (-l)rr! x- r- 1 [log x - log r]m 

and indicates that/I:;) (x) will be of one sign for x"", xo (r) where xo (r) = O(r). 

8. Gram's Calculations 

Gram [7] gives few details of his computations but we can indicate the lines along which they 
went. He realized that it was not attractive to extend the calculations of Jensen [9] which were 
based on the definition 

{ " n 1- S } ~ (s) = lim~ r- S - 1 _ s 

and sought another approach. 
The function 

(8.1 ) 

is entire and satisfies the functional equation 

If we write 

==(t)=~(s), (8.2) 

then == )(t) is an even entire function which does not vanish at t=O SInce - (O)=g(~)= 

- ~ 1T-1/4 r (~ ) ~ (~). We can write 

where ao= log ~ (~ ). If we can compute the a's , we can, by exponentiating, get the coefficients 

in the Maclaurin expansion of == (t) and from this, using (8.1) and (8.2) obtain the coefficients 
in the Laurent expansion of ~ (s) about s = 1. 

Gram had available Stieltjes' 32D values of ~(s), s=2(1)70, i.e. , in principle, the values of 
. . 3 139 , 

log == (Ll) for ± Ll = 2(1 )2' The a s are essentially the values of the (even) derivatives of 
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log == (it) at 0 and can be calculated by using appropriate Lagrangian expressions. For instance, we 
have (see, e.g., [23]) 

From these expressions we find, when 1-n = In + 1 = log == (i (1/2 + n» = log ~ (n + 1), 

Uo =i= - 0.69892 210, 

al =i= + 0.02310 424. 

These are to be compared with the values given by Gram 

ao=-0.69892 22679453314, 

al =+ 0.023104993115419 O. 

Gram, actually, made use of independent calculations by himself and Stieltjes of ~(t) which gave 
ao directly and his calculations were more complicated and elaborate than ours, e.g., he used the 

1 29 
values oflog == (t) for it="2 (1) 2' 

9. Tooper's Multiple Precision Package 

When we realized that we needed multiple precision calculations we were fortunate to have 
available a package produced by Professor R. F. Tooper. In this we used one storage place for the 
exponent of our numbers and four for the mantissa (actually it is possible to use up to 19). Besides 
the usual arithmetic operations included in this package we used the logarithm subroutine. The 
logarithms were calculated from the usual series 

after a reduction in the range to(t, 1); a "long division" process was used. 
Our preliminary calculations were made on the IBM 360/75 at the California Institute of 

Technology and the final ones on the IBM 370/155 at the University of South Florida. 
We used (7.3), with n=400, to compute the y's and A's, and (3.6) to derive the 7'S. 

10. Tables 

The Stieltjes constants A r 

(1) Jensen (2) Gram 

0 0.57721 5665 0.57721 56649 01532 9 
.07281 5845 .07281 58454 83676 

2 - .00484 5182 -.00484 51815 96436 1 
3 -.00034 2306 - .00034 23057 36717 2. 
4 .00009 6889 .00009 68904 19394 4 
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The Stieltjes constants (-1) r A r- Continued 

(1) Jensen (2) Gram 

5 6611 -.00006 66110 31810 8 
6 0332 03316 24090 9 
7 0105 01046 20945 9 
8 0009 00087 33218 
9 94782 7 

-

10 56S8.1 2 
11 - 06768 7 
12 003 19 2 
13 00004 4 
14 00002 4 

15 00000 2 

Jensen asserted that only the ninth decimal in his values was doubtful. Gram stated that he 
believed that his results were correct to 15D but could not guarantee this. Our results confirm 
these statements-the only discrepancies are Jensen's value for A4 and Gram's value for A2, A9. 

NEw COMPUTATIONS 

r The gammas Yr The Stie1tjes constants A The taus 'r+1 r 

0 0.57721 56649 01533 0.57721 56649 01533 0.15986 89037 42431 

1 -0.72815 84548 36767 (-1) 0.72815 84548 36767 (-1) 0.65372 59255 88987 (-1) 

2 -0.96903 63192 87232 (-2) -0.48451 81596 43616 (-2) 0.94139 50232 49318 (-2) 

3 0.20538 34420 30335 (-2) -0.34230 57367 17221; (-3) -0.17996 93810 68913 (-1) 

4 0.23253 70065 46730 (-2) 0.96890 41939 44708 (-4) -0.24514 90765 64097 (-1) 

5 0.79332 38173 01063 (-3) -0.66110 31810 84219 (-5) -0.16685 79600 04258 (-1) 

6 -0.23876 93454 30200 (-3) -0.33162 40908 75277 (-6) -0.83440 13692 15834 (-3) 

7 -0.52728 95670 57751 (-3) 0.10462 09458 44792. (-6) 0.16416 07577 68938 (-1) 

8 -0.35212 33538 03039 (-3) -0.87332 18100 27380 (-8) 0.28113 1649l 35773 (-1) 

9 -0.34394 77441 80881 (-4) 0.94782 77782 76236 (-10) 0.27628 25192 88580 (-1) -
10 0.20533 28149 09065 (-3) 0.56584 21927 60871 (-10) 0.10215 12232 23534 (-1) 

11 0.27018 44395 43904 (-3) -0.67686 89863 51370 (-11) -0.24395 66978 16397 (-1) 

12 0.16727 29121 05140 (-3) 0.34921 15936 67203 (-12) -0.68551 96259 04596 (-1) 

13 -0.27463 80660 37602 (-4) 0.44104 24741 75775 (-14) -0.10325 15678 59017 

14 -0.20920 92620 59300 (-3) -0.23997 86221 77100 (-14) -0.96775 02330 08802 (-1) 

15 -0.28346 86553 20241 (-3) 0.21677 31220 07268 (-15) -0.90996 45657 46961 (-2) 

16 -0.19969 68583 08970 (-3) -0.95444 66076 36696 (-17) 0.19238 77261 64982 

17 0.26277 03710 99183 (-4) -0.73876 76660 53864 (-19) 0.49962 39621 32792 

18 0.30736 84081 49253 (-3) 0.48008 50782 48807 (-19) 0.80971 09289 54417 

19 0.50360 54530 47356 (-3) -0.41399 56737 71331 (-20) 0.85772 10307 17131 
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We are indebted to Peter Weinberger and Herman P. Robinson for detailed comments on our 
tables and especially to Henry C. Thacher, Jr. for showing us his manuscript [26] which includes a 
table of Yr, r=0(1)35, 44 to 28 5 as well as the coefficients of z,(l + z) together with Chebyshev 
series for this function in the ranges [-1/2,1/2] and [0, 1]. His values were also obtained by the Euler­
Maclaurin method and our values agree with his up to the last digit except as indicated: specifically 
Thacher has for ys . . . 91509 and for Y9 . . . 01481 . . . where we have . . . 91 and 
... 11· 
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